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Purpose: Compressed sensing (CS)-based iterative reconstruction (IR) techniques are able to recon-
struct cone-beam CT (CBCT) images from undersampled noisy data, allowing for imaging dose
reduction. However, there are a few practical concerns preventing the clinical implementation of these
techniques. On the image quality side, data truncation along the superior–inferior direction under the
cone-beam geometry produces severe cone artifacts in the reconstructed images. Ring artifacts are
also seen in the half-fan scan mode. On the reconstruction efficiency side, the long computation time
hinders clinical use in image-guided radiation therapy (IGRT).
Methods: Image quality improvement methods are proposed to mitigate the cone and ring image
artifacts in IR. The basic idea is to use weighting factors in the IR data fidelity term to improve
projection data consistency with the reconstructed volume. In order to improve the computational
efficiency, a multiple graphics processing units (GPUs)-based CS-IR system was developed. The
parallelization scheme, detailed analyses of computation time at each step, their relationship with
image resolution, and the acceleration factors were studied. The whole system was evaluated in
various phantom and patient cases.
Results: Ring artifacts can be mitigated by properly designing a weighting factor as a function of
the spatial location on the detector. As for the cone artifact, without applying a correction method, it
contaminated 13 out of 80 slices in a head-neck case (full-fan). Contamination was even more severe
in a pelvis case under half-fan mode, where 36 out of 80 slices were affected, leading to poorer soft
tissue delineation and reduced superior–inferior coverage. The proposed method effectively corrects
those contaminated slices with mean intensity differences compared to FDK results decreasing from
∼497 and ∼293 HU to ∼39 and ∼27 HU for the full-fan and half-fan cases, respectively. In terms of
efficiency boost, an overall 3.1× speedup factor has been achieved with four GPU cards compared to
a single GPU-based reconstruction. The total computation time is ∼30 s for typical clinical cases.
Conclusions: The authors have developed a low-dose CBCT IR system for IGRT. By incorporating
data consistency-based weighting factors in the IR model, cone/ring artifacts can be mitigated. A
boost in computational efficiency is achieved by multi-GPU implementation. C 2014 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4898324]
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1. INTRODUCTION

Cone-beam CT (CBCT)1,2 is widely used in image-guided
radiation therapy (IGRT) for patient setup before treatment.
CBCT reconstruction plays a vital role in the success of IGRT.
Over the years, conventional FDK-type reconstruction algo-
rithms3 have remained the mainstream in commercial systems,
mainly due to their algorithmic simplicity, and hence accept-
able computation time, as well as their robustness in different
clinical contexts. However, an iterative reconstruction (IR)
approach is still desired, particularly because it allows reduc-
ing radiation dose to patients. In IGRT, CBCT imaging is
repeatedly applied to a patient during the treatment course,
leading to a clinical concern of excessive imaging dose.4–6 IR
algorithms, especially compressed sensing (CS)-based algo-
rithms,7–27 have been shown to be capable of reconstructing
CBCT images from noisy and undersampled x-ray projections,
hence considerably reducing radiation dose during the CBCT
scan.

However, a number of difficulties prevent CS-based IR from
being applied clinically. First of all, even though impressive
studies on CS-based IR involving real data have been re-
ported,8,10,28,29 practical issues still exist leading to degraded
image quality with severe artifacts. Specifically, two kinds of
artifacts are often observed:

(1) Cone artifacts. Due to the cone projection geometry,
missing data at the superior–inferior (SI) ends cause
artifacts, which are further propagated inward during
regularization operations in CS-based IR approaches.
Not only does this kind of artifact reduce the effective
SI coverage of the reconstructed volume, it also hin-
ders the IR algorithm convergence. Because this is a
common problem for all types of IR algorithms under
cone-beam geometry, solving it is of critical impor-
tance.

(2) Ring artifacts. When a half-fan (HF) scan mode is
used to enlarge the field of view, a discontinuity of
data exists at the boundary of the field of view, caus-
ing a ringlike artifact. These artifacts deteriorate the
utility of CBCT in IGRT, particularly for soft tissue-
based patient positioning.

Computational inefficiency is another concern when imple-
menting CS-based IR algorithms in the clinic. It results from
the large problem size and the iterative nature of the algorithm.
A CS-based IR algorithm usually reconstructs a CBCT image
by solving an optimization problem using an iterative numer-
ical algorithm. Inside each iteration step, a forward projec-
tion and a backward projection are typically computed, both
of which have complexities similar to that of the FDK-type
reconstruction algorithm. Considering that it usually requires a
number of iterations to yield clinically acceptable image qual-
ity, the overall computation time is much longer than that of
the typical FDK algorithm currently used in clinical practice.
Moreover, the FDK algorithm sequentially back-projects each
projection into the CBCT image domain, making it possible
to conduct reconstruction immediately after data acquisition
starts. In contrast, an IR method requires all the projections

simultaneously, prohibiting concurrent execution of data
acquisition and reconstruction. Recently, graphics processing
units (GPUs) have been employed to accelerate the IR pro-
cess.17,22,30–35 Nonetheless, it is still necessary to further boost
efficiency for the time-critical IGRT environment.

This paper reports our recent progress toward solving the
aforementioned problems. Regarding image quality, we have
studied the underlying reasons for the two types of artifacts
in an IR process. We found that it is the inconsistency be-
tween the measured and the calculated forward projection data
that causes these artifacts. By incorporating weighting factors
into the IR model, we can reduce the data inconsistency and
therefore mitigate these problems to a satisfactory extent. On
the efficiency side, a multi-GPU-based CBCT IR system was
developed. While using multiple GPUs is a straightforward
idea, inter-GPU parallelization is not a trivial problem. Specifi-
cally, since different GPUs only hold their own memory,
communication among GPUs should be handled with care to
achieve satisfactory efficiency. From a parallel computing
point of view, conventional memory organization in a parallel
processing task is either shared memory, where all processing
units share a common memory space (e.g., a GPU), or distrib-
uted memory, where each unit holds its own memory space for
conducting interunit data communication (e.g., a CPU clus-
ter)36 CBCT reconstruction on a multi-GPU platform, how-
ever, attains a hybrid structure of shared and distributed memo-
ries. Careful design of the data allocation and communication
among the GPUs is necessary to maximally exploit the poten-
tial of all the GPUs, as will be shown in this paper.

