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Recent experiments indicate a connection between the structure of amyloid aggregates and their cy-
totoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which
causes early-onset of Alzheimer’s disease. While wild-type Amyloid β-peptides form only parallel
beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these struc-
tural variations may cause the difference in the pathological effects of the two Aβ-peptides, we
have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and
antiparallel forms. We compare regular molecular dynamics simulations with such where the vis-
cosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing
and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the
various factors that could lead to the structural differences. Our analysis indicates that the parallel
forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates
are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from
the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them
more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa
mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported
by previous experimental measurements showing slow inter-conversion of antiparallel aggregates
into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel con-
formations and determines their relative stability may open new avenues for the development of
therapies targeting familial forms of early-onset Alzheimer’s disease. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4900892]

INTRODUCTION

Deposits of amyloids are associated with a growing num-
ber of human illnesses. An example is Alzheimer’s disease,1

which is correlated with the appearance of fibrils in patient
brains that are formed by β-amyloid (Aβ) peptides.2 The
amyloid deposits consist of elongated spines made of many
β-sheets strands1 held together by a dense hydrogen-bonded
network and steric-zipper-like van der Waals and hydropho-
bic forces,3 which in turn depend on shape complementar-
ity and the organization of β-sheets into either a parallel
or antiparallel structure.4 Amyloid-forming peptides, such as
Aβ, can simultaneously assemble into fibrils with different
morphologies.5 Such fibril polymorphism arises from differ-
ences in packing of the peptides into parallel and antiparal-
lel β-sheets, proto-filaments, filaments, and fibrils;6 and is
important because the various fibril morphologies differ in
growth rate and toxic potential.7–9 Insight into this relation-
ship is therefore crucial for understanding the disease mech-
anism, which in turn may open the way to new therapeutic
strategies.

One possible avenue to probe this relationship is by com-
paring the wild type with the various pathogenic mutations
that are known to modify the physicochemical properties of
the peptide10 and to cause early onset of Alzheimer’s dis-
ease. One example of these pathological Aβ mutants is the
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so-called Iowa mutant (D23N Aβ), which has higher neuro-
toxicity than wild-type Aβ.11 While the existing experimental
structures of wild type Aβ are built out of in-register parallel
β-sheets,12 recent in vitro studies indicate Aβ (1–40) Iowa
mutant (D23N) fibrils can contain either parallel or antipar-
allel β-sheets.13 The antiparallel D23N-Aβ1–40 fibrils propa-
gate less efficiently in seeded fibril growth and were found
to be thermodynamically meta-stable, transient, intermediates
that convert over time into fibrils with parallel structure. Evi-
dence for this conversion results from measurements of inter-
molecular dipole-dipole couplings among 13C labels at A21
methyl carbons, however, there are no experimental structures
of the parallel fibril Iowa mutant deposited in the Protein Data
Bank.14 The larger stability of parallel configurations has been
related to more ordered residues, longer β-strand segments,
and interactions between cross-β units in parallel D23NAβ1–40
fibrils than found in antiparallel structures.14 Additional fac-
tors that lead to a predominance of parallel structures are the
more efficient packing of hydrophobic side chains at the C-
terminal interface in the twofold and/or polar zipper interac-
tions involving Q15, N23, or N27 side chains.14

The solid state NMR data of the Iowa mutant fibrils sug-
gest that antiparallel cross-β motifs could also exist in other
cases.14 As antiparallel cross-β motifs also exist and are be-
lieved to be thermodynamically stable in polyglutamine,15

these NMR data cast further doubt on the widely accepted
assumption that amyloid fibrils are built out of in-register
parallel β-sheets.16 Instead, the data suggest coexistence of
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parallel and antiparallel conformations in Aβ. Even for wild
type Aβ where the existing experimental structures are built
only out of in-register parallel β-sheets, there is evidence that
the wild type could exist to some extent in an antiparallel
manner.17 Hence, while both forms are cytotoxic to neuronal
cell cultures,14 it is reasonable to conjecture that the different
pathologies are related to the different probabilities that both
forms are observed in wild type and Iowa mutant.

Assuming such a scenario, it becomes important to un-
derstand the polymorphism and conformational stability of
Aβ peptides. For this purpose, we have performed a series
of molecular dynamic simulations of antiparallel and paral-
lel twofolds (stacks) of Aβ15−40 and D23N Aβ15–40 fibril-
like oligomers. Such molecular dynamics stability studies
suffer from the problem that the energy landscape of amy-
loid aggregation is rugged. The achievable scope of protein
aggregation18 computer simulations is limited as aggregation
and conversion between forms of aggregates happen on time
scales not accessible by molecular dynamics. One way to
circumvent this problem is through use of stability studies,
which do not directly model amyloid assembly but provide
indirect input on the various factors that modulate fibril for-
mation. An evaluation of the stability of the pre-formed initial
structures requires that the system evolve with its natural ki-
netics. This excludes the use of enhanced sampling techniques
such as generalized ensemble sampling and replica exchange
molecular dynamics. Since these techniques rely on artificial
dynamics,19–21 they make it difficult to interpret the changes
in stability observed during the simulation. Instead, we test
in the present work a different approach where the compu-
tational costs are lowered by using reduced solvent masses
that lower friction and enhance conformational sampling.22, 23

