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Cartilage defects are normally concomitant with posttraumatic inflammation and pose a major challenge in car-
tilage repair. Due to the avascular nature of cartilage and its inability to surmount an inflammatory response, the
cartilage is easily attacked by proinflammatory factors and oxidative stress; if left untreated, osteoarthritis may
develop. Suppression of inflammation has always been a crux for cartilage repair. Pharmacological drugs have been
successfully applied in cartilage repair; however, they cannot optimally work alone. This review article will
summarize current pharmacological drugs and their application in cartilage repair. The development of extracel-
lular matrix-based scaffolds and preconditioned tissue-specific stem cells will be emphasized because both of these
tissue engineering components could contribute to an enhanced ability not only for cartilage regeneration but also
for anti-inflammation. These strategies could be combined to boost cartilage repair under inflammatory conditions.

Introduction

Joint injuries are common in the young and active
population and often result in cartilage or osteochondral

lesions. If left untreated, these defects might lead to joint
swelling and pain, eventually progressing toward osteoar-
thritis (OA). Over 27 million Americans are affected by OA,
introducing huge clinical and socioeconomic burdens.1

Traditional cartilage repair methods include the transplan-
tation of osteochondral grafts,2 microfracturing, and autol-
ogous chondrocyte implantation3; however, none of these
cartilage repair strategies have generated long-lasting hya-
line cartilage that meets functional demands. The causes of
cartilage impairment are diverse, including inflammation,
hypertrophy, and senescence (Fig. 1).4,5 Excessive me-
chanical surface contact stress can directly damage articular
cartilage and subchondral bone and adversely alter chon-
drocyte function,6 while the disruption of the homeostasis of
chondrocytes may gradually develop into OA.7 In the early
phase of OA, disease-modifying interventions targeting in-
flammatory processes might be most efficacious for the
prevention and treatment of OA.8 To this end, many anti-
inflammatory strategies have been discovered, such as
growth factor applications, exertion of anticytokines or anti-
inflammatory drugs, and stem cell-based therapies.

Growth factors are utilized to improve clinical cartilage
repair by altering the local biological environment at the site
of cartilage damage. Inflammation at the damage site may
disrupt the balance between catabolic and anabolic factors;
growth factors that target specific catabolic proinflammatory
mediators, such as cytokines or nitric oxide synthase (NOS),
or affect anabolism are potential candidates in slowing down

the structural progression of the disease. The production and
activities of many proinflammatory factors, such as cyto-
kines, chemokines, growth factors, and various immune
response regulators, are controlled by different signaling
systems, such as nuclear factor-kappa B (NF-kB), mitogen-
activated protein kinases (MAPK), and Janus kinase/signal
transducers and activators of transcription ( JAK/STAT).
Novel small-molecule regulators targeting specific signal
pathways as well as related precursor molecules have re-
ceived a great deal of attention as potential candidates for
treatment of inflammatory diseases (Fig. 2).

The development of stem cell technology provides the
possibility of biotherapy for cartilage repair (Fig. 3). The
availability of large quantities of mesenchymal stem cells
(MSCs) and their multilineage differentiation potential, es-
pecially for chondrogenic differentiation, has made MSCs the
ideal progenitor source for cartilage engineering and regen-
eration. Cell-based therapies using undifferentiated or pre-
chondrogenic stem cells in biodegradable three-dimensional
(3D) scaffolds for transplantation into focal lesions could re-
generate hyaline-like cartilage.9,10 Since bioengineered car-
tilage constructs will eventually be transplanted into arthritic
joints in which elevated levels of proinflammatory cytokines
exist, it is especially important to select scaffolds that support
the stability of bioengineered cartilage in an inflammatory
environment. To this end, many extracellular matrix (ECM)-
based scaffolds are hypothesized to meet the requirements of
cartilage repair (Fig. 3).

Recently, the decellularized ECM deposited by stem cells
(DSCM) has attracted attention due to its excellent rejuve-
nation of expanded stem cells’ chondrogenic potential,
which has been reviewed.11 Furthermore, DSCM-expanded
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human synovium-derived stem cells (SDSCs) demonstrated
in vitro antioxidant and anti-inflammatory capabilities.12 A
study in mini pigs successfully proved its resurfacing effect
on partial-thickness cartilage defects after intra-articular
injection of DSCM-expanded allogeneic SDSCs.13 In this
review article, the strategies using pharmacologic drugs, bio-
mechanical stimulation, tissue-specific stem cells, and ECM-
based scaffolds are summarized. An emerging strategy using
a DSCM preconditioning approach to rejuvenate tissue-
specific stem cells in both cell amount and chondrogenic
potential is emphasized for its vital role in cartilage repair and
anti-inflammation (Fig. 3). Future goals include the utilization
of 3D ECM scaffolds, in conjunction with other combined
strategies, including the use of preconditioned tissue-specific
stem cells in a more favorable microenvironment to reduce
the inflammation in cartilage repair.