2. METHODS AND MATERIALS

2.A. Typical structure of an IR algorithm

IR essentially solves the linear equation Pf = g, where f
is the image to be reconstructed, g is the projections measured
at certain angles, and P is the projection operator correspond-
ing to those angles. For image reconstruction from few projec-
tions, there are infinitely many solutions satisfying the above
condition Pf = g. For such an ill-posed problem, regulariza-
tion based on assumptions about the solution f has to be per-
formed to discard those undesirable solutions. A more detailed
description and review of IR algorithms can be found in the
literature.28,37–41

In a typical CS-based IR algorithm, the following two
steps are iteratively conducted. First, the forward projections
of the reconstructed image f should match the measure-
ments g. In our IR system, this fidelity condition is enforced
by solving the least-square minimization problem min f E [ f ]
= ∥Pf −g∥2

2 using a conjugate gradient least-square (CGLS)
algorithm.17,22,42

Second, a regularization step is performed to regularize
the reconstructed CBCT image f . Examples of regularization
methods include total variation (TV),7,9,17 which assumes that
the solution is piecewise constant, and tight frame (TF),22

which assumes that the image has a sparse representation un-
der the TF basis,43–46 an overcomplete wavelet basis. Another
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regularization step is used to enforce positivity of the solu-
tion. Since the reconstructed CBCT image f physically repre-
sents x-ray attenuation coefficients, those negative values in
the reconstructed image f are truncated. In the rest of this pa-
per, we will use the TF-based IR approach as an example to
demonstrate the effectiveness of our system. For details of the
TF method, interested readers can refer to literature.22,43–46

2.B. Image quality improvement

2.B.1. Ring artifact mitigation in half-fan
reconstruction

A half-fan scan is commonly used in the clinic to yield a
large field of view. By shifting the x-ray detector laterally, an
enlarged field of view is obtained, as illustrated by the solid
circle in Fig. 1. In an analytical reconstruction approach for
the half-fan mode, a necessary step before the reconstruction
is to reweight the projection data47–49 to address data redun-
dancy. Specifically, any x-ray that shoots toward the area
between point A and B (Fig. 1) has a paired x-ray travell-
ing through the same path (for the central slice) or similar
path (for the off-central slices) when the source moves to
the opposite side. As a result, the x-ray lines corresponding
to the detector area between points A and B are doubly ac-
quired. Hence, after backprojection, the image intensity in-
side the dashed circle region is overly counted, resulting in
a bright zone with high intensities inside the dashed circle.
To solve this problem, the projection data are reweighted by
multiplying the projection g(u) with a properly designed fac-
tor w(u) to compensate for this effect. The term u indicates
the coordinate along the imager, as indicated in Fig. 1. The
requirements for the weighting factor are (1) unit total weight
for redundant ray lines to avoid doubly counted projections
and (2) continuity at the boundary point to allow a smooth
transition.47–49

In contrast to computing CBCT voxel values directly via
a certain analytical formula, an IR method tries to adjust the
voxel values of the reconstructed CBCT, such that its forward
projections match the measurements. This is reflected by the
presence of the fidelity term ∥Pf −g∥2

2. This principle pre-
vents the high-intensity artifacts seen in the analytical recon-
struction approach, since such a solution apparently violates

F. 1. Top view of the half-fan projection geometry. Solid circle is the
reconstruction field of view, and the dashed circle indicates where artifacts
may appear.

the projection condition. Yet, we found that a weighting fac-
tor is still necessary in the IR method. One reason is that
there is a discontinuity in terms of the number of ray lines
covering a given voxel when going from inside of the dashed
circle in Fig. 1 to the outside. This discontinuity makes the
area close to the smaller circle prone to reconstruction error.
A ring artifact would develop in this area if no weighting
factor was applied.

In order to mitigate the ring artifact, we have modified
the data fidelity term in our objective function from ∥Pf −g∥2

2
=


dudv |Pf (u,v)−g(u,v)|2 into ∥Pf −g∥2
2 =


dudv |Pf (u,v)

−g(u,v) |2w(u)2 for the half-fan case, where u is the coor-
dinate on the detector as illustrated in Fig. 1, and v is the
perpendicular coordinate direction on the imager. For sim-
plicity, we have chosen w(u) as

w(u)=



1
2
−

1
2

sin

πu
2∆


: u ∈ [−∆,∆]

1 : u <−∆
. (1)

We noticed that Bian et al. have used a similar weighting
factor as [Eq. (1)] and ascribed the ring artifacts to discrete
approximation in IR modeling.50 However, we independently
conducted this study and presented it as well.51 In addition,
we also chose to explore the condition regarding the smooth-
ness of the weighting factors and its impact on ring artifacts.
Our initial purpose for using this weighting factor was to
prevent discontinuities in the projection domain,47–50,52 and
therefore, it should be smooth in both sides near ∆ and −∆.
In order to further test whether smoothness in both sides is
necessary, we designed three other types of weighting factors
(Table I). Among them, [Eq. (W1)] is nonsmooth in both
sides while [Eqs. (W2) and (W3)] are only nonsmooth at
either ∆ or −∆. We can reconstruct the CBCT using these
weighting factors and compare the results.

2.B.2. Cone artifact mitigation in IR implementation

For circular CBCT geometry, cone artifacts exist under
analytical reconstruction methods in the off-central slices far
away from the central slice. Figure 2(a) shows the side view
of the cone-beam geometry. The scanned object is usually
long in the SI direction. Let us denote the volume not covered
by any x-ray projections as A1. The volume within the pro-
jection area can be further divided into three parts A2–A4.
A2 is covered by all projections while A3 and A4 are only

T I. Three other weighting factors tested in the experiments.

w(u) =



�����
−u + ∆

2∆

�����
: u ∈ [−∆, ∆]

1 : u < −∆

. (W1)

w(u) =



�����
−u + ∆

2∆

�����

2

: u ∈ [−∆, ∆]
1 : u < −∆

. (W2)

w(u) =




2
�����
−u + ∆

2∆

�����
−
�����
−u + ∆

2∆

�����

2

: u ∈ [−∆, ∆]
1 : u < −∆

. (W3)
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F. 2. The side view of the cone-beam geometry. (a) A central sagittal slice illustrating the forward and backward operations. Dashed box and dotted box
indicate the clinically used volume and the reconstruction volume, respectively. (b) Sagittal slides showing how the two forward projection terms in [Eq. (2)] are
computed.

seen in a few projections. In an analytical reconstruction, A2
is reconstructed with correct intensities, and A3 and A4 have
low intensity, causing cone artifacts. Clinically, in order to
avoid the artifacts, only the part in A2 indicated by the dashed
box is used.