Previous studies have also shown that reducing the masses of
peptide side chain atoms in combination with solvent mass
can enhance peptide conformation sampling23, 24 and, in the
present paper, we evaluate the efficiency of this approach in
the context of protein aggregation. The approach is similar
to another method for increasing sampling efficiency, namely,
raising the temperature of the system. However, unlike that
method it avoids the problem that hydrophobicity is strongly
temperature-dependent which, in the case of high tempera-
ture simulations, may lead to significantly altered dynamics.25

Mass-scaling also will lead to artificial dynamics, but we con-
jecture that it leads to a smaller disturbance of the system and
therefore smaller deviations from the natural dynamics. Us-
ing this improved sampling technique we then explore how
the differences in stability between parallel and antiparallel
forms are modulated by the sequence of amino acids in both
wild type and Iowa mutants.

MATERIALS AND METHODS

In our simulations, we investigate the stability of aggre-
gates of the wild type and the Iowa-mutant of Aβ, both in con-
figurations with parallel β-sheets and such with anti-parallel
β-sheets. The four start configurations are decamers built
from two U-shaped penta-peptides with C terminal to C ter-
minal interfaces whose structures were derived from the NMR
amyloid fibrils (PDB codes, 2LNQ and 2LMO). The fibril-

like oligomers used as starting configurations are made out of
residues 15–40 for both Aβ15−40 and D23N Aβ15–40 peptides,
which are capped with acetyl and amide groups in order to
have equal length in the simulated molecules. This helps to
avoid systemic error when comparing differences in the sta-
bility of the preformed oligomers of Aβ and its Iowa mutant.
We assume that the parallel D23NAβ1–40 oligomer structures
closely resemble that of the parallel WT-Aβ1–40 structures,
and the anti-parallel D23NAβ1–40 oligomers closely resem-
ble the anti-parallel WT-Aβ1–40. We thus replace the residue
N23 of the experimentally known D23NAβ15–40 fibril (PDB
id of 2LNQ) with D to generate the anti-parallel wild type
Aβ15–40 fibril-like oligomer. The mutation is done by replac-
ing the side chains of the targeted residues and keeping its
original backbone conformations. The parallel D23N Aβ15–40
fibril model is generated in the same manner by replacing at
position 23 an aspartic acid (D) with asparagine (N) in the ex-
perimentally determined wild-type Aβ10–40 fibril (PDB id of
2LMO) structure and removing residues 10–14. The double-
layered model of the D23N-Aβ15–40 antiparallel conformation
is constructed from the experimentally derived single layer
by setting the interlayer distance between two pentamers to
values between 9 and 10.3 Å, which is in the range of val-
ues observed via x-ray.1 The two β-strands belonging to each
peptide are offset from one another along the oligomer axis
by roughly 5 Å as in the experimental structure of the par-
allel wild-type Aβ10–40 double-fold. This allows for a more
meaningful comparison between the two different structural
models. The interface in the antiparallel model was then stag-
gered to create a steric zipper that minimized clashes between
residues. This was done by maximizing the distance between
the initial side chain distances and orienting the stagger such
that the bulky phenylalanine was positioned between glycine
and leucine.26

We ran several long all-atom explicit water molecular dy-
namic simulations in order to explain the structural and en-
ergetic differences between the parallel and antiparallel ar-
rangement of the wild type and Iowa mutant aggregates. Our
molecular dynamics simulations use a combination of the
CHARMM27 force field with CMAP corrections27–29 with
explicit water (TIP3P),30, 31 a common choice for explor-
ing amyloid peptide aggregation,32, 33 as implemented in the
GROMACS program version 4.6.2.34 Hydrogen atoms are
added with the pdb2gmx module of the GROMACS suite. The
start configurations for all proteins are put in the center of a
cubic box, with at least 12 Å between the solute and the edge
of the box.15 We enforce periodic boundary conditions in all
three directions to simulate a pseudo-infinite amyloid. In or-
der to account for the periodicity, electrostatic interactions are
calculated with the PME algorithm.35, 36 We use a time step of
2 fs. Hydrogen atoms are constrained with the LINCS37 algo-
rithm, while the Settle algorithm is used for water.38 The tem-
perature of 310 K is kept constant by the Parrinello-Donadio-
Bussi algorithm39 (τ = 0.1 fs) which is similar to Berendsen
coupling but adds a stochastic term that ensures a proper
canonical ensemble.39, 40 In a similar way, the pressure is
kept constant at 1 bar by the Parrinello-Rahman algorithm41

(τ = 1 fs). After energy-minimizing the solvated start config-
uration using first the steepest descent method, followed by
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conjugate gradient, the system is equilibrated in two steps of
500 ps, first in a NVT ensemble and second in a NPT ensemble
at 1 bar. After equilibration, 300 ns trajectories are analyzed
for each system to monitor how the oligomer structures evolve
with time; however, averages are only calculated over the last
100 ns to ensure equilibrium conditions. Data are saved at
4.0 ps intervals for further analysis. For each system, we run
three distinct simulations with different initial velocity distri-
butions. Since they start from the same initial structure, these
three trajectories are correlated, and error estimates from stan-
dard deviations therefore have to be taken with a grain of salt.
However, comparing the three trajectories gives some indica-
tion for reaching equilibrium and guarantees three maximal
independent sets of measurements.