Pharmacologic Strategy

Growth factors

In articular cartilage, numerous growth factors work in
concert throughout life to regulate the development and
homeostasis of articular cartilage.14 Disruption in the bal-
ance of regulatory factors may hinder tissue maintenance
and repair, ultimately resulting in reduced synthesis of
ECM, tissue degeneration, and consequently, an accelerated
erosion of the articular surface.15 Bioactive growth factors
are considered promising candidates for enhanced healing of
chondral injuries and modification of the arthritic disease
process. Members of the transforming growth factor beta
(TGF-b)/bone morphogenetic protein family, insulin-like

growth factor-I (IGF-I), and fibroblast growth factors
(FGFs) are considered to be major anabolic factors for
cartilage formation. They may stimulate chondrocyte syn-
thesis of proteoglycans, aggrecan, and type II collagen, in-
ducing cell proliferation, driving stem cell chondrogenic
differentiation, and decreasing the catabolic effects of cy-
tokines.16,17 Overexpression of the growth factor pro-
granulin (PGRN), for example, has been implicated in the
stimulation of chondrocyte proliferation; PGRN also acts as
a physiological antagonist of tumor necrosis factor alpha
(TNFa) signaling and disturbs the binding of TNFa and
TNF receptor,18 potentially inhibiting cartilage degrada-
tion.19 Cytokines such as TNFa can stimulate vascular
endothelial growth factor expression.20 Therefore, some
anti-inflammatory strategies inhibit inflammation-induced
angiogenesis although it remains unclear to what extent
angiogenesis inhibition mediates their therapeutic effects.21

By exerting influence over inflammation, growth factors
can modulate the microenvironment of chondrocytes to
improve the local residence and provide a more ideal at-
mosphere for cartilage regeneration. For instance, growth
factors such as platelet-derived growth factor (PDGF) and
TGF-b obtained from platelet-rich plasma (PRP) decreased
interleukin 1 beta (IL-1b)-induced NF-kB activation, a major
pathway involved in the pathogenesis of OA (Fig. 2).22,23

Furthermore, in activated PRP, Bendinelli et al. observed
increases in hepatocyte growth factor (HGF), IL-4, and
TNFa; HGF and TNFa, by disrupting NF-kB-transactivating
activity through the enhanced cellular IkBa expression, were
important for the anti-inflammatory function of activated
PRP.24 Paradoxically, platelet lysate (PL), a PRP derivative,

FIG. 1. Inflammation in cartilage
repair. Abnormally high contact
stresses such as mechanical overload
transmitted to focal areas of articular
cartilage result in cartilage defects
and release cartilage fragments. This
process stimulates the synovial
membrane, leading to the activation
of macrophages and inflammatory
cells such as T cells, which produce
interleukin-1b (IL-1b) and tumor
necrosis factor alpha (TNFa). In an
autocrine–paracrine manner, these
activated inflammatory factors may
stimulate chondrocytes to secrete
degradative enzymes like protein-
ases, such as matrix metalloprotei-
nases (MMPs) and a disintegrin and
metalloprotease with thrombos-
pondin motifs (ADAMTS), which
are directly involved in degradation
of type II collagen and aggrecans in
cartilage matrix. In the meantime,
chondrocytes can change phenotype
and size in response to stimulation
from inflammatory factors and un-
dergo hypertrophy, which is an es-
sential step in the endochondral
ossification process. Color images
available online at www.liebertpub
.com/teb
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was thought to play a role as a proinflammatory agent, acting
synergistically with the canonical proinflammatory cytokines
such as IL-1a, thus enhancing the initial inflammatory re-
sponse; surprisingly, PL also contributes to the downregulation
of the NF-kB signal pathway and cyclooxygenase 2 (COX-2)
expression, thus triggering the resolution of the inflamma-
tion.25 The anti-inflammatory role of PRP was also demon-
strated in an in vivo study. In the antigen-induced arthritis
porcine model, the intra-articular injection of PRP attenuated
the subsequent inflammatory response.26 The use of PRP may
also improve the integration of an osteochondral graft at the
cartilage interface and decreased degeneration in an in vivo
rabbit model.27

The strategy combining growth factors and 3D scaffolds
demonstrated a huge impact on tissue regeneration. Because
of PRP’s prominent role in anti-inflammation and fewer
immunogenic as well as more biocompatible characteristics,
the cell-free polyglycolic acid (PGA)-hyaluronan scaffold
combined with PRP led to cartilage repair and improved
patient-reported outcomes (the Knee injury and Osteoar-
thritis Score, KOOS) during 12 months of follow-up.28

Moreover, TGF-b, delivered together with calcium alginate
to the sites of osteochondral defects, improved the repair of
osteochondral defects in the rabbit knee.29 However, the
local production of osteophytes has been observed in clini-
cal trials; therefore, caution is advised because some growth

factors favor the dedifferentiation of stem cells and promote
the endochondral ossification process.30