The cone artifacts are even more severe when using an IR
approach. A typical reconstruction area using IR is shown
by the dotted box in Fig. 2(a), which implicitly assumes
zero voxel intensities in A4. Meanwhile, lower intensities
are reconstructed in A3 since it is only covered by a few
projections. As a result, inaccurate forward projection im-
ages are obtained at the detector region [v0,v1], deteriorating
both regions A2 and A3 by a sequence of iterative backward
and forward projections. Because an IR algorithm tends to
adjust voxel values to match the calculated forward projec-
tion with the measured one, it incorrectly increases the voxel
intensities in the cone area. Through multiple iterations, the
cone artifacts are further magnified and propagated, since
the aforementioned inconsistency and incorrect adjustments
of voxel intensities exist in every cycle of iteration except
for the first backprojection operation. In addition, the image
processing in a regularization step is designed to remove arti-
facts using some type of smoothing operation. This at the
same time further propagates the cone artifacts, polluting a
large reconstruction volume. All these facts coupled together
lead to more severe artifacts in a larger area compared to an
analytical reconstruction approach.

Our approach for relieving this problem is to compensate
for the missing data. To do this, we first enlarged the projec-
tion area to v2 to ensure A3 is fully covered by all the projec-
tions. The projection data in [v1,v2] are obtained by sim-
ply duplicating the measured value at v1. Second, a weight-
ing factor w ′(u,v) is embedded into the reconstruction model
as ∥Pf −g∥2

2 =


dudv |Pf (u,v)−w ′(u,v) ·g(u,v)|2w(u)2 to re-
duce the measured x-ray projection values from v0 to v2 and
improve their consistency with the reconstructed volume. As
such, w ′(u,v) should be the ratio between the radiological
length of the reconstructed object (i.e., inside A2 and A3) and
that of the true object (i.e., in all the regions A1–A4). Note
that it is not a trivial task to accurately estimate this ratio, as it
depends on the specific patient anatomy and projection angle.

We propose a patient-specific approach to estimate the
ratio w ′(u,v) based on FDK reconstructed images

w ′(u,v)=
�
Pf 1(u,v)�+δ
�
Pf 2(u,v)�+δ . (2)

Here, f 1 is the volume reconstructed by the FDK algo-
rithm only in the dotted box in Fig. 2(a). Its forward projec-
tion Pf 1(u,v) is the radiographic length from e0 to e2, shown
in Fig. 2(b). In contrast, f 2 is the result of FDK using CBCT
projections with extrapolation in the SI direction and is re-
constructed in an extended volume along the same direction.
Its forward projection Pf 2(u,v) is the radiographic length
from e0 to e3. δ is a small constant to prevent dividing zero.
After calculating w ′(u,v) according to [Eq. (2)], we further
use a 2D Gaussian filter to remove any discontinuities and
ensure its smoothness across the u–v domain. The ratio be-
tween

�
Pf 1(u,v)� and

�
Pf 2(u,v)� essentially serves as a reason-

able estimation of w ′(u,v). By using this approach, we can
calculate the weighting factor adaptively according to differ-
ent patient anatomy and projection view angles.

2.C. Efficiency boost

2.C.1. Multi-GPU system setup and overall structure

To improve the computational efficiency, we have devel-
oped a multi-GPU IR system. The system is built on a desktop
workstation with two Nvidia GTX590 GPU cards plugged into
the motherboard. Each of the two cards contains two identical
GPUs, so that there are four GPUs available. These GPUs are
labeled as GPU 1 through 4 in the rest of this paper. For each
GPU, there are 512 thread processors, each of which attains a
clock speed of 1.2 GHz. All processors on a GPU share 1.5GB
GDRR5 global memory at a 164 GB/s memory bandwidth.
Among GPUs on different cards, data transfer is through the
computer motherboard via PCIe-16 bus, while between GPUs
on the same card, data transfer is accomplished directly thro-
ugh a PCI switch on the card, instead of through the moth-
erboard. Our program is written in  4.0,53 a  language
extension that allows for the programming of each individual
GPU, as well as inter-GPU communications.
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Typical CS-based CBCT reconstruction algorithms share
a set of key operations in common. These operations are
implemented in our system as individual modules, so that
each specific algorithm can be used as a building block. The
overall structure is schematically illustrated in Fig. 3. At the
beginning of the reconstruction process, a user is asked to
select an algorithm to perform reconstruction. After that, the
reconstruction process launches in which the corresponding
modules are invoked. For instance, forward x-ray projection
is a key module in all IR algorithms, where the x-ray projec-
tions of the currently reconstructed images are computed.
Siddon’s algorithm54 and a trilinear interpolation algorithm55

are currently available in our system for this purpose (with
others to be supported in the future). Another example is a
regularization module. Minimization of a TV term is con-
ducted in a TV-based reconstruction algorithm7,17 to remove
noise and any undesired streak artifacts, while preserving im-
age edges. Shrinkage of TF coefficients is performed in TF-
based approaches for the same purpose.22 These two modules
are currently supported in our system, and other modules
such as dictionary-based regularization56 will be incorporated
in the future.

2.C.2. General considerations about
the parallelization scheme

Generally speaking, CBCT reconstruction involves two
datasets residing in two different domains: one in the im-
age domain and the other in the projection domain. When
it comes to multi-GPU, at least one of the two, if not both,
needs to be partitioned with each GPU storing one portion.
Hence, inter-GPU communication is needed. Theoretically,
there are an infinite number of ways to divide the data and it
is for practical considerations that one is preferred over the
others.

