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Purpose: Motion artifacts are common in patient four-dimensional computed tomography (4DCT)
images, leading to an ill-defined tumor volume with large variations for radiotherapy treatment and a
poor foundation with low imaging fidelity for studying respiratory motion. The authors developed a
method to estimate 4DCT image quality by establishing a correlation between the severity of motion
artifacts in 4DCT images and the periodicity of the corresponding 1D respiratory waveform (1DRW)
used for phase binning in 4DCT reconstruction.
Methods: Discrete Fourier transformation (DFT) was applied to analyze 1DRW periodicity. The
breathing periodicity index (BPI) was defined as the sum of the largest five Fourier coefficients, ranging
from 0 to 1. Distortional motion artifacts (excluding blurring) of cine-scan 4DCT at the junctions
of adjacent couch positions around the diaphragm were classified in three categories: incomplete,
overlapping, and duplicate anatomies. To quantify these artifacts, discontinuity of the diaphragm at
the junctions was measured in distance and averaged along six directions in three orthogonal views.
Artifacts per junction (APJ) across the entire diaphragm were calculated in each breathing phase and
phase-averaged APJ, defined as motion-artifact severity (MAS), was obtained for each patient. To make
MAS independent of patient-specific motion amplitude, two new MAS quantities were defined: MASD

is normalized to the maximum diaphragmatic displacement and MASV is normalized to the mean
diaphragmatic velocity (the breathing period was obtained from DFT analysis of 1DRW). Twenty-six
patients’ free-breathing 4DCT images and corresponding 1DRW data were studied.
Results: Higher APJ values were found around midventilation and full inhalation while the lowest
APJ values were around full exhalation. The distribution of MAS is close to Poisson distribution with
a mean of 2.2 mm. The BPI among the 26 patients was calculated with a value ranging from 0.25
to 0.93. The DFT calculation was within 3 s per 1DRW. Correlations were found between 1DRW
periodicity and 4DCT artifact severity: −0.71 for MASD and −0.73 for MASV . A BPI greater than
0.85 in a 1DRW suggests minimal motion artifacts in the corresponding 4DCT images.
Conclusions: The breathing periodicity index and motion-artifact severity index are introduced to
assess the relationship between 1DRW and 4DCT. A correlation between 1DRW periodicity and
4DCT artifact severity has been established. The 1DRW periodicity provides a rapid means to esti-
mate 4DCT image quality. The rapid 1DRW analysis and the correlative relationship can be applied
prospectively to identify irregular breathers as candidates for breath coaching prior to 4DCT scan
and retrospectively to select high-quality 4DCT images for clinical motion-management research.
C 2014 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4898602]
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1. INTRODUCTION

Four-dimensional computed tomography (4DCT) based on
respiratory correlation is widely applied in radiation oncology
to define the internal tumor volume (ITV) for thoracic and
abdominal lesions.1 The ITV approach is simple and effective
in treating a moving target but often exposes normal tissue
along the tumor motion path to the full prescribed dose. Tumor

motion tracking or 4D radiotherapy (4DRT)2,3 is a solution that
spares normal tissue by focusing the radiation beam on the
target volume. However, due to the presence of motion arti-
facts in 4DCT, the delineated gross tumor volumes in different
breathing phases can vary by up to 90%4–110%,5,6 especially
for small lesions with large motion ranges. This variation may
affect the defined ITV, particularly if the artifact occurs at the
extreme respiratory phases, such as the full inhalation phase
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that is known for irreproducibility.7 When considering 4DRT
treatment planning,6,8 scan artifacts in all respiratory phases
are expected to have similar impact on the planning target vol-
ume, leading to greater treatment uncertainties.