Anticytokine therapy

Like growth factors, cytokines can also be produced in
joint tissues and released into the synovial fluid; they in-
fluence the surrounding cells in an autocrine–paracrine
manner (Fig. 1). Low levels of factors are necessary for
normal homeostasis; however, inflammatory or oxidative
stress conditions may disrupt normal homeostasis, driving
the pathogenesis of OA. Among the vast number of cyto-
kines, IL-1b and TNFa seem quite prominent and of major
importance to cartilage destruction.31 Treatment strategies
targeting major inflammatory factors have been developed
(Fig. 2). Specific inhibitors of production/activity of IL-1,
such as recombinant human IL-1 receptor antagonist (IL-1ra),
can block the actions of IL-1 without any detectable agonist
activity.32 The use of monoclonal antibodies against IL-1 or
type I IL-1 receptor (IL-1RI) represents another possible
approach in neutralization of the cytokine.33 Pharmacologic
reagents, which downregulate the production and activity of
active proinflammatory and procatabolic IL-1b, are also a
feasible approach.34 One such example is to apply the rhein,
an active metabolite of the semisynthetic anthraquinone de-
rivative diacerein, to downregulate the production and activity

FIG. 2. Schematic representation of key signaling pathways in the inflammatory process and potential strategies for
inflammatory inhibition in cartilage repair. Use of anticytokine and chondroprotective drugs against IL-1, TNFa, or against
their receptors is a direct and effective approach in the suppression of inflammation. Strategies targeting disturbance or
intervention of key signal pathways in cytosol have been developed such as blocking the mitogen-activated protein kinases
(MAPK) signal pathways or the nuclear factor-kappa B (NF-kB) pathway. Using inhibitors for downstream products of
degradative enzymes, such as MMPs, cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), and ADAMTS,
can also effectively protect cartilage from degradation and inflammation. Growth factors such as fibroblast growth factor
(FGF)-2, insulin-like growth factor (IGF)-I, or transforming growth factor (TGF)-b may interfere with inflammation by
blocking the associated signal pathways. Use of growth factors is a possible anti-inflammatory strategy in cartilage repair
despite the fact that growth factors can promote neocartilage formation. Color images available online at www.liebertpub.com/teb
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of IL-1b in both the cartilage layer and synovial membrane.35

Etanercept, a recombinant soluble p75 TNF receptor, has a
high affinity for TNFa, preventing it from binding with its
receptor.36 A recent report indicates that etanercept enhanced
preservation of osteochondral allograft viability.37 An in vivo
study showed that subcutaneous injection of etanercept pro-
moted repair of osteochondral defects in the rabbit knee.38

Application of the anti-TNFa monoclonal antibody in poly-
arthritic transgenic mice demonstrated reversal of cartilage
degradation in the young mice.39

Besides IL-1b and TNFa, proinflammatory cytokines,
such as IL-6,40 leukemia inhibitory factor,41 and the che-
mokine IL-8,42 may modulate the direct catabolic effects of
some cytokines. They usually synergize with TNFa or IL-1b
in the catabolic process of cartilage.43 Interference with
those proinflammatory factors is another direction for anti-
inflammatory therapy in cartilage repair. A number of anti-
inflammatory cytokines, such as IL-4, IL-10, IL-11, and
IL-13, were found in increased levels in the synovial fluid of
OA patients.44 They decrease the production and/or activity
of the proinflammatory cytokines in vitro45 and, thus, have
been classified as anti-inflammatory cytokines. Endogenous
IL-4 and IL-10 have been shown not only to reduce local IL-

1 but may also have direct stimulatory or protective effects
on chondrocyte metabolism.46,47 Since the early phase of OA
is the most effective period to inhibit inflammation, admin-
istration of cytokine antagonists following cartilage repair is a
safe strategy for not only promotion of cartilage integration
but also the prevention of inflammation occurrence.

Chondroprotective drugs

Among pharmacological treatments, symptomatic slow-
acting drugs have been largely studied over the last decade.
Recently, there has been an increase in the use of symp-
tomatic slow-acting/chondroprotective drugs such as glucos-
amine sulfate (GS), chondroitin sulfate (CS), hyaluronic acid
(HA), and diacerein. Glucosamine decreased the activation of
NF-kB in rat chondrocytes when treated with IL-1b.48 In
normal human articular chondrocytes, GS inhibited IL-1b and
TNFa-induced nitric oxide (NO) production, which is a major
contributor for the inflammatory reaction in arthritis.49 Nat-
ural sulfated glycosaminoglycan (GAG), in particular CS,
seemed to have beneficial effects on the pathophysiology of
OA by reducing blood markers of inflammation and the ac-
tivity of destructive proteases like matrix metalloproteinases