One possible partitioning method is to divide the CBCT
volume into subvolumes. Each GPU holds one subvolume and
all the projection data. Figure 4 illustrates two different ways
of partitioning into subvolumes. Let the rotation axis be the
z axis. The partition using planes that are parallel to the xoy
plane is shown in Fig. 4(a), and the one using planes that
contain the rotational axis is in Fig. 4(b). Each GPU performs
forward and backward projection for its dedicated subvolume.
Because of the prospective projection geometry in CBCT, the
projections of different subvolumes overlap with each other
on the detector. The overlapped part from different GPUs has
to be added every time the forward projection operation is

F. 3. Illustration of the overall structure of our system.

computed, causing a cumbersome computational burden. In
contrast, the backward projection is straightforward.

Another possible way to partition is to divide the data in
the projection domain. Each GPU stores a subset of projec-
tions at certain projection angles, as well as the entire CBCT
volume data. While each GPU can perform forward projec-
tion to its assigned angles, the backward projection to the im-
age domain from different angles is to be accumulated from
all GPUs, leading to extra cost of data communication.

As for the amount of data necessary to be communicated
between GPUs, for a typical clinical case with an image reso-
lution of 512×512×70 voxels and a projection resolution of
512×384 pixels with 120 projection angles, the data size in
these two domains are similar. However the second approach,
which partitions the projection domain, avoids the cumber-
some treatment of overlapping projections and was therefore
chosen for our multi-GPU parallelization.

2.C.3. Parallelization of CGLS step

The CGLS step solves the least-square problem min f E [ f ]
= ∥Pf −g∥2

2. There are three types of operations inside this
algorithm, namely, the computation of forward projection
Pf , backward projection PTg, and other vector–vector or
scalar–vector operations. Under the partitioning in the projec-
tion domain, the backward projection operation requires spe-
cial attention. This operation computes f = PTg =

4
i=1PT

igi,
where g is a vector in the projection domain and is divided
into different parts gi, for i = 1,. . .,4. Each of them corresponds
to a set of projection angles assigned to a GPU. The backpro-
jection operator can also be split into PT

i , i = 1,. . .,4, and each
submatrix represents the backprojection in the corresponding
angles. Note that each GPU keeps different gi but the same
CBCT volume data f . We first compute an intermediate vari-
able f i = PT

i gi at each GPU. This computation is achieved by
employing the backprojection formula derived in Jia et al.,22

which efficiently calculates the backprojection results corre-
sponding to projection angles at each GPU without any GPU
memory writing conflict. After that, a parallel reduction
among GPUs is conducted to compute the summation over all
these intermediate variables. In this step, GPU 2 passes f2 to
GPU 1 and the summation f12= f1+ f2 is calculated at GPU
1. The same operation is performed simultaneously at GPU 3
and 4 leading to f34= f3+ f4 at GPU 3. The reduction is then
conducted one more time between GPU 1 and 3 to get the final
backprojection result. Because each GPU requires the storage
of the same CBCT volume data, the updated backprojection
result f is immediately broadcasted to all GPUs for later us-
age. The broadcast is performed along the reverse path as in
the parallel reduction, resulting in the same copy of f at all
GPUs. This process is illustrated in Fig. 5(a).

The forward projection operation, i.e., the computation of
g =Pf , is straightforward. Each GPU computes the projec-
tions of the CBCT volume data according to its designated
projection angles, namely, gi = Pi f , for i = 1,. . .,4. This task
inside each GPU now becomes a standard forward x-ray digi-
tally reconstructed radiograph calculation.57,58

Medical Physics, Vol. 41, No. 11, November 2014
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F. 4. Illustrations of projection overlap issue when partitioning the CBCT volume. (a) Side view of a partition with planes parallel to the xoy plane. (b) Top
view of a partition with planes containing the rotational axis. Dashed lines and dashed–dotted lines are projection regions of two subvolumes and arrows indicate
the overlap regions on the detector.

All the remaining operations in the CGLS process are sim-
ply vector addition or scalar–vector multiplications, either in
the CBCT image domain or in the CBCT projection domain.
For instance, we compute the difference between the forward
projection of current CBCT volume data and the measurement
data. Tasks like this are highly parallelizable. For operations in
the projection domain, each GPU computes a subset of the pro-
jections, and within a GPU, threads can independently process
different pixels. For operations in the CBCT image domain,
each GPU processes the whole CBCT volume data. There are
apparently redundant computations here, as one can have a
GPU only process a subvolume. However, it then requires inter-
GPU communication to update the subvolume data, which
leads to a relatively large overhead for this simple job.

2.C.4. Regularization

Theimageregularizationstepcontainsthreeoperationsinthe
TF reconstruction algorithm,22 namely, decomposing the cur-
rent CBCT image into the TF space, performing a shrinkage
operation on these coefficients, and reconstructing the CBCT
image from the updated coefficients. The operations at different
voxels are independent of each other. In the multi-GPU imple-
mentation, we have each GPU perform regularization on a sub-
volume data. Within a GPU, each thread is responsible for the
computationsatavoxel.Notethatbeforetheregularizationstep,
each GPU already holds the same CBCT volume, and hence, no

inter-GPU data transfer of the boundary layer between adjacent
subvolumes is needed. However, after each GPU processes the
designated subvolume, the reduction of the results to the first
GPUaswellas theposteriorbroadcastingof theentirevolumeto
all GPUs are conducted in a way similar to the backward projec-
tionstep,asshowninFig.5(b).Theappropriate selectionof reg-
ularization coefficients under the IR framework remains prob-
lematic. We have manually tuned regularization coefficients for
each tested case to ensure a balance between removing streak-
ing/noise artifacts and maintaining small fine structures.

2.C.5. Multiresolution (MR)

Multiresolution is another feature employed in our iter-
ative CBCT reconstructions.17,22 To allow the freedom of
handling reconstructions at different image resolutions, each
of our modules takes relevant quantities as inputs, e.g., voxel
size and voxel numbers. At the beginning of each resolution
level, the program sets these quantities and feeds them into
the modules. When switching from a low-resolution level to
a high-resolution level, it is necessary to up-sample the re-
constructed CBCT image to get a proper initial value for the
next resolution level. This up-sampling is handled on only
one GPU and the result is broadcasted to other GPUs. This is
due to the fact that the up-sampling is a relatively simple job
and is not frequently performed. It is thus not worthwhile to
parallelize it.