Two sets of simulations were run for each of the four
cases: one with the physical mass of the atoms in the
molecules, and one where these masses are scaled by a fac-
tor of 0.5. Since the viscosity is proportional to mass, the
mass scaling leads to a reduced viscosity, which in turn al-
lows faster sampling of configurations. Comparing the two
sets of simulations allows us to quantify the improvement in
sampling efficiency.

The molecular dynamics trajectories are analyzed with
the tool set of the GROMACS package. Specifically, we mon-
itor conformational changes and stability of the oligomer
models through the time evolution of root means square de-
viations (RMSD) of the Cα atoms, root mean square fluc-
tuation (RMSF), hydrophobic contacts distances, and hydro-
gen bonds, measured with the g_hbond and g_dist modules
in GROMACS. Hydrogen bonds are defined by a distance
cutoff between donor and acceptor of 0.36 nm and an
angle cutoff of 30◦. Configurations are visualized using
PyMOL.42

RESULT AND DISCUSSION

Sampling efficiency of protein aggregate simulations

We begin our analysis by comparing molecular dynamics
simulations of the four systems (wild type and Iowa mutant,
with either parallel or anti-parallel β-sheet arrangement) that
use physical masses with simulations. The physical masses
are scaled by a factor of one half, corresponding to a re-
duced viscosity of the system. As a metric to evaluate the ef-
ficiency of the two methods, we have calculated the RMSD to
the start configurations as reference. The expectation is that
the RMSD increases faster in the systems with scaled mass
than in the control system, with both eventually approaching
a similar steady state. Such behavior is indeed observed for
the antiparallel Iowa mutant protein system, where both the
control system and the scaled mass simulations approach a
final RMSD value of approximately 6 Å (Figure 1(a)). This
value is reached in the scaled mass simulations after only
7 ns while the control, run with full physical mass, requires
104 ns to reach this value (i.e., in this example we find an ap-
proximately 15-fold increase in efficiency). The improvement
is even more dramatic in the case of the wild type antiparallel
model where the control system within 300 ns of simulation
time never reaches the RMSD value of about 6.1 Å, whereas
the scaled mass simulation approaches this value after only
30 ns (Figure 1(b)). Assuming again an increase in efficiency
by a factor of 15, the control system would only approach
this value after 450 ns, much longer than the simulation time
of 300 ns for our systems. A qualitatively similar picture is
also observed for the two systems with parallel sheet organi-
zation (Figures 1(c) and 1(d)). However, the gain in efficiency
in both systems (wild type and mutant) is not large enough
that the systems would approach a region of constant RMSD.

FIG. 1. Root-mean-square deviations (RMSD) and root-mean-square fluctuations (RMSF) values for Iowa mutant and wild type with physical mass (Green/Tan)
and with scaled mass (Red/Blue). The increased sampling efficiency in scaled mass simulations is indicated by their growing variance. (a) and (e) show the
RMSD and RMSF values for the antiparallel Iowa mutant (APIM), (b) and (f) show the same quantities for the antiparallel wild-type (APWT), (c) and (g) for the
parallel Iowa mutant (PIM), and (d) and (h) for the parallel wild-type (PWT).
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This is not surprising, as the parallel configurations are ex-
pected to be much more stable.

Note that in all cases similar root-mean-square-deviation
values are approached. Comparison of the RMSF values for
the last 100 ns of simulations (Figures 1(e)–1(h)) between the
antiparallel and parallel full mass (green and tan, respectively)
and the half mass (red and blue, respectively) shows little dif-
ference in the residue behavior of the equilibrated structure.
From this, we conclude that the mass scaling does not alter
the behavior of the overall structure to a large degree. We con-
clude that mass scaling can indeed enhance the sampling effi-
ciency in simulations of protein aggregates, albeit more work
needs to be done to optimize the mass tuning. This will be
explored in future studies. In the present work, we use only
our reduced mass simulations for further analysis, as the sam-
pling efficiency in all four cases is higher than in the regular
molecular dynamics runs.

Structural stability of wild type and Iowa
mutant aggregates

Following the trajectories of the four systems, we find
that the Aβ15–40 and D23N Aβ15–40 decamers have very
similar dynamic behavior. Both parallel β-sheet variants
(Figures 1(c) and 1(d)) change less in their root-mean-
square deviation values than the anti-parallel β-sheet variants
(Figures 1(a) and 1(b)), but the RMSD values indicate that
there are no significant differences in stability between the
fibril-like oligomers of Aβ15–40 and D23N Aβ15–40. A more
sensitive quantity is the RMSF, which allows one to dis-
tinguish between flexible and stable residues. The average
RMSF is calculated for 6 of the 10 peptide-chains for the last
100 ns in each system, with the 1st, 5th, 6th, and 10th chains
removed due to aberrant flexibility caused by increased sur-
face exposure. Both conformations of mutant and wild type