FIG. 3. Therapeutic strategies for cartilage damage utilizing preconditioned stem cell and three-dimensional (3D) matrix.
After ex vivo expansion of adult stem cells extracted from the human body, two strategies can be used for the treatment of
cartilage defects: direct intra-articular injection or transplant of cells in a 3D scaffold. For full-thickness cartilage defects,
the second strategy is normally used. Three-dimensional scaffolds can be made of extracellular matrix (ECM) materials. A
structurally and mechanically stable scaffold allows for infiltration and attachment of bioactive molecules (IGF-I, FGF-2,
and/or TGF-b), which can exert their anti-inflammatory effects on the surrounding environment. For partial-thickness
cartilage defects, direct intra-articular injection of expanded stem cells is an option. Mesenchymal stem cells can secrete
growth factors, which may exert their anti-inflammatory and antioxidative effects in the microenvironment where mes-
enchymal stem cells (MSCs) reside. These growth factors also benefit tissue regeneration. A recent finding suggests that
decellularized stem cell matrix (DSCM) could rejuvenate expanded MSCs in proliferation and chondrogenic potential; this
process may provide a large quantity of high-quality MSCs for cell-based cartilage regeneration. DSCM-expanded MSCs
exhibiting an enhanced capacity against oxidation and inflammation may represent a promising anti-inflammatory strategy
in the near future. Color images available online at www.liebertpub.com/teb
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(MMPs), diminishing pain as well as improving the func-
tion of the affected joint.50–52 In chondrocytes, CS diminished
IL-1b-induced increases in p38 MAPK and extracellular
signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and
decreased NF-kB nuclear translocation and as a consequence,
reduced the formation of proinflammatory cytokines, IL-1b
and TNFa, and proinflammatory enzymes, such as phos-
pholipase A2 (PLA2), COX-2, and inducible NOS (iNOS).53

However, other reports suggested that chondroitin-4-sulfate
inhibited the enhanced expression of COX-2 and prosta-
glandin E (PGE) synthases 1, but had no effect on the IL-1b-
induced decrease of IkBa and nuclear translocation of
NF-kB54; the extent of sulfation influenced the responsive-
ness of inflammation.55

Synthetically sulfated HA was at first characterized as an
inhibitor of TNFa.56 HA is an anionic nonsulfated GAG that
acts as a crucial structural component of the ECM and as an
important mediator of leukocyte adhesion and migration.57

HA is widely used in the treatment of OA and exerts sig-
nificant chondroprotective effects. An in vitro report showed
that HA altered the profile of inflammatory mediators,
shifting the balance between cell matrix synthesis and
degradation.58 An in vivo rabbit study showed that three
weekly intra-articular injections of HA had a positive effect
on the repair tissue that formed within the chondral defect at
the early follow-up time point.59 CS, diacerein, GS, and HA
demonstrated pain reduction and physical function im-
provement with very low toxicity in OA treatment and could
be of potential interest for the symptomatic management of
OA.60 Slow-acting drugs avoid interrupting the normal
cellular function and toxicity to cells and, thus, could pro-
vide an anti-inflammatory strategy for cartilage repair (Fig.
2). However, high concentrations of chondroprotective
drugs are not presumably attained through oral administra-
tion; intra-articular injections may represent a feasible and
effective approach.61 With the application of tissue engi-
neering in cartilage repair, slow-acting drugs serve as a
basic unit of a 3D scaffold and, together with stem cells,
demonstrated the potential of modulating inflammatory
chemokines/receptors and catabolic/inhibiting factors.62

Small molecules targeting inflammation signals

Strategies for generating functional small molecules of
synthetic and natural products targeting inflammatory sig-
nals have been considered effective in the suppression of
inflammation.63 Primary proinflammatory factors IL-1b and
TNFa have the capacity to activate a diverse array of in-
tracellular signaling pathways; upon activation, they can
induce phosphorylation-dependent signaling pathways, such
as NF-kB, p38 MAPK, and c-Jun N-terminal kinase ( JNK),
which regulate the synthesis of several inflammatory cyto-
kines and MMPs, many of which play major roles in the
process of OA formation (Fig. 2).64

The NF-kB signaling pathway mediates critical events in
the inflammatory response by chondrocytes, leading to
progressive ECM damage and cartilage destruction. There
are an increasing number of reports about NF-kB inhibitors,
such as glucocorticoids, cyclosporine A, and tacrolinmus
(FK-506).65 IkB kinase beta (IKKb) has also become a
particularly appealing target because of its crucial role in the
activation of the NF-kB pathway.66 A recent report showed

that a novel butanoylated GlcNAc derivative, 3,4,6-O-
Bu3GlcNAc, an inhibitor of NF-kB activity, has the po-
tential to stimulate new tissue production and reduce
inflammation in IL-1b-induced chondrocytes with utility for
OA and other forms of inflammatory arthritis.67 One con-
cern about inhibiting several of these components of the NF-
kB pathway is the specificity of such drugs. For example,
the proteasome, which is responsible for IkB degradation,
has many other important functions. Thus, inhibition of
proteasome activity could potentially cause severe side ef-
fects. Also, it may not be feasible to block the NF-kB
pathway for prolonged periods, since NF-kB plays an im-
portant role in the maintenance of host defense responses.68