F. 5. Workflow for (a) backward projection and (b) regularization.
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2.D. Evaluation

Experimental data were collected from an on-board imag-
ing (OBI) system integrated in a TrueBeam medical linear
accelerator (Varian Medical System, Palo Alto, CA). A Cat-
Phan 600 phantom (The Phantom Laboratory, Inc., Salem,
NY) and a head-neck patient were scanned in a full-fan (FF)
mode with 364 projections collected over a 200◦ arc. A tho-
rax phantom, a thorax patient, and a pelvis patient were
scanned in a half-fan mode with 656 projections collected
over 360◦. All projection data were resampled to 512×384
pixels with a resolution of 0.784×0.784 mm. In each case,
reference images were reconstructed using FDK algorithm3

with all projections. Subsets of the projections were then ex-
tracted and sparse-view reconstruction was performed by the
FDK algorithm and by the TF regularization-based IR algo-
rithm, respectively. In accordance with recent studies regard-
ing the optimal CS-based low-dose CBCT scan protocol,26,59

we have used 1/4 or 1/3 of the total projections in our
sparse-view reconstruction to yield clinically acceptable im-
age quality, i.e., 91 and 121 projections were evenly extracted
from the total 364 projections for the Catphan and head-neck
cases, respectively, while 164 projections were evenly ex-
tracted from the total 656 projections for the thorax phantom,
thorax, and pelvis patient cases.

To evaluate the effectiveness of the cone artifact correc-
tion, TF results before and after cone artifact correction were

compared to FDK results by calculating the mean inten-
sity differences of each slice. To quantify the image quality
improvement, line profiles were plotted to demonstrate the
maintained spatial resolution. Contrast-noise-ratio (CNR)was
used to evaluate soft tissue visibility. CNR= |µ( f F)− µ( f B)|/
σ( f F)+σ( f B), where µ and σ represent the mean and stan-
dard deviation, and f F and f B represent the region of interest
(ROI) image (foreground) and its background. For the Cat-
phan 600 case, line pairs were used to evaluate high-contrast
spatial resolution. For patient cases, transverse, coronal, and
sagittal views are shown for visual inspection. In addition,
line profiles crossing the prostate region (coronal view) of the
pelvis patient case, as well as the CNR of that region, were
used to quantify the low-contrast spatial resolution and soft
tissue visibility in the coronal view.

3. RESULTS

3.A. Image quality

3.A.1. Ring artifacts mitigation

We used a thorax phantom to demonstrate the effectiveness
of using a half-fan weighting factor to remove the ring artifacts,
as shown in Fig. 6(a). In the absence of this factor, different
types of ring artifacts appear. The FDK reconstructed image
shows a bright zone in the center of the image. The intensity

F. 6. (a) Upper row: reconstructed images of a thorax phantom (half-fan mode) using FDK and TF algorithms with and without weighting factors [Display
window: (−900, 1775) HU]. “projs” is short for “projections” hereafter. Lower row: profiles crossing the ring-artifacts affected region. (b) Reconstructed images
using TF algorithm [Upper row, display window: (−445, 675) HU] with different weighting factors (lower row).
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inside the bright zone is much higher than the intensity of the
normal tissue. In addition, the boundary of this bright zone
has even higher intensities due to the ramp filter, which am-
plifies the data discontinuity at the detector edge. As for the
TF reconstructed image, the artifacts are less severe compared
to FDK. The intensity inside the circular area is reasonable,
but around this area ring artifacts appear. When the half-fan
weighting factor is applied both FDK and TF algorithms yield
reasonable images and comparable profiles.

We also found that the image artifacts depend on the
smoothness property of the weighting factor at u=±∆. When
the weighting factor is nonsmooth on both ∆ side and −∆
side, ring artifacts appear [Fig. 6(b-2)], indicating disconti-
nuity contributes to the artifacts. When the weighting func-
tion is not smooth only on the −∆ side, the ring artifacts
disappear [Fig. 6(b-3)], indicating that the weighting function
smoothness on the −∆ side is not the major reason for the
ring artifacts. It is also notable that in this case, the weight-
ing factor is different from that in Fig. 6(b-1), resulting in a

slightly different image. For the case of Fig. 6(b-4), where w

is not smooth only at u=∆, the ring artifacts appear again
with an even greater magnitude than in Fig. 6(b-2). These
artifacts might be caused by the larger gradient of [Eq. (W3)]
compared to [Eq. (W1)] at u=∆. From these results, we
hypothesize that the major source contributing to the ring
artifacts is the relatively larger error around the detector edge
at u=∆. The error may be due to projection inconsistency
induced by imperfect scanning geometry (such as gantry
wobble), since we didnot observe any ring artifacts in the
simulation case where perfect geometry alignment is guaran-
teed. A weighting factor used to suppress the artifacts should
approach zero at the detector edge and should be smooth at
this point.

3.A.2. Cone artifacts mitigation

Figure 7 shows the results with and without cone artifact
correction for a head-neck case and a pelvis patient case. In

F. 7. Cone artifacts correction. (a) Transverse view and sagittal view of the reconstructed volume images: head-neck and pelvis cases. Boxes in second and
fourth row indicate the range of the volume in SI direction in current clinical practice. Within the box, two transverse slices as indicated by horizontal arrows
are shown. The number of projections used in FDK and TF is 364 and 121 (head-neck) and 656 and 164 (pelvis), respectively. (b) Mean intensity differences of
each slice between FDK and TF results before and after cone artifacts correction.
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each case, a coronal/sagittal view and a transverse view are
indicated by the horizontal arrows, and the average intensity
differences of each slice between the FDK and TF results are
shown to illustrate the impact of the artifacts.