Motion artifacts in clinical 4DCT images were previously
reported as common phenomena since patients rarely breathe
reproducibly.7,9–12 These artifacts cause anatomical distor-
tion, resulting from breathing irregularities during 4DCT sc-
ans. In a cine scan, breathing irregularity occurring within
one bed position breathing may cause blurring artifacts, since
image projections from a narrow range of time points are
binned into phases based on a respiratory motion surrogate.
From one bed scan to the next, breathing irregularities cause
discontinuity of the 4DCT image at the junction, leading to
such artifacts as incomplete, overlapping, and duplicate anat-
omies, which are much pronounced than motion blurring.13

A patient study consisting of 50 clinical 4DCT images of
the thorax and abdomen showed that 90% of these images
contained at least one motion artifact with a mean magnitude
of 12 mm.13 Because breathing irregularities produce most
of motion artifacts using the binning method, the motion
artifacts in respiratory-correlated 4DCT are often referred as
binning artifacts.14,15

As a result of recognizing the severity and frequency of
motion artifacts and realizing the importance of artifact reduc-
tion for both current and future clinical needs, effort has been
devoted to correcting or minimizing binning-associated arti-
facts. Such studies include the use of internal, feature-based,
or multipoint motion surrogates for binning16–18 or of using
direction-dependent displacement or the motion velocity for
binning.19–21 Other studies correct motion artifacts by model-
ing respiratory motion with deformable image registration22–26

or probability density functions.15 More recently, advanced CT
scanners, such as 64-slice fan-beam or 320-slice cone-beam
CT scanners,15,22 have been developed; these circumvent some
binning artifacts with a shorter rotation time and a longitudi-
nally widened 4D scan volume. However, these methods are
not yet implemented in most clinics.

In this study, we report a correlative relationship between
motion artifacts and breathing irregularities. Two new in-
dexes are introduced to quantify the motion-artifact severity
(MAS) in 4DCT images and the breathing periodicity index
(BPI) of the 1D respiratory waveform (1DRW), which is the
respiratory surrogate used for retrospective binning. Twenty-
six free-breathing 4DCT images and corresponding 1DRW
curves were studied by manual measurement of the MAS
and by using discrete Fourier transformation (DFT) method
to calculate the BPI, respectively. The established correlation
could be used as to anticipate image quality from a breathing
trace acquired prior to 4DCT scanning or to further develop
a gated 4DCT scanning to suspend image acquisition during
periods of irregular breathing.

2. METHODS AND MATERIALS

Twenty-six patients who had received a 4DCT during
quiet unprompted breathing at simulation for radiotherapy of

F. 1. Workflow diagram quantifying BPI in the 1DRW (A) and MAS in
the 4DCT (B): MASD is the MAS normalized to the maximum diaphragm
displacement, and MASV is the MAS normalized to mean diaphragmatic
velocity.

thoracic and abdominal lesions were selected for this study.
The images were acquired in cine mode using an 8-slice
CT scanner (Discovery, GE Healthcare, Milwaukee, WI) and
using real-time position management system (RPM, Varian
Oncology Systems, Palo Alto, CA) as an 1DRW surrogate.
These images were binned into ten phases using proprie-
tary software (GE Advantage PET/CT Simulator). In this
study, only the motion artifacts around the diaphragm are
reported. Figure 1 shows the workflow diagram used to quan-
tify motion-artifact severity in the phase-binned images, the
periodicity of the RPM breathing trace, and their correlation.

2.A. Fourier analysis for 1DRW (RPM) periodicity

The time range of the RPM (1DRW) curve was selected
from the entire breathing trace to correspond to the bed posi-
tions, in which the diaphragm was scanned in all breath-
ing phases. The superior–inferior locations of the diaphragm
within 4DCT field of view were used to select the corre-
sponding RPM time range. Fourier analysis on the selected
breathing trace was used to obtain the BPI. Mathematically,
a 1DRW was considered as a 1D n-element array v , which
was processed to remove its constant component by subtract-
ing its mean: v = v −mean(v). After Fourier transformation,
the Fourier coefficients of v were sorted by absolute magni-
tude in a descending order as F(i), i = 1, 2, . . .,m. The BPI is
defined as