Two MAPKs, p38 MAPK and JNK, are frequently acti-
vated by a wide range of environmental stresses and cyto-
kines to induce inflammation and joint destruction, hence
the name stress-activated protein kinases (SAPKs). p38
MAPK positively regulates the expression of many genes
involved in inflammation, such as those coding for TNFa,
IL-1b, IL-6, IL-8, COX-2, and collagenase-1 and -3.69

Many small-molecule inhibitors of p38 MAPK such as
Cannabidiol,70 SB203580, Doramapimod (BIRB-796),71

VX-702,72 RO-3201195,73 and SB-24223574 have demon-
strated positive anti-inflammatory effects. Among all these
p38 MAPK inhibitors currently in clinical trials, SB203580
appears to be the most potent compound in terms of anti-
inflammatory activity. For instance, inhibition of the p38
MAPK signaling pathway with SB203580 showed anti-
inflammatory effects in both cartilage explants75 and animal
models.76 However, there is a conflicting report showing
that inhibition of the p38 MAPK pathway using SB203580
leads to OA-like changes in a rat animal model.77 Similarly,
the JNKs are activated in macrophages after stimulation
with lipopolysaccharides.78 Inhibition of the JNK signal-
ing pathway has shown both preventive effects with regard
to bone and cartilage destruction in rheumatoid arthritis79

and downregulation of IL-1-induced MMP-13 expression in
OA chondrocytes.80

Small molecules targeting specific enzymes

Small molecules, which target specific enzymes involved
in OA, have been developed as a possible way to alleviate
inflammation in cartilage repair (Fig. 2). MMPs are syn-
thesized and secreted by chondrocytes in response to stim-
ulants such as IL-1 and TNF.81 Inappropriate expression of
MMP activity constitutes part of the pathogenic mechanism
associated with the destruction of cartilage and bone in OA.
Possible strategies include impeding the production of
MMPs, blocking the active site of MMPs, and increasing the
endogenous production of tissue inhibitors of metallopro-
teinases (TIMPs).82

Another representative member of cyclooxygenase, the
COX-2 enzyme, is primarily associated with inflammation.
Cytokines and growth factors increase the expression of
COX-2, mainly at inflammatory sites, producing pros-
taglandins that mediate inflammation, pain, and fever.83

Targeting cyclooxygenase, nonsteroidal anti-inflammatory
drugs (NSAIDs) such as celecoxib play a major role in the
management of inflammation and pain caused by arthri-
tis.84,85 However, nonselective NSAIDs cause gastrointes-
tinal complications in a significant number of patients, and
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COX-2 inhibitors have recently raised concerns regarding
cardiovascular side effects/risks.86

The possible roles of NO in OA pathophysiology have
been supported by a study showing that selective inhibition
of the iNOS could reduce the progression of structural
changes in experimental OA in dogs, partly related to a
reduction in the levels of synovial inflammation.87 Many of
these small-molecule compounds have already been laun-
ched on the market as drugs acting against inflammatory
conditions. For example, leflunomide was found to signifi-
cantly inhibit IL-4- and IL-13-enhanced production of
chemokine (C-C motif) ligand (CCL)-26.88

Biomechanical Strategy

Biomechanical factors play an important role in the health
of diarthrodial joints. Under normal physiological loading,
moderate mechanical loading exhibits little or no wear over
decades of use because articular cartilage provides a nearly
frictionless surface for the transmission and distribution of
joint loads. In reality, moderate loading is necessary to
maintain healthy articular cartilage. Through a variety of
mechanisms, including ion channels and integrin-mediated
connections to the ECM that involve membrane, cytoskeletal,
and intracellular deformation, chondrocytes in cartilage may
perceive physical signals from the outside environment. Al-
tered joint loading, which might be associated with obesity,
malalignment, trauma, or joint instability, is a critical risk
factor for joint degeneration and OA occurrence.

Biomechanical influences on cartilage are complex. De-
pending on the way cartilage is loaded, the effects on car-
tilage homeostasis can vary. An overload of mechanical
stress may lead to acute joint injury such as posttraumatic
OA, which is also caused by gradual onset of structural
damage and cartilage compositional degradation due to
chronic overloading of injured joints.89 Cartilage explants
subjected to static compression exhibit a significant sup-
pression of metabolic activity that is dependent on the
magnitude of applied stress.90 A high-magnitude mechani-
cal strain is proinflammatory and initiates cartilage de-
struction while inhibiting matrix synthesis, both of which
are involved in the NF-kB-related signal pathway.91,92

It has been reported that a low-magnitude mechanical
strain inhibits inflammation by suppressing IL-1b and
TNFa-induced transcription of multiple proinflammatory
mediators involved in cartilage degradation.91 It is note-
worthy, however, that the influences of mechanical stress
are not independent; many mechanical and physiochemical
factors that are known to affect chondrocytes are inextri-
cably coupled to one another within the cartilage ECM.
Ramachandran et al. reported that treatment with C-type
natriuretic peptide and dynamic compression increased an-
abolic activities and blocked catabolic effects induced by
IL-1b.93 For cyclic loading, however, the cartilage reaction
is different; low frequencies and amplitudes do not appear to
affect biosynthesis rates. Some studies suggested that, above
a certain threshold frequency, cyclic loading increases the
synthesis of components of ECM, such as aggrecans, car-
tilage oligomeric matrix protein, and fibronectin.90