Compared with the reference FDK results, if no correction
strategy is applied, it can be seen that the TF results suffer from
more severe bright/dark cone artifacts, leading to degraded ov-
erall image quality. For the head-neck patient case (full-fan) in
this study 7 and 6 slices, out of a total of 80 slices, are visu-
ally affected by the artifacts at the superior and inferior ends,
respectively. In half-fan mode with a larger patient, where the
data inconsistency is more significant, the cone artifacts are
even more severe. For the pelvis patient case, bright streak-
ing artifacts can be observed in a wider range of slices in the
coronal view. This causes deeper artifact penetration into the
volume, leading to significantly reduced volume coverage in
the SI direction in TF. 23 and 13 out of a total of 80 slices are
affected in this prostate case on the superior and the inferior
ends, respectively, accounting for over 1/3 of the total volume.
As a result, even the volume inside the box that is used in
clinical practice is polluted by cone artifacts. As shown in the
transverse view, the visibility of the soft tissue indicated by
the tilted arrow in the prostate region is heavily affected by the
propagated cone artifacts.

When the cone correction method is applied, cone artifacts
are mitigated to a large extent, yielding a much improved
image quality as shown in the right column of Fig. 7(a). In
particular, the visibility of the soft tissue indicated by the

tilted arrow that was previously affected by the artifacts is
restored.

Figure 7(b) shows the average intensity differences of each
slice between FDK and TF results before and after cone artifact
correction. It can be seen that the large intensity differences at
the superior and the inferior ends have been mitigated signifi-
cantly. Compared to the FDK results, the mean intensity differ-
ences for those slices are decreased from ∼497 and ∼293 HU
to ∼39 and ∼27 HU for the head-neck and the pelvis cases,
respectively.

In general, the reconstruction results after correction ach-
ieve SI coverage similar to that of the FDK algorithm. In the
rest of this paper, we will only show the reconstructed volume
images within the box, which is more clinically relevant since
only that part of volume image is used in current clinical prac-
tice.

3.A.3. Phantom case

The reconstructed contrast and resolution slices of a Cat-
Phan 600 phantom are shown in Fig. 8. For both the contrast
and the resolution slices, zoomed-in ROIs are shown. By
comparing with the reference image reconstructed by the
FDK algorithm with a standard dose level (364 projections),
we can see that the low-dose FDK results (91 projections) are
degraded and the images suffer from streaking artifacts and
increased noise. As indicated by the zoomed-in ROI of the
contrast slice, the low-contrast acrylic insert is well distin-
guished in the standard-dose FDK results, but cannot be seen
in the low-dose FDK results. CNR is also decreased from

F. 8. Reconstructed images of CatPhan 600 phantom (full-fan mode). Top row: contrast slice shown with window (−300, 350) HU. A zoomed-in ROI within
the box is shown in the upper-left corner. Below shows the CNR value, where the contents inside the circle and the box are regarded as foreground and
background, respectively. Bottom row: resolution slice shown with window (−445, 1775) HU. A zoomed-in ROI within the box is shown in the upper-left
corner. Below shows the profiles crossing the two groups of line pairs. From left to right: FDK reconstruction with 364 projections, FDK reconstruction with 91
projections, and TF with 91 projections.
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0.71 to 0.25. With the same reduced number of projections,
low-dose TF (91 projections) is able to eliminate the streak-
ing artifacts and remove the noise to a satisfactory degree,
offering comparable if not better low-contrast object visi-
bility than the standard-dose FDK. Quantitatively, the CNR
is increased to 6.08 due to the significantly suppressed noise
level in the low-dose TF results.

By comparing the standard FDK results with the low-dose
FDK results, we can see that high-contrast spatial resolu-
tion seems not to be significantly affected by the streaking
artifacts and the amplified noise when the number of projec-
tions is reduced. In the TF approach, a parameter is finely
tuned to balance the data fidelity and the regularization terms.
Satisfactory high-contrast spatial resolution and low-contrast
visibility can be maintained at the same time, as indicated by
the zoomed-in ROI images in Fig. 8. To give a more detailed
comparison, the profiles crossing those line pairs are also dis-
played. While the line pairs are distinguishable in both the
FDK results and the TF results based on the images, the pro-
files reveal a degraded image resolution to a certain extent, as
indicated by the arrow in Fig. 8. Considering that line pairs
with the highest resolution have a spacing of a submillimeter
scale (0.63 mm), and only one out of five lines is affected, as
indicated by the arrow, the extent of this degradation is not
likely to affect clinical image guidance.

3.A.4. Patient cases

In Fig. 9, we can see that for the head-neck case when the
projection number is decreased to 121, streaking artifacts are
present in the whole FDK reconstructed volume, especially in
the sagittal view. In contrast, the TF algorithm yields a better
image quality. The thorax case is shown in Fig. 10. For this
case, using 1/4 of the full number of projections, the FDK

reconstructed result shows a large amount of amplified noise,
especially in the coronal and sagittal views, but TF is still
able to yield results comparable to the full projection number
FDK results.

Figure 11 shows the reconstructions for the prostate case.
To evaluate whether the image quality of the low-dose TF is
sufficient for image guidance, we have shown the zoomed-in
coronal ROIs and profiles crossing the soft tissue, as well
as the associated CNRs. From the profile comparison, we
can see that the contrast of the soft tissue in the low-dose
TF result is similar to that in the standard-dose FDK result,
both being much better than the low-dose FDK result. Similar
observations can be made when visually inspecting the soft
tissue area and comparing CNRs. Note that in this realistic
patient case, the regularization factor of TF was carefully
tuned to ensure a sufficient spatial resolution around the soft
tissue region (as shown in the zoomed-in ROI images). In
fact, this patient case is much more challenging than the Cat-
phan phantom case due to many more detailed structures. The
CNR value of the TF result is only slightly better than that of
the standard-dose FDK result, if one would like to maintain
image resolution.

Note that tiny residual cone artifacts are still observable in
the superior and inferior ends of the volumes for some of the
above cases. The reason is w ′(u,v) in [Eq. (2)] relies on f 2, an
approximation of the real object. This approximation itself is
not perfectly accurate since the size and contents of the real
object vary in the SI direction beyond the detector.

3.B. Reconstruction time

The computational time of TF-based CBCT reconstruc-
tion on our system with four GPUs is reported in Tables II

F. 9. Reconstructed images of a head-neck patient [full-fan mode, display window: (−583, 385) HU]. Top to bottom: transverse, coronal, and sagittal views.
From left to right: FDK reconstruction with 364 projections, FDK reconstruction with 121 projections, and TF with 121 projections.
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F. 10. Reconstructed images of a thorax case [half-fan mode, display window: (−722, 385) HU]. Top to bottom: transverse, coronal, and sagittal slices. From
left to right: FDK reconstruction with 655 projections, FDK reconstruction with 164 projections, and TF with 164 projections.