BPI≡
k

i=1F(i)2n
i=1F(i)2 , (1)

namely, it is defined as the ratio of the energy (F(i)2) of the
largest five Fourier components (BPI-5) to the total Fourier
energy. In this study, k was defaulted to five and BPI was
defaulted to BPI-5. BPI value ranges from 0 to 1. Based on
Parseval’s theorem,

n
i=1F(i)2=n

i=1v(i)2, as the energy of
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F. 2. Demonstration of BPI-5 [the breathing periodicity index is defined in Eq. (1) with k = 5] for a nonperiodic and a periodic function. (a) A nonperiodic
function composed of 200 random numbers (BPI-5 = 0.18). (b) A periodic sinusoidal wave function with minor noise (BPI-5 = 0.95).

the zero-mean array v is conserved by Fourier transforma-
tion. Thus, BPI-5 quantifies how closely the first five Fourier
components represent the original array v (1DRW). For a
highly periodic function, the corresponding BPI is close to
one. Conversely, the energies of a nonperiodic function are
scattered over a far wider spectral domains and the associated
BPI-5 should be small. Figure 2 illustrates the difference be-
tween a nonperiodic function (BPI-5= 0.18) and a periodic
sinusoidal function (BPI-5= 0.95) with minor noise.

In addition to BPI-5, other BPI-k (k = 2 to 8) were evaluated,
including Pearson correlation among themselves and the trend
of BPI-k values as a function of k. BPI-5 was used to study the
correlation with the MAS from the phase-binned 4DCT.

From the Fourier analysis, the mean breathing period (T)
was calculated as below.

T =
N

fs ·cF
, (2)

where the total number of samples (N), sampling rate ( f s),
and the index of the dominant Fourier coefficient (cF) in
Fourier frequency spectrum were used. The period was used
to calculate the mean velocity of the diaphragm during respi-
ration. The Fourier analysis program, which can process all
1DRW data files in batch mode, was implemented in 
on a desktop computer (Windows XP, Core duo CPU E8500
at 3.1 GHz with 2 GB of RAM).

2.A.1. Estimation of mean diaphragmatic
displacement and velocity

The mean diaphragm location was determined by using
six pivot points on the diaphragm in each of the ten phases.27

Three points on the right and left sides of the diaphragm were
measured; these points were chosen to be the most inferior
points at the anterior and posterior sides of the diaphragm,
and the most superior point at apex point of the diaphragmatic
dome (Fig. 3). The maximum diaphragm displacement be-
tween the full exhalation (FE) and full inhalation (FI) phases
was calculated (DMax

Diaphragm) and the mean diaphragmatic ve-
locity (vDiaphragm) was the DMax

Diaphragm divided by the mean

period (T)

DMax
Diaphragm=

1
6

6
i=1

�
ZFI
i − ZFE

i

�
, (3)

vDiaphragm=
DMax

Diaphragm

T
=

1

6 ·T

6
i=1

(ZFI
i − ZFE

i ), (4)

where Z represents the superior–inferior position of the six
points, FE is 50% phase and FI is averaged between 0% and
90% phases.

These patient-specific motion parameters were used to
“normalize” the MAS, which minimized patient specificity
and allowed motion artifact comparability among patients.

2.B. Measurement of motion artifacts in 4DCT images

Motion artifacts in 4DCT were visually identified and man-
ually quantified using an in-house treatment planning system
(TPS) following the procedure in Fig. 1. In cine 4DCT images,
motion artifacts that distort the diaphragmatic appearance at