are highly flexible at the ends and in the loop regions of the
protein strands, and much less so in the β-strand regions. The
C-terminal region has a high RMSF value that can be ex-
plained by its C–C terminal bilayer hydrophobic interactions
resulting from an increased solvent exposure. While less pro-
nounced, high RMSF values are observed also for the three
N-terminal residues. Face-to-face interactions observed in β1
(residues 18–22) and C-terminal-to-C-terminal hydrophobic
interactions between adjacent β2 layers (residues 30–38) ap-
pear to lead to similar relative stability in both antiparallel
systems (Table I) as these residues have the same average
RMSF value of 1 Å in both antiparallel systems. On the other
hand, the C-terminal-to-C-terminal interactions are more sta-
ble in the parallel form of both mutant and wild type, lead-
ing for the residues 30–38 to a RMSF value of less than 1 Å
(Figure 1). This suggests that this C-terminal-to-C-terminal
interface is responsible for the increased stability that is ob-
served experimentally for the parallel system of Aβ when
compared to antiparallel Aβ. Note that the β1 region of both
parallel systems (residues 18–22 in Figure 1) has an average
RMSF of around 1.1 Å, which is more than the values ob-
served in the antiparallel system. This is likely an artifact re-
sulting from our truncation of the four ordered residues per
peptide strand in the parallel model causing increased solvent
exposure to normally buried residues.

In all four cases, the oligomer models for the Aβ wild
type and Iowa mutant keep the general characteristics and
topologies of their initial conformation (Figure 2). The β-
sheet-loop-β-sheet topology is stable in all chains of all
oligomers and the hydrophobic interface between the U-
shaped stacks stays intact throughout the simulation. How-
ever, the outer chains and the turn regions have an enhanced
flexibility as shown in the above RMSF analysis. Hence, both
parallel and antiparallel organizations are stable and there-
fore can contribute to the polymorphism during amyloid fibril

TABLE I. Average hydrophobic residues distance of the C-terminal-to-C-terminal interactions of β-sheets in adjacent layers measured in angstroms. The
standard deviation (calculated from averaging over three trajectories for the last 100 ns of the simulation) is shown in parentheses.

C to C interface Distance Distance Distance Distance Distance
Antiparallel Iowa mutant Start Average Run 1 Run 2 Run 3

G29-E22′ 10 13.4 (0.6) 13.5 (0.5) 14.4 (0.7) 12.5 (0.7)
I31-F20′ 9.6 8.9 (0.4) 8.8 (0.3) 9.2 (0.4) 8.7 (0.4)
G33-V18′ 9.9 8.31 (0.4) 8.6 (0.4) 8.1 (0.4) 8.3 (0.4)
M35-K16′ 9.5 10.5 (0.5) 11.7 (0.5) 10.4 (0.4) 9.4 (0.6)

Antiparallel wild type Start Average Run 1 Run 2 Run 3
G29-E22′ 10.3 11.7 (0.6) 12.1 (0.5) 10.7 (0.5) 12.4 (0.7)
I31-F20′ 10 8.6 (0.3) 9.2 (0.4) 7.8 (0.3) 8.7 (0.3)
G33-V18′ 9.6 8.2 (0.4) 8.7 (0.4) 7.8 (0.4) 8.1 (0.4)
M35-K16 10.6 9.9 (0.4) 11.2 (0.4) 9.2 (0.4) 9.2 (0.5)

Parallel Iowa mutant Start Average Run 1 Run 2 Run 3
I31-M35′ 8.4 9.8 (0.3) 9.7 (0.4) 9.7 (0.3) 10.1 (0.3)
G33-G33′ 7.2 8.1 (0.4) 8.2 (0.4) 8.0 (0.3) 8.3 (0.4)
M35-I31′ 8.2 9 (0.3) 8.9 (0.4) 9.0 (0.3) 9.0 (0.3)

Parallel wild type Start Average Run 1 Run 2 Run 3
I31-M35′ 8.4 10 (0.4) 9.9 (0.3) 9.8 (0.3) 10.3 (0.5)
G33-G33′ 7.4 8.4 (0.4) 8.0 (0.3) 8.2 (0.4) 9.1 (0.5)
M35-I31 8.2 9.2 (0.4) 9 (0.4) 9.1 (0.4) 9.6 (0.4)
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FIG. 2. Overlay of the final and start configurations of Aβ wild type and
Iowa mutant of one of the three independent trajectories of 300 ns for
(a) the Iowa mutant antiparallel β-sheet; (b) the wild type antiparallel β-
sheet; (c) Iowa mutant parallel β-sheet; and (d) wild type parallel β-sheet.
Start configurations are marked in red for the mutant and in blue for the wild
type; correspondingly red marks the final configuration of the mutant and tan
for the wild type.

formation. Previous simulations of the U-turn polymorphism
of Aβ17–42 by Miller et al.8 also showed that both parallel and
antiparallel arrangements are stable and can contribute to a
polymorphic population.