F. 11. Reconstructed images of a pelvis case. The settings of the first three rows are the same as in Fig. 10. The last two rows show a zoomed-in prostate
region in the coronal view, with profiles crossing the soft tissue and its surroundings, and CNRs indicated. CNRs are calculated based on the intensity values
inside the marked circle (soft tissue of interest, foreground) and box (surrounding tissues, background).
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T II. Computation time (s) per iteration for the CGLS step in single and
multiple GPU reconstructions.

Protocol Resolution
Single
GPU

Multi-
GPU Speedup

Full-fan (121
projections)

512 × 512 × 70 9.15 2.67 3.43
256 × 256 × 70 3.15 0.87 3.62
128 × 128 × 70 1.26 0.36 3.50

Half-fan (164
projections)

512 × 512 × 70 10.20 3.09 3.30
256 × 256 × 70 3.42 0.96 3.56
128 × 128 × 70 1.32 0.36 3.67

and III for the CGLS step and the regularization step, respec-
tively. A few points should be made about these tables. First,
since the computational time depends on the number of pro-
jections and image resolution, we report here the computa-
tional time for full- and half-fan with a variety of resolutions
separately. Only real patient cases, namely, the head-neck pa-
tients in the full-fan mode and the thorax/pelvis patients in
the half-fan mode, which are of clinical interest, are included
in this table. Second, the total reconstruction time linearly
increases with the number of iterations, and depending on the
requirement on the final image quality, the number of itera-
tions may vary significantly. Hence, we report the time per
iteration in these tables. Third, our reconstruction code has
also been run on a single GPU in our system, to quantita-
tively demonstrate the efficiency gain provided by the multi-
GPU system. Finally, the CGLS at each iteration step is also
iterative by itself; we have fixed the number of iterations
in the CGLS step to three in all the cases studied, as this
choice was found to be sufficient to ensure the projection
condition.

The dependence of computational time on image resolu-
tion allows us to analyze the overhead of parallel process-
ing. Results are shown in Fig. 12. For calculation time in
the CGLS step, plotted in a log–log scale in Fig. 12(a), the
data points form straight lines for both the single-GPU and
the multi-GPU cases, indicating that computation time scales
with image resolution following a power law. A linear fit in
this plot leads to tCGLS∼ x1.46 for the single-GPU case and
tCGLS∼ x1.50 for the multi-GPU case, where t is the compu-
tation time and x is the transverse plane resolution. Note
that the number of reconstructed transverse slices is fixed in

T III. Computation time (s) per iteration for the regularization step in
single and multiple GPU reconstructions.

Protocol Resolution
Single
GPU

Multi-
GPU Speedup

Full-fan (121
projections)

512 × 512 × 70 1.58 0.80 1.98
256 × 256 × 70 0.40 0.20 2.00
128 × 128 × 70 0.10 0.06 1.67

Half-fan (164
projections)

512 × 512 × 70 1.59 0.80 1.99
256 × 256 × 70 0.40 0.21 1.90
128 × 128 × 70 0.10 0.06 1.67

all cases. The CGLS algorithm consists of mainly forward
and backward projection operations. These operations scale
linearly with the resolution x, as they are proportional to the
number of voxels a ray line traverses. Yet, the observed scal-
ing power ∼1.5 is mainly due to the overhead in multi-GPU
parallelization. The small amount of s–vector operations in
the CGLS algorithm also contributes to an increase of the
scaling power. Moreover, it is also observed from Table II
that the computation time is longer for the half-fan case,
which is attributed to the larger number of projections. As for
the acceleration ratio, it is found that a speedup of over three
times is achieved in all cases using four GPUs.

For the regularization term, we performed the same anal-
ysis. Results are shown in Fig. 12(b). Again a power-law
scaling of computation time is observed, yielding a best fit of
treg∼ x1.99 for the single-GPU implementation and treg

∼ x1.87 for multi-GPU. For regularization, the computation
time should be proportional to the total number of voxels in
the CBCT image, which is confirmed by the exponent of ∼2
(since the resolution along the third dimension is kept con-
stant in all different cases). Additionally, because this step
is a pure CBCT image domain processing, the computation
time is independent of the number of projections, as shown in
Table III. Yet, the acceleration ratio under the four GPUs is
only up to 2. This is because processing in the image domain
is a relatively small size problem. Under these circumstances,
multi-GPU overhead is relatively large compared to the pro-
cessing time, significantly impacting the speedup factor. This
overhead effect is particularly severe for the case with the
lowest CBCT image resolution, as indicated by the low
speedup factors.

The total computation time per iteration is summarized
in Table IV. The CGLS step dominates the overall compu-
tation due to its much more complicated operations. Hence,
when combining the two steps, we still observe acceleration
factors of 3.03∼ 3.38 under the multi-GPU implementation.
From a parallel computing point of view, these acceleration
factors are quite satisfactory considering the amount of data
communication among the GPUs. The computation time for
the half-fan case is slightly longer than that of the full-fan
case, which is again due to the use of more projections. The
total computation time, which is more clinically important, is
also displayed in the second half of Table IV. In particular,
the reconstruction time is controlled to be ∼25 s for the two
cases, and acceleration factors of ∼3.1 have been achieved
using the quad-GPU system.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have presented our recent progress to-
ward developing a CBCT reconstruction system for clinical
application that focuses on improving both image quality and
efficiency.