F. 3. Illustration of three pivot points on one lateral side of the diaphragm.
Six points in total on both sides of the diaphragms were measured to define
the mean diaphragm position. This image shows a respiratory phase (yellow)
and the full exhalation (red) as the reference phase.
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F. 4. Three typical appearances of distortional motion artifacts in cine-scan 4DCT images: (a) and (b) INC, (c) OVE, and (d) DUP. Within each image, in the
left lower quadrant, lies the associated method of measurement of each artifact (S = superior, P = posterior, L = lateral, and M = medial). Note that in an INC
artifact, where the artifact edge is flat with no associated dome, only the S measurement was taken into account (a). When an INC artifact was associated with
a dome the S, L, and M measurements were recorded (b). In an OVE artifact the S and P measurement were taken (c) and within duplicate artifacts only the
superior measurement was recorded (d).

the junction between two bed positions were identified and
categorized into three groups: incomplete [INC, Figs. 4(a)
and 4(b)], overlapping [OVE, Fig. 4(c)], and duplicate [DUP,
Fig. 4(d)]. Within images acquired at a single bed position,
motion blurring was observed but not included in this
study.

Starting with respiratory phase 0% (full inhalation), all
motion artifacts were measured in three orthogonal planar
images. At a 2-bed junction in the axial view, a crosshair was
placed at the center of the diaphragm. Within the sagittal and
coronal views, corresponding to the crosshair cuts, discon-
tinuities due to the artifacts were clearly seen, as shown
in Fig. 4. Within this fixed location, all artifact magnitudes
were measured in the superior–inferior (SI), anterior–posterior
(AP), and medial–lateral (ML) directions. Because of asym-
metry of the diaphragm and its motion (Figs. 3 and 4), discon-
tinuities measured may not be the maximum amplitude of
the artifacts. This procedure was applied consistently to every
junction in the diaphragmatic range on both sides of the dia-
phragm. If no artifact was observed at a particular scan junc-
tion, the artifact amplitude was set to zero in calculating the
average artifact per junction (APJ). Upon completion of the
0% phase image, the process was repeated for the remaining
phase (10%–90%) images.

The magnitudes of each artifact in the SI, AP, and ML
directions were recorded as follows: For INC and DUP arti-
facts, the SI magnitude, or the distance between the actual
edge of the artifact and visually estimated edge without arti-
fact, was measured with the “ruler” tool of the TPS and
recorded as distance (cm) [Figs. 4(a), 4(b), and 4(d)]. For
OVE artifacts, the SI magnitude was measured as the distance

from the midpoint of the artifact to the inferior diaphragmatic
edge [Fig. 4(c)]. The AP and ML magnitudes were measured
from the edge of the diaphragm to the end of the artifact
[Figs. 4(b) and 4(c)].

2.C. Quantification of MAS

The magnitudes of artifacts in the SI, AP, and ML direc-
tions in coronal and sagittal images were averaged at each
scan junction on both lateral sides of the diaphragm. Within
the longitudinal scan range of the diaphragm, APJ were calcu-
lated for each respiratory phase. The MAS was defined as the
averaged APJ (in cm) among all respiratory phases (n= 10).

MAS=APJ=
1

10

10
i=1

APJi. (5)

The MAS depends not only on breathing irregularity but
also on patient-specific diaphragm motion amplitude. There-
fore, to make MAS depend solely upon the breathing irreg-
ularity, two normalized MAS indexes were introduced to the
maximum diaphragmatic displacement and the diaphragmatic
velocity, defined in Eqs. (6) and (7).

(a) MASD is MAS normalized to maximum diaphragmatic
displacement [Eq. (3)]

MASD =
MAS

DMax
Diaphragm

=
1

10 ·DMax
Diaphragm

10
i=1

APJi. (6)
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(b) MASV is MAS normalized to mean diaphragmatic ve-
locity [Eq. (4)]

MASV =
MAS

vDiaphragm
=

MAS

DMax
Diaphragm/T

=
T

10 ·DMax
Diaphragm

10
i=1

APJi. (7)

These three motion-artifact severities (MAS, MASD, and
MASV) were analyzed and correlated to the periodicity (BPI-
5) of the corresponding 1DRW.