There is increasing evidence showing that muscle func-
tion is closely related to OA. The muscle, lying anatomi-
cally adjacent to cartilage, provides the cartilage with a

biomechanical stimulation that promotes nutrient distribu-
tion and maintains homeostasis.92 Muscle loss94 and re-
duced muscle strength95 have been shown to be risk factors
for knee OA. On the other hand, patients with knee OA were
found to have impaired muscle function; quadriceps, ham-
string, and hip muscles are significantly impaired in subjects
with knee OA compared with age-matched controls.96

Recent studies showed that a rat chondrocyte cell line
cocultured with muscle cells or cultured in muscle cell-
conditioned medium in a monolayer demonstrated enhanced
resistance to proinflammatory factors such as IL-1b and
TNFa, suggesting that nonloading biochemical effects of
muscle cells have a significant influence on cartilage ho-
meostasis and a preventative role in OA formation.97 Me-
chanistically, it is known that the proinflammatory cytokines
IL-1b and TNFa are major inflammation initiators in car-
tilage by inducing the expression of MMPs, promoting
chondrocyte hypertrophy, and reducing the synthesis of
cartilage matrix genes. However, muscle cell-derived fac-
tors or myokines inhibited the mRNA expression of MMPs
as well as hypertrophic markers in bioengineered cartilage;
it could also rescue IL-1b-induced chondrocyte growth ar-
rest through regulating the cell cycle. The beneficial role of
muscle cells on OA indicated that muscle strengthening
exercises could be a potential intervention for OA.98

MSC Strategy

Inherent anti-inflammatory properties

Despite being the most advanced and promising approach
for cartilage repair, chondrocyte-based cartilage repair has
some disadvantages, such as morbidity caused by damage to
the donor-site articular surface and cell senescence during
ex vivo expansion.4 Furthermore, the inflammatory synovial
fluid microenvironment triggers human chondrocytes to
actively take part in inflammatory processes, particularly
during the initiation and progression of inflammatory joint
diseases and in the disruption of cartilage repair mechanisms
resulting in cartilage degradation.99 Unlike chondrocytes,
MSCs are not limited by an intrinsic tendency to lose their
phenotype and dedifferentiate during expansion.100 MSCs
also play an important role in immunomodulation and tissue
regeneration by secretion of soluble factors.101,102 In an in-
flammatory environment, MSCs secrete factors which cause
multiple anti-inflammatory effects and influence matrix
turnover in synovium and cartilage explants.103 MSCs have
also been revealed as robust sources of TIMP-mediated
MMP-inhibition, capable of protecting the perivascular niche
from high levels of destructive MMPs, even under patho-
logical conditions.104

Due to their potential to modulate the local microenvi-
ronment via anti-inflammatory and immunosuppressive
functions, MSCs have an additional advantage for allogeneic
application (Fig. 3). Moreover, by secreting various bioactive
soluble factors, MSCs can protect the cartilage from further
tissue destruction and facilitate regeneration of the remaining
progenitor cells in situ.105 The joint resurfacing function of
MSCs was also demonstrated in in vivo studies. After intra-
articular injection of autologous MSCs into a caprine OA
model (complete excision of the medial meniscus and re-
section of the anterior cruciate ligament), there was evidence
of marked regeneration of the medial meniscus and implanted
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cells were detected in the newly formed tissue. Degeneration
of the articular cartilage, osteophytic remodeling, and sub-
chondral sclerosis were reduced in cell-treated joints com-
pared with joints treated with vehicle alone without cells.106

A clinical case report demonstrated that, 24 weeks after the
injection of autologous MSCs into a knee with symptomatic
and radiographic degenerative joint disease, there was sig-
nificant cartilage growth, decreased pain, and increased joint
mobility in the patient.107 As a result, MSCs could be used in
cartilage repair as a potential anti-inflammatory strategy es-
pecially in the context of allogeneic transplantation.

Acquired anti-inflammatory capacity

Treatment strategies focused on both reducing inflam-
mation and increasing tissue production are necessary to
effectively treat OA from a tissue-engineering perspective.
Despite their multilineage differentiation potential and im-
munomodulatory properties as well as anti-inflammatory
abilities, MSC survival after transplantation is still very low,
thereby hindering their therapeutic efficacy.108

Recent studies found that MSCs could be rejuvenated by
preconditioning strategies, which enhance their post-trans-
plantation survival and functionality.109 The concept of pre-
conditioning was established in 1986 by Murry et al., who
found that ischemic preconditioning of cardiomyocytes led to
the activation of survival signaling.110 In theory, any factors
that might influence the proliferation and differentiation of
therapeutic cells can be an advantage. For instance, hypoxic
preconditioning not only has prosurvival and cytoprotective
effects, it also helps the cells maintain their stemness and
promote proliferation and differentiation potential post-
engraftment.111 When referring to a cartilage engineering
application, preconditioning of MSCs can be derived from
microenvironment factors such as low oxygen,112 growth fac-
tors,113 or potentially pharmacological substances targeting
specific signal pathways involved in MSC chondrogenesis
such as the MAPK114,115 and Wnt signal pathways.114,116

