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Post-transcriptional regulation by RNA binding proteins (RBPs) plays prominent roles in a variety of
biological processes. In this study, by analyzing the global regulatory relationship between RBPs and their
target mRNAs in yeast, we discovered that most RBP genes are co-regulated with their target genes, but the
RBPs tend to dampen expression variation among their target mRNAs. We further examined a well-studied
RBP gene, PUF3, and found that the protein decreases the variation of its target mRNAs by differentially
affecting their decay. We also constructed a mathematical model to explain the relationship between RBPs
and the expression of their target genes. Our results provided new insights into the functional importance of
RBPs in coordinating the expression of their target genes.

C
oordinating the regulation of functionally related genes by reducing their expression variation in a cell is
crucial for the survival of organisms with limited resource in nature1–4. In prokaryotes, expression of
functionally related genes can be coordinated by forming operons to reduce their expression fluctuation5.

It was proposed that posttranscriptional regulons in eukaryotes may play a similar role in coordinating the
expression of their target genes during posttranscriptional regulation6–8. Gene expression is controlled at multiple
steps. Post-transcriptional regulation is mediated by small RNAs (e.g. microRNAs) or RNA binding proteins
(RBPs) which usually bind to elements in the 39 UTR and orchestrate the fate of their targeted mRNAs.
The systems properties and evolution of microRNA posttranscriptional regulons have been well studied9–12.
A theoretical model for microRNA predicts that they can both modify the mean of their target genes expression
level and reduce variance of expression for their target genes8. While the functional importance of post-
transcriptional regulons becomes increasingly clear, their system properties and evolution remain under-
investigated.

RBPs and their regulation have been shown to be important in splicing, stability, translocation and translation
of their target mRNAs3,13. Experimental studies indicated that the function of RBPs on gene expression is
complicated and sometimes will be opposite in different growth conditions14–17. Many high-throughput
approaches to study RBPs have been recently developed18–20. In humans, numerous diseases have been linked
to defects in RBP functions16,21–24. With many examples of RBPs being identified, it becomes feasible to test
whether these post-transcriptional regulons can coordinate the expression of their target genes at the genome
level. Budding yeast is an ideal model organism to address this issue, in part, because of the absence of microRNA
system in this lineage during evolution25. The global identification of target mRNAs for multiple RBPs26,27 in
budding yeast also offers a unique opportunity to examine the regulatory relationships between RBPs and their
target mRNAs28,29.

In this study, we firstly examined the regulatory relationship between RBPs and their target genes in budding
yeast using RNA-seq data under different conditions. The relationships between gene expression of each RBP and
the mean and variation of its target genes were investigated. We also used a well-studied RBP gene, PUF3, as an
example to investigate the impact of RBP on the expression of their target genes. Our results indicate that most
RBPs are co-regulated with their target genes. Furthermore, they play an important role in coordinating express-
ion variation of their target genes.

Results
RBP buffering the expression of target genes. To investigate the general relationship between RBPs and their
target genes at transcriptional regulation level, we examined the expression correlation coefficient between RBPs
and their targets. We selected 33 RBPs each of which has more than 10 target RNAs in S. cerevisiae27. The
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expression of the studied RBPs and their target mRNAs was assessed
using currently available RNA-Seq data from 148 expression profiles
under multiple conditions in yeast. We calculated the correlation
coefficients between the expression level of each RBP with the
average expression of all of its mRNA target genes in each
condition. The same calculation was also conducted between the
level of RBP expression and CD (CD: Coefficient of Deviation, the
standard deviation of all target genes expression divided by their
mean) of its mRNA target genes.

Taking PUF3, a well-studied RBP gene, as an example, we found
that expression of this RBP is positively correlated with the average
expression of its mRNA targets (Fig. 1A). In contrast, the CD value of
the expression of Puf3p target genes progressively decreases as its
expression level increases (Fig. 1B). We further investigated the rela-
tionship between all RBPs and the expression and variation of their
target genes in various conditions. As shown in Fig. 1C and
Supplementary Table 1, strikingly, a similar pattern was observed
for most of the 33 RBPs. As CD is the ratio of the standard deviation
(SD) of gene expression among targets to their mean expression, to
delineate the impact of the mean expression level of the mRNA
targets on the negative relationship we observed, we investigated
the relationship between the expression of these RBPs and the SD
of the expression of their target genes. As shown in Supplementary
Fig. 1, the results remained overall similar.

Puf3p reducing the expression variation of its target genes. We
used PUF3 as an example to further investigate the buffering of RBP
on the expression of their target genes. The functions of Puf3p and
the evolution of this post-transcriptional regulon have been well-

established15,26,30,31. As Puf3p was shown to be involved in its target
mRNA degradation, we investigated the impact of deleting PUF3
gene on the expression of its targeted mRNA. The expression of
the Puf3p target genes in the PUF3 deletion strain was assumed to
approximate their expression before Puf3p performs its function.
The expression of these target genes in the WT strain was assumed
to represent their gene expression upon Puf3p function. The
genome-wide expression of both strains was profiled using RNA-
Seq (Supplementary Figure 2). The degradation efficiency of each
Puf3p target gene was defined as the percentage of gene expression
level reduced from the PUF3 deletion mutant to the WT strain.
Interestingly, we found that the percentage of mRNA degradation
increases with the level of the targeted gene expression (Fig. 2A).