2.D. Correlation analysis between BPI in 1DRW
and MAS in 4DCT

The Pearson correlation coefficient (r), defined as the cov-
ariance (cov) of two variables divided by individual standard
deviation (σ), was used to quantify the linear relationship
between BPI and MAS values, namely,

r =
cov(BPI,MAS)
σ(BPI) ·σ(MAS) , (8)

where MAS can also be MASD or MASV . This equation was
also used to check the correlations among BPI-5, BPI-4, and
BPI-3, and among MAS, MASD, and MASV .

For linear fitting of two variables (BPI, MAS), in which
both variables contain non-negligible uncertainties, singular
value decomposition (SVD) was applied to treat BPI and
MAS equally in the total least-square linear regression.

3. RESULTS

3.A. Phase-dependent motion artifacts

The amplitude of the motion artifacts is phase dependent,
as shown in Fig. 5(A). The smallest artifact magnitude occurs
around the full exhalation phase, while the largest magnitude
with greatest variation happens at or near the full inhalation
phase. The average motion artifact over all respiratory phases
and all 26 patients is 2.2±1.1 mm. The histogram of mo-
tion artifacts including all phases and all patients is shown
in Fig. 5(B), illustrating the distribution of the amplitude of
artifacts, which is similar to a Poisson process with a mean of
2.2 mm [Fig. 5(B)].

3.B. Periodicity and number of Fourier components

Among the 26 patients studied, the average BPI-5 is 0.75
±0.18, ranging from 0.25 to 0.93, as shown in Table I. Figure 6
shows BPI-k (k = 2–8) as a function of the number of largest
Fourier coefficients in 26 patients. At k = 5, the slopes of the
curves become steady, suggesting that BPI-5 is appropriate
and effective. Figure 7(A) shows that the linear correlation in-
creases slightly from (BPI-5 and BPI-3) to (BPI-5 and BPI-4),
suggesting that k = 5 should be used even though their differ-
ence is small. For MAS, Fig. 7(B) depicts that MASD corre-
lates with MASV (r = 0.92) better than with MAS (r = 0.82).

F. 5. (A) Average motion artifacts per cine junction at the diaphragm of
26 patients as function of the breathing phase. (B) Histogram of the motion
artifacts of all phases in 26 patients, overlaid with a Poisson distribution curve
with the mean of motion artifacts (2.2 mm) to show the similarity. No Poisson
fitting of the histogram was performed.

The patient-averaged breathing period is 4.1±1.3 s, ranging
from 1.7 to 6.5 s. Table I shows the values of 26 patients,
together with mean diaphragm displacement (0.8±0.5 cm,
ranging from 0.4 to 2.1 cm) and velocity (0.2±0.1 cm/s, rang-
ing from 0.1 to 0.4 cm/s). After patient-specific motion factor
is removed from the MAS, the MASD and MASV should be
primarily a result of breathing irregularities.

3.C. Motion-artifact severity and correlation
with breathing periodicity

Figure 8 shows a negative correlation of −0.53 between the
MAS and BPI-5. However, MASD and MASV , which were
normalized to the displacement and velocity of the diaphragm,
respectively, become comparable among patients, resulting in
improvement in correlation with BPI-5 substantially to −0.71
and −0.73, respectively. One patient outlier (not shown) was
removed from this study because of a possible mismatch be-
tween 4DCT images and 1DRW dataset.

3.D. Timing requirements for the 1DRW
and 4DCT analyses

The averaged time for Fourier analysis was about 3 s per
1DRW, including the time for loading the data, displaying the
1DRW curve, and saving the result. However, it would take
a trained researcher at least 2–3 h to process the ten phases
for each patient’s 4DCT image set and record the data into an
existing template.
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T I. Three motion-artifact severities (MAS = APJ, MASD, and MASV ) for the 4DCT images of 26 patients,
whose maximum diaphragm displacement, mean motion period, and mean velocity are shown. Correlation is 0.82
for MAS–MASD and 0.92 for MASD–MASV .