For image quality improvement, we have observed two
typical artifacts in IR approaches, namely, cone artifacts and
ring artifacts. The cause of the cone artifacts is data incon-
sistency, which is essentially associated with the “iterative
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F. 12. Computation time in the CGLS and the regularization step are plotted as a function of CBCT image resolution in (a) and (b), respectively, for the
single-GPU and multi-GPU cases. Both FF and HF cases are plotted. Lines correspond to the best fit.

forward matching” nature of IR algorithms. On this basis,
we have proposed a practical and patient-specific solution to
compensate for the data inconsistency and hence alleviate the
artifacts and improve the image quality. The basic idea is
to estimate the missing data using a FDK-type reconstruc-
tion algorithm. Such a weighting factor is adaptively defined
specific to patient size/geometry and scan protocol, with no
need of any empirical tuning. For the ring artifacts in half-fan
mode, it was observed that one more weighting factor is
needed to remove discontinuities in the ring area correspond-
ing to the edge of the detector. Based on our experiments
using different weighting factors, we found that the weighting
factor should approach zero at the detector edge and should
be smooth at this point. With these image quality improve-
ments, our system has been validated in various cases under
both full-fan and half-fan scanning protocols, and satisfactory
reconstruction results compared to FDK reconstruction using
full sets of data have been obtained.

While cone artifacts are mitigated to a satisfactory degree
from a visual inspection point of view, quantitatively, there
still exist residues up to tens of HUs in certain slices. The
underlying reason is that the weighting factor is estimated
based on the extrapolated volume images [the denominator
in Eq. (2)], which is not exactly the same compared to the
real long objects being scanned. Results may be improved
by utilizing the planning CT, because the planning CT usu-
ally covers a larger volume than the CBCT in the SI direc-
tion. However, there are potential problems associated with
this approach, such as the deformation-induced differences
between the planning CT and the CBCT images. As for

the ring artifacts, while we have conducted experiments and
derived an empirical guideline to design the weighting factor,
further exploration regarding the underlying mechanism of
this artifact from a mathematical perspective is needed. We
hypothesize that projection inconsistency induced by geo-
metric inconsistency (such as gantry wobble) may be one
cause of the ring artifacts. The reason is that the weight-
ing factor is only found necessary in real experimental data,
whereas in simulation studies where the projection data are
generated under perfect scan geometry, we do not observe the
ring artifact and the weighting factor seems unnecessary.

In all tested cases, regularization coefficients were manu-
ally tuned to ensure a balance between removing streak-
ing/noise artifacts and maintaining small fine structures. As
one of our major focuses is to maintain spatial resolution,
which is extremely important in image guidance, the weight
on regularization is not too large. As a result, tiny resid-
ual streaking can still be observed in the periphery of some
reconstructed images, which may affect small-scale soft tis-
sue visibility. This indicates that the current protocol may
not be sufficient for certain advanced applications with diag-
nostic purposes. Meanwhile, more study is needed to estab-
lish optimal scan protocols (i.e., sufficient quality yet with
lowest dose) for each clinical application. As such, it is not
our intention to claim that the TF image quality using the
current settings with reduced projection data is absolutely
comparable to that of FDK with the full set of data. Instead,
we aim to show that the image quality is significantly impro-
ved after cone/ring artifacts correction and becomes quite
similar, if not equivalent, to that of the FDK results in the

T IV. Computation time (s) per step, total time with and without MR techniques in single and multiple GPU reconstructions. The total reconstruction time
corresponds to the highest resolution case.

Per-iteration Total (without MR) Total (with MR)

Protocol Resolution Single Multi Factor Single Multi Factor Single Multi Factor

Full-fan (121 projections) 512 × 512 × 70 10.73 3.47 3.09 107.3 34.7 3.09 78.2 24.8 3.15
256 × 256 × 70 3.55 1.07 3.32
128 × 128 × 70 1.36 0.42 3.24

Half-fan (164 projections) 512 × 512 × 70 11.79 3.89 3.03 117.9 38.9 3.03 85.2 24.7 3.11
256 × 256 × 70 3.82 1.17 3.26
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context of image guidance. This aspect has been validated
through our illustrations. The TF results present a well-main-
tained spatial resolution, not only for the high-contrast ob-
jects in a standard CatPhan phantom (Fig. 8) but also for
the low-contrast objects in the patient case (Fig. 11). It also
yields satisfactory soft tissue visibility as indicated by both
the visual inspection and the enhanced CNRs in those cases.

One focus of this study is to develop methods for cone/
ring artifact correction. As such, we have directly used the
raw projection data for simplicity and scatter/beam-harden-
ing60–65 corrections have not been applied. As a result, shad-
ing artifacts can still be seen in all cases. From a perspective
of applications where quantitative image quality is desired,
such as CBCT-based dose calculation, comprehensive projec-
tion preprocessing including scatter and beam-hardening
corrections are definitely necessary. We will include such
models in our system in the near future.

For an efficiency boost to our algorithm, we developed a
multi-GPU system. Inter-GPU parallelization was designed
carefully to avoid cumbersome implementation and minimize
communication overhead. Detailed analyses of computation
time in each step, their relation to image resolution, and the
acceleration factors were conducted. As for computational
efficiency, a total speedup factor of ∼3.1 was achieved using
four GPUs.

While all computational efficiency results were generated
using the TF reconstruction algorithm, the conclusions are
expected to hold for the TV algorithm as well because the
structure of the TV-based CBCT reconstruction algorithm
can be organized in a way similar to that of the TF algo-
rithm.17 The only difference between the two algorithms lies
in how the regularization is imposed, which is completely
performed in the CBCT image domain and can be paral-
lelized among GPUs in the same fashion as described in this
paper. We also noticed that some single-GPU-based studies
have reported comparably short time to that realized in our
multi-GPU system. This can be mainly attributed to the foll-
owing two reasons. (1) A small number of projections, e.g.,
40 projections, were used in those studies,22,33 which reduced
the reconstruction time. However, according to comprehen-
sive studies under CS-based iterative CBCT reconstruction26

regarding the number/exposure of the projections versus im-
age quality, an extremely few-projection protocol may not be
clinical feasible. (2) A small number of iterations were used.
In a typical IR process, the first few iteration steps outline the
main CBCT image content while the posterior steps gradu-
ally improve image quality. Since it is the fine structures that
are important for many clinical applications, a certain mini-
mum number of iteration steps are indeed necessary to ensure
an acceptable level of image quality.

In summary, this paper reports our recent development
of a low-dose CBCT IR system to facilitate the use of low-
dose IR in IGRT clinical practice. By incorporating data
consistency-based weighting factors in the IR model, cone/
ring artifacts can be mitigated and image quality is effec-
tively improved. A boost in computational efficiency can be
achieved by multi-GPU implementation.
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