The significantly positive correlation between the degradation
efficiency and the original expression level of the target genes indi-
cated that Puf3p may have a selective effect on its target mRNAs
based on their level of expression. If this hypothesis is correct, we
inferred that this biased mRNA degradation based on the level of
gene expression could decrease the gene expression variation among
all the Puf3p targeted genes. To test this, we calculated the coefficient
of deviation for gene expression among all the Puf3p target genes in
the WT parental strain and the PUF3D strain. As shown in Figure 2B,
our results confirmed our prediction and showed that deletion of the
PUF3 gene indeed leads to an increased variation of gene expression
among its target genes. (Fig. 2B, F-test P-value 5 0.003).

Coordination of gene expression by RBPs and transcription
factors (TFs). The observed gene expression results from a joint
interaction between generation and degradation of mRNAs. To

Figure 1 | The regulatory relationship for the studied RBPs and their target genes. (A) Positive correlation between PUF3 gene expression and the mean

expression of all its target genes (long10RPKM for each gene is used). (B) Negative correlation between PUF3 expression and the expression variation

(CD, Coefficient of Deviation) of all its target genes. (C) The correlation coefficients (spearman rho) between the gene expression of 33 RBPs and the mean

(and CD) of the expression of their target genes. RBPs are ordered based on the spearman rho for the CD values (P-values, for the regression analysis, most

of which are statistically significant, were listed in Supplementary Table 1).
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explain our observation that most RBPs are positively correlated with
the average, but negatively correlated with the variation, of the
expression of their target genes, we constructed a simple
mathematical model to simulate the behavior of RBPs and their
targets during gene expression. As shown in Fig. 3A, TFs increase
the expression of the target genes and RBPs degrade the transcript of
the target genes. According to the relative importance of mRNA
generation by TFs and mRNA degradation by RBPs, we could
observe four different relationships between RBPs and the
expression of their target genes (Fig. 3B). More than 85% studied
RBPs are co-expressed with their targets and at the same time reduce
the expression variation of the target genes (the yellow region). This
relationship between RBPs and their targets occurs when the
generation of mRNA by TFs is stronger than the transcript
degradation by RBPs, even though the mRNAs of targeted gene are
degraded by RBPs. This mode of gene regulation by RBPs is similar to
the incoherent feed-forward loop (iFFL) proposed for the miRNA
regulation networks where iFFL is frequently used to reduce
expression variation of the miRNA target genes1,8,32.

Discussion
In summary, we discovered that most RBPs tend to be co-regulated
with their targeted mRNAs under various conditions, but the up-
regulation of RBPs can reduce the expression variation among their
targeted mRNAs. According to the combinatorial RNA regulon
model, RBPs can be involved in multiple overlapping biological pro-
cesses3. Our results revealed that besides these well-demonstrated
functions, many RBPs appear to have an ability to reduce expression
variation among their targeted mRNA. Gene expression profiling
with a genetic knockout of the yeast PUF3 gene directly support this
conclusion. DNA operons were proposed to enable prokaryotes to
synchronize the levels of different components of the same func-
tional pathways, thus reducing the variation that is associated with
the production of the functionally related proteins5. Upon disappear-
ance of DNA operons in most eukaryotic organisms during evolu-
tion, the suppression of expression variation among the targeted
mRNAs by RBPs may represent a unique mode to achieve similar
functional advantages. We further demonstrated that RBPs could
conduct similar functions as miRNAs in other organisms in reducing

Figure 2 | Reducing expression variation of target genes by Puf3p. (A) Biased degradation of Puf3p mRNA targets. The X axis is the percentage of mRNA

reduction from the PUF3D to the WT parental strain, and the Y axis denotes the expression level of Puf3p target genes in the PUF3D strain

(long2RPKM for each gene is used). (B) CD values in the WT parental strain and the PUF3D strain among the Puf3p target genes. F-test was used to test the

CD differences.

Figure 3 | The competition and cooperation between RBPs and TFs. (A) The model of RBPs regulation system was listed. TFrbp activates the expression

of RBP and TF1 to TFk activate the expression of target genes from TG1 to TGn. RBP represses the expression of all target genes. (B) The X axis (the

parameter j) is the impact of mRNA degradation by RBPs and the Y axis (the parameter m) is the ratio of mRNA generation by TFs and degradation by

RBPs. Four colors indicate the relationships between RBPs and the expression of their target genes. The red means a positive correlation with both average

and CD of the targets; the yellow means a positive correlation with average and a negative correlation with CD of the targets; the light blue means a

negative correlation with the average and a positive correlation with the CD of the targets and the dark blue means a negative correlation with both average

and CD of targets.
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expression variation. The molecular mechanisms underlying our
observation and its evolutionary significance warrant further study,
which can also be employed to create coherent biological circuits in
genetic engineering33,34.