Patient BPI-5
MAS
(cm)

St dev
(cm) MASD

Maximum displacement
(cm)

MASV

(s)
Period

(s)
Velocity
(cm/s)

1 0.65 0.28 0.13 0.50 0.56 0.20 4.01 0.14
2 0.77 0.25 0.11 0.49 0.51 0.17 3.52 0.14
3 0.58 0.18 0.11 0.42 0.43 0.17 4.14 0.10
4 0.87 0.31 0.10 0.70 0.44 0.19 2.68 0.16
5 0.60 0.16 0.07 0.30 0.51 0.13 4.30 0.12
6 0.76 0.10 0.09 0.21 0.46 0.06 2.75 0.17
7 0.62 0.12 0.11 0.28 0.43 0.11 3.72 0.12
8 0.84 0.31 0.16 0.22 1.42 0.10 4.32 0.33
9 0.82 0.13 0.08 0.37 0.34 0.10 2.54 0.13

10 0.62 0.36 0.20 0.77 0.47 0.30 3.92 0.12
11 0.25 0.46 0.15 1.22 0.38 0.79 6.48 0.06
12 0.85 0.20 0.11 0.12 1.69 0.05 3.92 0.43
13 0.64 0.18 0.09 0.35 0.50 0.10 2.92 0.17
14 0.71 0.36 0.10 0.29 1.23 0.09 2.97 0.41
15 0.83 0.16 0.10 0.28 0.56 0.05 1.72 0.33
16 0.63 0.22 0.12 0.22 0.98 0.06 2.63 0.37
17 0.48 0.44 0.22 0.94 0.46 0.60 6.36 0.07
18 0.62 0.13 0.05 0.28 0.48 0.07 2.70 0.18
19 0.93 0.13 0.05 0.11 1.23 0.06 5.75 0.21
20 0.90 0.12 0.06 0.11 1.11 0.06 5.51 0.20
21 0.71 0.38 0.12 0.86 0.44 0.32 3.73 0.12
22 0.77 0.11 0.08 0.26 0.44 0.10 4.02 0.11
23 0.91 0.19 0.03 0.19 0.98 0.11 5.65 0.17
24 0.85 0.14 0.07 0.26 0.54 0.10 3.86 0.14
25 0.82 0.16 0.06 0.09 1.71 0.05 5.73 0.30
26 0.92 0.17 0.06 0.08 2.08 0.05 5.62 0.37

Average 0.73 0.22 0.10 0.38 0.78 0.16 4.05 0.20
St dev 0.16 0.11 0.04 0.28 0.48 0.17 1.28 0.11

4. DISCUSSION
4.A. Breathing irregularity as the primary source
of motion artifacts

Breathing irregularities have long been recognized as the
primary source of motion artifacts in respiratory-correlated
4DCT.2,13 For example, using a mobile phantom with a
spherical ball and motion driven by real patient respiratory
waveforms, the true volume of the sphere was estimated from

F. 6. Breathing periodicity index (BPI-k) changes as a function of number
of largest Fourier coefficient (k) for 26 patients. Generally, after k = 5, the
slopes become steady.

4DCT imaging and significant deviation from its true value
was shown.7,11 However, in contrast to phantom studies,
delineating the absolute volume variation in patients is nearly
impossible since the initial tumor volume within patients is
unknown; only relative variations of the tumor volume within
a 4DCT image can be assessed.6,7

The impact of breathing irregularities on 4DCT image
quality is not entirely predictable and varies depending upon
the differences of breathing between two adjacent bed posi-
tions for cine scans. This suggested that statistical means
would be effective in quantifying the severity of motion arti-
facts in 4DCT as well as its relationship with breathing irreg-
ularities observed in the 1DRW. Thus, we studied the 1DRW-
4DCT relationship using the linear correlation approach. We
found that MAS is lowest at full exhalation, while higher
at other phases. In addition, the standard deviation around
exhalation is the smallest since the passive relaxation process
tends to be reproducible [Fig. 5(A)]. This is consistent with
the general knowledge on reproducibility within the breath-
ing cycle.2 However, as the artifact severity is also a func-
tion of other motion factors, such as displacement or veloc-
ity: generally the greater the motion, the larger the artifact.
In other words, if an irregular breather has little diaphragm
motion, the magnitude of artifacts will be limited by the