The above findings from visual and RMSF analysis are
also confirmed by an analysis of side chain contacts, hydro-
gen bonds, and the secondary structure content. The fibril-like
oligomers of both the Aβ wild type and Iowa mutant have
tightly packed β-sheets with complementary side chains act-
ing as a steric zipper3, 43 along the C-terminal interfaces of the
double layer interface (see Figures 3(a) and 3(b)). We have
monitored the distance between the Cα atoms complemen-
tary side-chains of the first β-sheet to the second β-sheet for
the last 100 ns of the simulation in order to get further in-
sight into their role in stabilizing the four different simulated
oligomers. Our analysis of the data is shown in Table I. The
distances between G33–G33, and M35–I31 residues in the paral-
lel β-sheets are smaller than 9.5 Å, while the distance for the
I31–M35 pair is slightly larger than 10.0 Å. These distances
are close to the experimental values of 8–11 Å,3 indicating
a good fit between the interacting amino acid side chains,
which keeps the oligomer intact during the simulation. The
contacts between the residues G29–E22 in the antiparallel β-
sheet model are larger than the experimental value of 8–113

and increase by about 2 Å during the simulation, indicating
poor packing between these residues. However, the remaining
pairs of residues that are involved in the C-terminal β-sheets
interface have a tight inter-digitation, keeping the structure in
both wild type and Iowa mutant stable.

Another type of interaction that is important for stabi-
lizing the fibril-like oligomers is the face-to-face interactions
between β-sheets in each single fold (see Figures 3(c) and
3(d)). Table II displays the results of the face-to-face interac-
tion dynamics for the last 100 ns of the simulation. Among

FIG. 3. Face-to-face interactions in decamers of Aβ wild type and Iowa mu-
tant. The side-chains involved in the complementary interactions are shown
as spheres, with yellow spheres representing the face-to-face interactions be-
tween β-sheets of the single fold residues and brown spheres representing
C–C terminal side chain interactions between protein layers. Parallel systems
are shown in green and antiparallel is shown in blue. (a) Side chain inter-
actions along the C-terminal β-sheets interface residues I31/M35, G33/G33,
and M35/I31 for the parallel β-sheet double fold; and (b) side chain inter-
actions along the C-terminal β-sheets interface residues G29/E22, I31/F20,
G33/V18, and M35/K16 for the antiparallel β-sheet double fold. Face-to-
face interactions within β-sheets between the single fold residues Q15/V36,
L17/L34, F19/I32, and A21/A30 are shown in (c) for the wild-type parallel
β-sheet, and in (d) for the antiparallel β-sheet in the Iowa mutant.

selected pairs of residues for both the parallel and antiparallel
experimental oligomer models, the distances increase during
the simulation for the antiparallel conformation more than for
the parallel. The face-to-face contacts in the parallel structure
tighten during the simulation by about 1 Å. This may be due
to a better steric fitting of adjacent side chains in parallel con-
formations than in antiparallel ones that have been proposed
by Antzutkin et al.4 Additional stability results from the or-
dering of residues 10–14 in the parallel structure while the
same residues are disordered in the antiparallel structures.12, 14

As the face-to-face distance indicates how well the side chain
packing is, our simulation points out differences between the
two systems. These differences are not enough by themselves
to establish differences in thermodynamic stability; however,
they point to face-to-face interactions as an important factor
contributing towards differences in stability. The looser fit be-
tween the side chains, as determined from the β-sheet to β-
sheet distances at the interface (Table I) and the face-to-face
interactions (Table II) leads to creation of a cavity in the anti-
parallel aggregates that does not exist in the parallel form. We
conjecture that the more efficient packing between β-sheets
makes the parallel aggregates more stable than the antiparal-
lel forms.

Root-mean-square deviation and root-mean-square
fluctuations differ by approximately 1 Å between the parallel
and the antiparallel conformations. These differences, and
the one in packing, indicate that the parallel conformation is
only slightly more stable than the antiparallel conformation.
However, our setup underestimates the stability of parallel
aggregates as we have removed residues 9–14 of the parallel
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TABLE II. Averaged sheet-to-sheet interactions measured in angstroms for the last 100 ns of the simulation. The standard deviation (calculated from averaging
over three trajectories) is shown in parentheses.

Face to face interface Distance Distance Distance Distance Distance
Antiparallel Iowa mutant Start Average Run 1 Run 2 Run 3

Q15-V36 8.4 9.3 (0.7) 8.8 (0.7) 9.4 (0.6) 9.6 (0.7)
L17-L34 9.5 10.1 (0.5) 10.1 (0.4) 9.6 (0.5) 10.8 (0.5)
F19-I32 9.5 10.4 (0.5) 9.9 (0.4) 10.2 (0.4) 11.0 (0.6)
A21-A30 9.9 10.6 (0.5) 10.0 (0.5) 11.1 (0.5) 10.8 (0.6)

Antiparallel wild type Start Average Run 1 Run 2 Run 3
Q15-V36 8.6 9.1 (0.6) 8.8 (0.6) 9.5 (0.6) 9.1 (0.7)
L17-L34 9.6 9.8 (0.5) 10.1 (0.5 9.7 (0.5) 9.7 (0.4)
F19-I32 9.6 9.9 (0.4) 10.3 (0.5) 9.8 (0.4) 9.7 (0.4)
A21-A30 10 10.6 (0.5) 10.3 (0.5) 11.1 (0.5) 10.3 (0.5)