DSCM-mediated stem cell preconditioning. The stem cell
niche is a specialized microenvironment that helps sustain the
stem cell pool within each tissue or organ system. It is hy-
pothesized that stem cells can create their own microenviron-
ment; in such a microenvironment, adult stem cells are
expected to greatly expand, while retaining their stemness for a
tissue-specific lineage. In 2009, He et al. utilized porcine
SDSCs, tissue-specific stem cells for chondrogenesis,117 as a
model to reconstruct an in vitro 3D stem cell microenviron-
ment, in which expanded SDSCs produced a drastic increase in
cell number and chondrogenic potential.118 Later on, this
DSCM-mediated stem cell preconditioning was also demon-
strated to be effective in rejuvenating human bone marrow
stromal cells, in terms of enhanced proliferation and chondro-
genic hypertrophy.119 Interestingly, this DSCM-mediated ex-
pansion system also works for primary chondrocytes, such as
articular chondrocytes120,121 and nucleus pulposus cells.122,123

The regulation of intracellular reactive oxygen species
(ROS) is crucial for cell survival in a harsh environment and
guarantees successful cell therapy.124 DSCM precondition-
ing could decrease the expanded stem cell ROS level119,125

and protect human SDSCs from oxidative stress-induced
cell senescence, as it applies to cell proliferation and dif-

ferentiation capacity.12 Furthermore, our recent data showed
that human SDSCs expanded on DSCM exhibited an in-
creased chondrogenic potential as well as heightened
protection against IL-1b-induced inflammation.126 The
adaptive capacity in a harsh environment was also validated
in a mini pig study, in which DSCM-expanded SDSCs ex-
hibited an enhanced in vivo cartilage regeneration capacity
postinjection, evidenced by intensely stained type II colla-
gen and sulfated GAGs in the partial-thickness cartilage
defects with negligible staining of type I collagen,13 indi-
cating that DSCM preconditioned SDSCs have the ability to
resist inflammation. In contrast, the existence of type I
collagen in the regenerated cartilage from the plastic flask-
expanded SDSC groups suggested fibrocartilage forma-
tion,13 which might be explained by dedifferentiation caused
by inflammatory stress.127

Low oxygen and FGF-2 contribute to DSCM-mediated
stem cell preconditioning. Low oxygen tension (hypoxia)
maintains undifferentiated states of MSC phenotypes and also
influences proliferation and cell fate commitment.128 There is
increasing evidence suggesting that hypoxia (or, more ap-
propriately, physiological hypoxia) can stimulate chon-
drogenesis.129,130 Hypoxic preconditioning can boost the
expression of genes favoring MSC proliferation and growth
prolongation by inducing the expression of prosurvival and
proangiogenic markers in MSCs.131 Recently, hypoxia-
inducible factors (HIFs) have been shown to activate specific
signaling pathways such as Notch and the expression of
transcription factors such as the octamer-binding transcription
factor 4 (Oct4), which is responsible for controlling stem cell
self-renewal and multipotency.132 This finding suggests that
modulation of oxygen availability and HIF expression can
influence stem cell fate. Our recent report suggested that the
combination of hypoxia and FGF-2 significantly enhanced
DSCM-expanded SDSC proliferation and chondrogenic po-
tential.133 This microecosystem apparently reconciled the
contradiction of Quantity versus Quality, a predicament often
met in stem cell-based cartilage repair. In vivo, numerous
growth factors and morphogens are immobilized by directly
binding to the ECM through specific heparin-binding do-
mains, by direct binding to ECM molecules such as collagen,
or by direct anchoring to cell membranes.134 By immobiliz-
ing growth factors in a concentrated area, DSCM helps to
amplify the effects of growth factors and reduce the inflam-
mation reaction leading to improved proliferation and dif-
ferentiation of stem cells.102

Small molecules targeting inflammation signals contribute
to DSCM-mediated stem cell preconditioning. Widely used
as an anti-inflammatory drug in cartilage repair, the p38
MAPK inhibitor also blocks chondrogenesis,135 indicating
that the p38 MAPK inhibitor has some disadvantages in the
treatment of cartilage damage with concomitant inflammation.
Considering its adverse effects for clinical treatment of OA,
MSCs pretreated by SB203580 in the DSCM expansion phase
were assumed to avoid this dilemma. Preconditioning using
SB203580 significantly enhanced DSCM-expanded human
SDSC chondrogenic potential; this rejuvenation of chondro-
genic capacity, instilled in SDSCs by SB203580, gave the
stem cell the ability to resist the influence of IL-1b-induced
inflammation.126
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ECM Strategy