Medical Physics, Vol. 41, No. 11, November 2014
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F. 7. (A) Pearson correlation coefficients (r) of the breathing periodicity
index with BPI-5, BPI-4, and BPI-3 (BPI-5, 4, 3 corresponds to the sum
of the largest five, four, three Fourier coefficients). (B) Pearson correlation
coefficient of MASD with MAS, MASD, and MASV , which are normalized
to the largest value among all patients.

motion amplitude. To remove the motion amplitude factor
and make the irregularity the sole source of the artifacts, we
introduced MASD and MASV . Our results (Fig. 8 and Ta-
ble I) clearly depict a stronger correlation between BPI-5 (the
cause) and MASD/MASV (the consequences) than between
BPI-5 and MAS. The correlation is negative because period-
icity is opposite to irregularity. This is the first time that a
quantitative relationship is established, which not only links
the two random phenomena but also quantifies the 1D-to-4D
correlative relationship.

The artifact distribution from this 26-patient study shows
artifacts are a common event (Figs. 5 and 7). All patients
have nonzero APJ, ranging from 1 to 5 mm. This is consistent
with the previous 50-patient study, in which 90% of patient
4DCTs contained motion artifacts.13 Note that APJ value is
small because it averages with zero where motion artifact

F. 8. Correlation between breathing periodicity index (BPI-5) and motion-
artifact severity MAS (A), MASD (normalized to displacement) (B), and
MASV (normalized to velocity) (C). As the uncertainties in BPI and MAS
are similar, a linear regression treating BPI and MAS equally is applied using
SVD (singular value decomposition). Nevertheless, the linear fitting does not
affect the correlation between BPI and MAS.

is not observable. We note that the RPM system contains a
predictive filter, which is supposed to provide an assessment
of breathing periodicity. However, this is a proprietary soft-
ware tool that provides little information about its use of the
RPM data. Therefore, this filter could not be utilized in a
quantitative study.

Medical Physics, Vol. 41, No. 11, November 2014
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4.B. Potential clinical and research applications

With the knowledge of the relatively high correlation be-
tween patient breathing irregularities and resulting motion
artifacts, it becomes possible to predict the severity of motion
artifacts in clinical 4DCT images. Two potential applications
could be implemented in the clinic to improve 4DCT image
quality with reduced motion artifacts. The BPI can be applied
to predict artifact severity (1) prior to 4DCT scan or (2) dur-
ing 4DCT scan. In both applications, appropriate actions can
be taken when a patient’s BPI score is or becomes poor.

In the first scenario, a patient’s breathing regularity could
be quantified after a short (<60 s) session of RPM moni-
toring and the BPI score can be calculated on-the-fly or at
the end of the test. If BPI is lower than 0.85, then breath
coaching may be an option. Breath coaching has been used
clinically to reduce breathing irregularities.28 Three general
breathing irregularities can affect 4DCT image quality: (A)
frequency, (B) amplitude, and (C) breathing pattern [varia-
tion in chest (costal) and abdominal (diaphragmatic) mus-
cles involvements]. Audio coaching regulates breathing fre-
quency,29 but it often makes patients breathe deeper, result-
ing in greater tumor motion. Video coaching regulates both
frequency and amplitude28 but has no control in maintaining
the same breathing pattern. So far, no coaching method is
known to regulate breathing pattern variations. In addition,
breath coaching requires a patient’s voluntary effort, which
introduces a new source of uncertainty including variations
(learning curve) between 4DCT simulation and the course
of treatment. Due to medical conditions, some patients may
have difficulties in breathing regularly and/or following the
coaching instructions.28 Therefore, although coaching may
improve breathing regularity, it adds another layer of work-
load with associated uncertainty.