Parallel Iowa mutant Start Average Run 1 Run 2 Run 3
Q15-V36 14.7 12.9 (0.7) 12.7 (0.8) 13.9 (0.7) 12 (0.6)
L17-L34 13.9 12.0 (0.5) 12.9 (0.6) 11.2 (0.5) 11.9 (0.4)
F19-I32 12.3 12.0 (0.5) 12.0 (0.6) 11.7 (0.4) 12.4 (0.5)
A21-A30 11.5 11.1 (0.6) 10.4 (0.6) 11.7 (0.5) 11.3 (0.5)

Parallel wild type Start Average Run 1 Run 2 Run 3
Q15-V36 14.5 13.5 (0.8) 13.8 (0.7) 14.2 (0.9) 12.5 (0.9)
L17-L34 13.3 12.1 (0.6) 12.9 (0.5) 12.5 (0.7) 11 (0.5)
F19-I32 12.3 11.9 (0.5) 12.1 (0.5) 11.6 (0.5) 12.1 (0.5)
A21-A30 11.5 10.5 (0.6) 11.2 (0.6) 9.2 (0.6) 11.2 (0.8)

structure in order to have the same size in all our structures
(simplifying our simulation setup). These residues are part
of the ordered β-sheet in the parallel-structure fibril, but
are disordered in and do not contribute to the stability of
the antiparallel experimental structure. The presence of
these additional five residues in the N-terminal region of the
full-sized parallel fibril increases further the differences in
stability between the two forms but is not accounted for in our
simulations.

Another important factor in stabilizing the supra-
molecular organization of amyloid peptides44 is the arrange-
ment of hydrogen bonds. We have analyzed the extent of
hydrogen bonds in order to determine whether there is a dif-
ference between parallel or anti-parallel β-sheet organizations
of the wild type and Iowa mutant oligomers. We find that the
total number of hydrogen bonds is comparable for Iowa mu-
tant and wild type in both parallel and anti-parallel systems.
However, the number of backbone, side chain, and side chain-
backbone (i.e., protein-protein) hydrogen bonds are slightly
larger (by 18(8) bonds) in the antiparallel systems than the
parallel systems (see Figure 4) of Aβ15–40 and D23N Aβ15–40.
On the other hand, the number of hydrogen bonds between
the aggregate and the surrounding solvent is larger in the an-
tiparallel configuration than in the parallel one by about the
same amount (21.9(19) bonds). However, the error in the lat-
ter number is large and makes an interpretation difficult. No
signal for a preference of one over the other configuration was
found in the solvent-solvent hydrogen bonding. From these
results, we conjecture that, in the experimentally determined
structures, the four additional ordered residues in the paral-
lel arrangement of Aβ10–40 increase the number of hydrogen
bonds and therefore stabilize this structure over that of the
anti-parallel D23N Aβ15–40 oligomer. This is also in agree-

ment with the experimental data and will make the parallel
form more stable than the antiparallel form.12, 14

Evidence for this conjecture is also found in our monitor-
ing of the secondary structure during the simulation. Given
that amyloid fibrils are composed mainly of β-sheets, this
quantity provides information on the relation between inter-
actions that involve the β-strand motif and the stability of the
aggregates.45 Table III lists the average secondary structure
content from the DSSP analysis of the energy-minimized ini-
tial structure and the last 100 ns of each system. As a gen-
eral tendency, we find lower β-sheet content in the decamers
with parallel organization than in such with antiparallel struc-
ture. The increased β-sheet content in the latter case could
contribute to the stability of the antiparallel organizations and
could explain how this structural organization can compete
with the parallel conformation.14 Qiang et al.14 have proposed
that the difference in the number of ordered residues (50% of
antiparallel versus 75% in parallel oligomers) is responsible
for the thermodynamic preference of parallel over antiparal-
lel structures. However, our simulation of Aβ15–40 fibril-likes
oligomer of Aβ wild type and Iowa mutants indicates that
the antiparallel structure has a slightly larger percentage of β-
sheet secondary structure. This difference may be due to lim-
itations of our model, which considers only residues 15–40.
While residues 1–15 are disordered in the experimentally de-
termined antiparallel D23N Aβ15–40 fibril, in the Aβ wild-type
fibril only residues 1–10 are disordered. We therefore would
expect more β-sheet secondary structure in simulations than
seen in the experimental Aβ10–40 parallel β-sheet oligomer.
Hence, our results suggest that the relative stability of parallel
β-sheet over antiparallel β-sheet conformations depends on
the larger number of ordered residues in the parallel β-sheet
conformation.
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FIG. 4. (a)–(l) Number of hydrogen bonds involving residues 15–40 plotted versus time for the Aβ wild type and Iowa mutant. Shown are in the first row the
main chain to main chain hydrogen bonding (HB MC MC), in the second row the side chain to side chain hydrogen bonding (HB SC SC), and in the third
row the main chain to side chain hydrogen bonding (HB SC MC) for the antiparallel Iowa mutant (APIM), the antiparallel wild-type (APWT), the parallel Iowa
mutant (PIM), and the parallel wild type (PWT). The three independent runs are shown in red, blue, and pink.