Methods
RNA-Seq data and the target genes of RBPs. The RBP genes and their targets were
downloaded from Dr. Patrick Brown’s laboratory27. The cutoff to define a target gene
for each RBP is q-value , 0.001. Finally 33 RBPs with more than 10 target genes were
used in this study. The Fastq files of RNA-Seq data for S. cerevisiae were downloaded
from the DNAnexus website (http://sra.dnanexus.com/) and NCBI, 148 experimental
conditions were listed (Supplementary Table 2). All Fastq files were mapped onto the
S. cerevisiae genome by SOAP2 and the expression level of each gene was estimated by
RPKM (Reads Per Kilobase per Million reads)35. After log transformation, the mean,
SD and CD of expression for target genes of each RBP were calculated. The
correlation coefficients between the expression of RBPs and the mean, SD & CD of
their target genes were calculated using cor.test function in R36. We also conducted
similar analysis using microarray data in different conditions and our conclusion in
Fig. 1 still hold true (data not shown).

Yeast growth condition and RNA Seq experiments. The PUF3 gene deletion mutant
strain (PUF3D) was from our previous study31. Both the PUF3 gene deletion strain
and the wild type BY4741 (MATa, his3D1, leu2D0, met15D0, ura3D0) strain were
cultured overnight in YPD media. 0.01 OD cells were transferred into fresh YPEG
media until 1.0 OD. Total RNA was extracted by the standard Trizol protocol. mRNA
was then purified using oligo-dT DynaBeads. cDNA sequencing library was
constructed according to the protocol described by Wang et al.37. After sequencing,
the reads were also mapped into S. cerevisiae genome by SOAP2 with no more than
two mismatches. RPKM was used to represent the expression level of each gene. The
high-throughput sequencing data has been deposited in NCBI Gene Expression
Omnibus under the accession number: GSE55419.

Constructing the gene regulation model. In this model, we assumed that there was a
biological system with one transcription factor (TF) and one RNA binding protein
(RBP) to regulate 100 target genes (TGs) at the same time. Based on previous
studies38,39, a well-established mathematical model that was used to study
transcriptional programs of a gene is:

d½TG�i
dt

~
Ai

( Ti
½TF� )

ni z1
{j|½RBP�|½TG�i{ki|½TG�i

[TG]i, [TF] and [RBP] represent the expression level of transcriptional target gene i
(i 5 1, 2, … 100), transcriptional factor and RNA binding protein at time t,
respectively. Ai and Ti represent the maximal expression level and the activation
coefficient for transcriptional target gene i, respectively. In addition, ni and ki are Hill
coefficient governing steepness of transcriptional activation term and the decay rate
of transcriptional target gene i, respectively. j represents the rate for RBP to break
down the TGs, which is dependent on the properties of unique RBP. Different RBPs
might have distinct j values. The initial expression level for transcriptional target gene
i is defined as [TG]i0.

Note that, different transcriptional target gene i might have distinct [TG]i0, Ai, Ti,
ni, and ki even when the same TF and RBP regulate them. To compare TFs and RBPs,
we assume m 5 [TF]/[RBP]. As a result, [TF] in the above equation could be sub-
stituted by m 3 [RBP]. In addition, m represents an important parameter to measure
the relative importance between TF in producing transcript and RBP in degrading
transcripts. Based on a previous experimental estimation for the above parameters in
yeast S. cerevisiae40 and other studies (reviewed in39), we assumed the parameter
spaces for [TG]i0, Ai, Ti, ni, and ki to be (0, 1), (1, 2), (0, 4), (1, 4) and (0, 1),
respectively. Note that, [TG]i0 and Ai are defined as (0, 1) and (1, 2), which is to avoid
the unrealistic situation that [TG]i0 could be larger than Ai in the random simulation
process. Similarly, the parameter space for expression level of RBP ([RBP]) is (0, 2),
for which 0 and 2 represent no expression and maximum expression level, respect-
ively. To simply the simulation, we assumed the parameter spaces for m and j to be (0,
2) and (0, 1), respectively. As a result, since m 5 [TF]/[RBP], (0, 2) as m’s parameter
space would allow us to simulate both situations that [TF] is higher or lower than
[RBP]. Based on all of these reasonable assumptions, we randomly produced a series
of parameters for each gene of the 100 TGs. The average expression levels and CD for
the 100 TGs under one [RBP] value are calculated. Under each combination of m and
j values, this process is repeated 10,000 times with 1,000 different [RBP] values to
calculate the correlation coefficients between [RBP] and average expression levels (or
CD) of 100 TGs.
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