In the second scenario, on-the-fly DFT analysis of 1DRW
can be performed to monitor the BPI variation using graphics
processing unit (GPU)-based parallel computing. BPI as a
function of time can potentially monitor patient breathing
behavior in near-real time and identify sudden irregularities
during the scan. A sudden change in the BPI curve between
two adjacent bed positions could be used as a trigger to
temporarily suspend 4D scanning and reassume the scan after
BPI becomes normal. This could minimize breathing irregu-
larity at the image acquisition level to gain improved 4DCT
image quality.

From the clinical research perspective, 4DCT provides a
rich dataset about respiratory motion for retrospective pa-
tient studies. However, image quality is of paramount impor-
tance to set a solid foundation for studying respiratory mo-
tion. Manual selection of patient 4DCT images is subjective,
tedious, and labor-intensive. Our finding of a correlative rela-
tionship could serve as a rapid screening method to identify a
large number of 4DCT images with minimal motion artifacts.

4.C. Limitations and future directions

The correlation between 1DRW breathing periodicity and
4DCT motion-artifact severity is established for cine-mode

phase-binned 4DCT images and is useful for clinics that
use similar 4DCT scanning protocols. For helical scan or
amplitude-binned 4DCT, this result may not be directly appli-
cable. Although the methodology is generally valid it has to
be “recalibrated” for different types of 4DCT image sets.

In this study, we focused on the distortional artifacts but
ignored motion blurring, which also contributes to overall
motion artifacts. Motion blurring occurs within the same bed
scan and is difficult to quantify without knowledge of the
actual anatomy although it is feasible to scan the patient with
breath holding as a control for some patients, or to create
a theoretical model to account for the residual motion arti-
facts in 4DCT.11 A global Fourier analysis of 4DCT was also
previously applied to assess overall motion artifacts, includ-
ing the motion blurring, but only provide binary classification
of image quality.30

The DFT-based periodicity definition uses sinusoidal func-
tions to represent a 1DRW curve, and it is well-known
that Fourier transformation produces multiple sine/cosine
waves to mimic a curve with possible discontinuities. In rare
circumstances, such as a periodic but discontinuous 1DRW,
BPI may not fully represent periodicity, although it can catch
principal components. In addition, in case a severe baseline
drift in 1DRW occurs, which could result in large motion
artifacts, the corresponding Fourier component (with a low
frequency) should be excluded from BPI-5. In this study, we
have not seen any case with severe baseline drift in the 26
patients. Nevertheless, it is worthwhile to perform a further
investigation in the future.

In both clinical practice and clinical research, future appli-
cation of this 1D–4D method could improve patient care and
facilitate screening for high-quality images with minimal arti-
facts. The time saving in estimating 4DCT image quality is
tremendous and the ability to differentiate regular breathers
from irregular breathers prior to 4DCT scans would assist in
making individualized decisions to fit patient respiration. We
can take advantage of the periodicity of those with steady
breathing cycles while providing help to those who need it.
Moreover, the speed performance of Fourier analysis can be
further improved using GPU for parallel computing to provide
real-time results. This performance is essential in monitoring
BPI on the fly during 4DCT scanning for a potential “gating”
of the 4DCT scan using the BPI to set an irregularity threshold.

5. CONCLUSION

We have established a correlation between 1DRW breath-
ing periodicity and 4DCT motion-artifact severity, by defin-
ing and quantifying these two quantities (BPI and MAS).
We found that the correlation is about −0.70, which can
be applied to predict the quality of 4DCT images based on
1DRW alone, before or during 4DCT scanning. This method
can be useful in rapidly selecting high-quality 4DCT images
for clinical research with a tremendous time saving factor.
Further investigation is necessary to implement this method
in the radiotherapy clinic to make an adaptive decision at
the time of 4DCT simulation, and subsequent planning and
treatment.
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