Free energies of wild type and Iowa aggregates

Common paradigm is that the protein-aggregation land-
scape resembles a rugged valley with numerous close lo-
cal minima corresponding to different polymorphic forms of
fibrils. Multiple polymorphic aggregates can emerge during
fibril formation, with different environmental conditions fa-
voring different polymorphic forms over the others.46, 47 In
order to gain further insight into the relative stability of our
four oligomers, we have done MM-PBSA calculations of the
oligomers allowing us to monitor their interactions48 through
calculating approximate binding free energies from molecular
simulations.49, 50 While the MM-PBSA approach in general
does not replicate the absolute binding free energy values,51

we chose this approach because it allows one to calculate
quickly an estimate for differences in the free energy of
binding, and because it usually exhibits a good correlation

with experimental data.52 In the present study, the binding
energy between the two β-sheets (that is between the pen-
tamers that form the decamer) is estimated with the MM-
PBSA methodology as implemented in AMBER12. Before
starting the MM-PBSA analysis, all water molecules and ions
were excluded from the trajectory. The dielectric constants
used for the solute and surrounding solvent are 1 and 80, re-
spectively. Multiple molecular dynamics runs relying on the
all atom AMBER99SB force field and TIP3P water model
were performed for each of the four double layer aggregate
models and carefully equilibrated for 5 ns. Specifically, three
trajectories of 40 ns were generated that unlike our produc-
tion runs did not utilize mass-scaling. Such an approach is
preferable over a single long time run as it leads to a more ef-
ficient sampling of phase space. The MM-PBSA single trajec-
tory approach is used to calculate the binding energy. Snap-
shots are gathered at intervals of 40 ps during the 40 ns of

TABLE III. Secondary structure of the wild-type Aβ and Iowa mutant antiparallel and parallel sheet systems, measured for the energy minimized initial
configurations and also averaged over the last 100 ns. The standard deviation between the three runs is shown in parentheses.

Percentage of secondary structure of the Percentage of secondary structure
energy minimized initial configurations averaged over the last 100 ns

System Helix Beta sheet Turns Random Helix Beta sheet Turns Random

Antiparallel Iowa mutant 0 49.59 13.11 37.30 1.1 (0.49) 51.65 (0.59) 16.96 (0.45) 30.29 (1.47)
Antiparallel wild type 0 47.48 15.87 36.65 0.56 (0.86) 50.01 (0.8) 18.41 (1.91) 31.01 (1.18)
Parallel Iowa mutant 0 46.33 14.26 39.41 1.3 (1.11) 44.43 (1.71) 18.41 (2.89) 35.87 (2.68)
Parallel wild type 0 46.28 14.96 38.76 2.82 (2.37) 44.68 (1.75) 19.90 (0.8) 32.59 (1.1)
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TABLE IV. Binding energies and standard deviations as calculated with the MM-PBSA approach, including its components (Kcal/mol) for the four-fibril
models. The standard deviation (calculated from averaging over three trajectories) is shown in parentheses.

System �Evdw �Eele �EPB �ESA �Enon-polar �Epolar �Gbinding ��Ga

Parallel wild-type − 325.0(12.3) − 96.2(111.6) 187.6(89.2) 181.4(3.6) − 143.6(8.7) 91.4(22.6) − 52.2(26.5) − 21.6
Antiparallel wild-type − 351.1(18.1) − 307.23(36.7) 431.8(20.7) 195.7(7.9) − 155.3(10.2) 124.7(18.4) − 30.6(9.2)
Parallel Iowa mutant − 344.8(9.2) − 457.7(31.6) 546.1(42.8) 192.3(0.8) − 152.6(8.7) 88.3(17.3) − 64.3(24.2) − 23.4
Antiparallel Iowa mutant − 351.1(22.1) − 670.3(64.2) 782.8(60.3) 197.7 (10.0) − 153.4 (12.4) 112.5(24.4) − 40.9(14.4)

a��G is the difference in binding free energy �Gbinding between the parallel and antiparallel conformation of Aβ wild type and Iowa mutant. The negative values indicate that
parallel conformations are more stable than the corresponding antiparallel conformations. �Gbinding = �Evdw + �Eele + �Gsol; �Gsol = �EPB + �ESA. Here, �Evdw is van der
Waals energy and �Eele is the non-solvent electrostatic energy. The contributions to the solvation free energy are split into a nonpolar and polar part. ESA is a nonpolar contribution to
solvation free energy; �GPB is electrostatic contributions to the solvation free energy calculated by the Poisson-Boltzmann equation. The nonpolar term (�Enon-polar) consists of the
van der Waals interaction energies (EvdW) and the nonpolar contribution to the solvation free energy (ESA). The polar term (�Epolar) is the sum of Coulomb interaction energy (Eelec)
and polar contribution to the solvation free energy (EPB). Various entropic contributions are neglected in our MM-PBSA approximation.

simulation leading to 1000 equally spaced snapshots for each
single trajectory from the three 40 ns MD trajectories. For our
analysis we use the Python implementation of MM-PBSA as
provided with AmberTools 12.53 The results of the binding
energy in Table IV are the average of the three calculations.
Note that we did not account for entropic contributions to
binding since we compare only systems that are very simi-
lar where these contributions could even raise the overall un-
certainty in the calculated binding energies.54 For a detailed
discussion, see Refs. 55 and 56.