Compared to natural biomaterials, synthetic polymers are
more controllable and predictable in their chemical and physical
properties, holding some promise of success in tissue engi-
neering and regenerative medicine. Of the synthetic polymers,
those derived from poly(a-hydroxy esters),136 poly(propylene
fumarates),137 polyurethanes,138 PGA,139 and poly(lactide-
co-glycolide)140 have been used for cartilage regeneration;
however, inflammatory reaction due to synthetic scaffolds
that impaired the quality of regenerated cartilage has also
been reported in some studies.141,142

Natural matrix scaffolds

Naturally occurring polymers as scaffolds offer options
for cartilage tissue engineering due to biocompatibility,
biodegradability, low toxicity of degradation by-products,
and plasticity in processing into a variety of material for-
mats.143 In an attempt to repair articular cartilage, allo-
grafted articular chondrocytes, embedded in collagen gel,
were transplanted into full-thickness defects in rabbit ar-
ticular cartilage; 24 weeks after implantation, the defects
were filled with hyaline cartilage, synthesized type II col-
lagen, and exhibited no signs of immunologic rejection and
degeneration of the reparative tissue.144,145 Rahfoth et al.
found that the transplantation of allograft chondrocytes
embedded in agarose gel was a suitable method to repair
articular cartilage defects in rabbits because there were no
signs of graft-versus-host rejection or infiltration by immune
cells.146 Other natural polymers that have been explored as
bioactive scaffolds for cartilage tissue engineering include,
but are not limited to silk,147 hyaluronan,148 and chitosan.149

In a recent study, the responses of articular chondrocytes
under inflammatory conditions were compared after seeding
within three polymeric scaffolding materials (silk, collagen,
and polylactic acid [PLA]); Kwon et al. found that chon-
drocytes grown in the silk and collagen scaffolds exhibited
higher levels of cartilage matrix gene expression than those
in the PLA scaffolds.150 When using a PGA scaffold for
treatment of full-thickness defects, however, there appears
to be a moderate immunoreaction as evidenced by lym-
phocytes in transplanted joints.9,151

Chondrocyte sheets

A cell sheet technique developed in 1993152 shows
promise in cartilage repair with concomitant inflammation.
Hamahashi et al. reported that a layered chondrocyte sheet
produced the most humoral factors, including PGE2, which
plays a key role in its anti-inflammatory function.153

In chondrocyte sheets, catabolic factors such as MMP3,
MMP13, and a disintegrin and metalloproteinase with
thrombospondin motifs 5 (ADAMTS5) were also observed
to decrease, while the expression of TIMP1 with antago-
nistic actions against MMP3 increased.154 In a rabbit model
with partial-thickness cartilage defects, layered chondrocyte
sheets were able to maintain the cartilaginous phenotype and
could be attached to the site of cartilage damage, acting as a
barrier to prevent a loss of proteoglycan from these sites and
to protect them from catabolic factors in the joint.154 This
technique might have great potential for OA treatment and
inflammatory prevention in cartilage repair.

Decellularized tissue matrix

In contrast to the DSCM described above, which attempts
to rejuvenate expanded stem cells’ chondrogenic potential
as well as anti-inflammatory capacity, the decellularized
tissue matrix influences tissue engineering directly, provid-
ing a carrier (or scaffold) and chondrogenically induced
growth factors as well as an anti-inflammatory function. The
use of ECM derived from decellularized tissue is increas-
ingly common in regenerative medicine and tissue engi-
neering.155 By virtue of physical, chemical, or enzymatic
approaches, organ decellularization removes all cellular
material without adversely affecting the composition, bio-
logic activity, or mechanical integrity of the remaining 3D
matrix.156 The molecules that constitute ECM are largely
and highly conserved across species and are well tolerated
even by xenogeneic recipients. The effects of xenogeneic
ECM on the innate immune response, specifically the re-
sponding macrophages, may elicit a necessary M2 pheno-
typic profile to support a constructive remodeling response
for the scaffold.157 In the field of cartilage regeneration,
many decellularized tissue scaffolds showed positive effects
and reparative capability for cartilage defects.158 For ex-
ample, the combined use of cells with a decellularized aortic
scaffold was able to prevent the generation of a strong in-
flammatory response and improve the overall tracheal car-
tilage regeneration.159 Compared with a PGA scaffold, an
ECM scaffold derived from porcine cartilage not only
strongly supported chondrogenic differentiation of rabbit
MSCs but also helped maintain its phenotype in vivo.160

Summary

The treatment of cartilage injury remains a clinical chal-
lenge despite the advancements in surgical procedures and
techniques. An important hurdle is the concomitant inflam-
mation during cartilage repair. Pharmacological drugs have
been successfully applied in cartilage repair; however, they
cannot optimally work alone.161 With the development of
ECM-based scaffolds and preconditioned tissue-specific stem
cells, both tissue engineering components could not only
contribute to an enhanced ability in anti-inflammation but also
to cartilage regeneration. All these strategies could combine to
boost cartilage repair under inflammatory conditions.
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