The obtained binding energies listed in Table IV are in
agreement with the experimental observation that the paral-
lel Iowa mutant is more stable than the transient antiparal-
lel structure14 and that, while there is experimental evidence
for the possibility of wild type Aβ existing in an antiparal-
lel form,15 all experimentally determined models of Aβ are
built out of parallel β-sheets.12 This high-energy difference
predicted by our MM-PBSA calculation suggests that the
conversion between parallel and antiparallel forms cannot be
achieved by simple rearrangement (since it is a topological
difference), but is most likely due to individual strands de-
taching from the less stable antiparallel form and assuming
the more stable parallel β-sheet structure.14, 52, 53

We have further analyzed the various components in or-
der to identify the dominant factors in the binding affinity. The
van der Waals (�Evdw), electrostatic term (�Eele), and non-
polar terms (�Enon-polar) favor complex formation in all cases.
The nonpolar solvation (�ESA), which describes the process
of transferring a nonpolar molecule from vacuum to water in-
cluding the creation of a cavity in water, is unfavorable in all
cases. Similarly, the polar solvation term opposes the protein-
protein binding due to polarization of the solvent environ-
ment by the solute. The electrostatic contribution (�Eele)
between the proto-filament pairs, which in an in-register par-
allel β-sheet structure is larger than in an anti-parallel β-sheet
structure with its pairing of negatively and positively charged
groups, is favorable but cancelled by the electrostatic solva-
tion term (�EPB).

For both the Iowa mutant and wild type Aβ, the binding
energy of the two parallel and antiparallel conformations sug-
gests a slightly higher thermodynamic stability of the parallel
organization over that of the antiparallel one. While free en-
ergy perturbation and other free energy calculations methods
are more accurate than the MM-PBSA approach we used,57

this ranking of the stability could explain the experimental ob-
servation of the conversion of the less stable antiparallel Iowa
mutant into the more stable parallel conformation fibril.14, 58

While our data are noisy with only small differences, they are
supported by a recent theoretical study by Okamoto et al.59

using the ab initio MP2/6-31G method that also found the
parallel conformation in both the wild type and Iowa mutants
more stable than the antiparallel ones.

CONCLUSION

We have investigated in silico the stability of decamers
of Aβ wild type and its Iowa mutant that are reported to ex-
hibit either an antiparallel or parallel β-sheet organization.
Simulations with scaled mass are compared with such sim-
ulations where the physical masses are unchanged. Our data
demonstrate that mass scaling leads to increased sampling ef-
ficiency by reducing the viscosity of the system. Similar to the
more common raising of system temperature, this allows for
an easier escape from local minima and therefore enhanced
sampling while at the same time keeps deviations from the
natural dynamics small. In some cases, we found that mass
scaling led to improvements in sampling efficiency by fac-
tors of 15. There may be potential for further refinement of
selective scaling to provide even greater yields in efficiency.
Even with this increase in efficiency our simulations clearly
do not cover the time scales on which the conversion of an-
tiparallel to parallel forms is observed in experiments. How-
ever, signals for these transitions can be found by comparing
the stability of wild type and mutant in the two forms. An
analysis of the free energy of binding by MM-PBSA of our
data, as derived from configurations that originated from these
enhanced molecular dynamics simulations, indicates that the
parallel forms of both wild type and Iowa mutant aggregates
are the most stable, while the antiparallel aggregates are less
stable for the Iowa mutant and least stable for the wild type.
This ranking of stabilities is consistent with previous experi-
mental results and is explained here with the dependency of
the structurally important sheet-to-sheet interface interactions
on the side chain complementarity. The direct alignment of
hydrophobic interactions in the in-register parallel oligomers
makes them more stable than the antiparallel aggregates. The
parallel supra-molecular organization could be due to favor-
able stacking of residues allowing each adjacent residue to
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overcome potential repulsive interactions, which makes it en-
ergetically more favorable than the antiparallel aggregates.4

However, our data demonstrate that both parallel and anti-
parallel β-sheet fibrils can exist under physiological condi-
tions even though they have differences in thermodynamic
and structural stability. Hence, both forms may contribute
to the polymorphism of Aβ aggregates. Eisenberg and co-
workers60 utilizing the parallel β-sheet fibril models of an
Alzheimer’s peptide in combination with computer modeling
have found several compounds that reduce amyloid toxicity.
Our data suggest that using as templates for Aβ aggrega-
tion inhibitor design not only parallel but also anti-parallel β-
sheet fibrils may lead to compounds that reduce toxicity even
further.

The slightly higher thermodynamic stability of the Iowa
mutant oligomer in its parallel organization over that of the
mutant in antiparallel form is supported by previous exper-
imental measurements showing slow inter-conversion of an-
tiparallel aggregates into parallel ones. Our calculations indi-
cate that this conversion is energetically costly. This suggests
that the conversion is not a simple re-arrangement but rather
involves the detachment of monomers from the less stable an-
tiparallel form and re-aggregation into the more stable parallel
structure. Future plans include computational studies that rely
on novel sampling techniques currently under development in
our lab.
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