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Abstract: In this work, we investigated how bulk motion degraded the 
quality of optical coherence tomography (OCT) angiography that was 
obtained through calculating interframe signal variation, i.e., interframe 
signal variation based optical coherence angiography (isvOCA). We 
demonstrated theoretically and experimentally that the spatial average of 
isvOCA signal had an explicit functional dependency on bulk motion. Our 
result suggested that the bulk motion could lead to an increased background 
in angiography image. Based on our motion analysis, we proposed to 
reduce image artifact induced by transient bulk motion in isvOCA through 
adaptive thresholding. The motion artifact reduced angiography was 
demonstrated in a 1.3μm spectral domain OCT system. We implemented 
signal processing using graphic processing unit for real-time imaging and 
conducted in vivo microvasculature imaging on human skin. Our results 
clearly showed that the adaptive thresholding method was highly effective 
in the motion artifact removal for OCT angiography. 
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1. Introduction 

Various OCT techniques have been developed for blood vessel imaging, such as optical 
Doppler tomography (ODT), optical angiography (OMAG), speckle variance OCT (svOCT) 
and etc [1–23]. All these techniques detect blood flow by comparing OCT signals (phase or 
amplitude) acquired at different time points (between Ascans or between Bscans) to sense 
particles in motion (flowing blood cells). OCT based blood vessel imaging does not require 
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exogenous contrast agent, which makes it favorable for in vivo imaging. In particular, OCT 
angiography can be used to image subcutaneous microvasculature in situ and non-invasively; 
and is considered to have great potential for the diagnosis of skin diseases [13]. Blood flows 
within the dermis of skin are usually very slow (in the range of 0.1-0.9μm/s) [14], therefore 
have to be imaged by high sensitivity angiography that compares OCT signal acquired with 
larger time interval. For example, subcutaneous microvasculature image can be obtained by 
calculating interframe instead of inter-Ascan variation of OCT signal. 

One of the major challenges for high sensitivity in vivo microvasculature imaging is bulk 
motion (BM) that comes from sample. BM inevitably exists during the imaging of living 
animal or human and can significantly degrade image quantity of OCT angiography. This is 
because motion signal due to BM contributes to every pixel in an angiography image, while 
motion signal caused by blood flow contributes to a limited number of pixels corresponding 
to vessels. In this study, we investigate high sensitivity, interframe signal variation based 
OCT angiography (isvOCA) for subcutaneous microvasculature imaging. isvOCA signal is 
obtained by calculating pixelwise interframe signal variation between Bscans. According to 
our theoretical derivation, isvOCA signal has an explicit functional dependency on the 
magnitude of motion in x, y and z directions. For the visualization of microvasculature, signal 
of isvOCA is predominantly derived from individual particle’s random motion rather than 
ensemble directional motion that is quantified by blood flow. isvOCA is particularly 
vulnerable to BM, because the time interval between the acquisition of subsequent Bscans is 
long enough for BM to induce detectable changes in OCT signal. Therefore, it is essential to 
reduce motion artifact to obtain high sensitivity isvOCA. 

To remove motion artifact in Doppler OCT angiography, it was usually assumed that the 
sample movement induced a constant phase term for each Ascan and motion artifact could be 
removed by subtracting this phase term [15–19]. However, this phase correction method for 
Doppler OCT cannot be directly applied to isvOCA, because of different contrast 
mechanisms for blood vessel imaging in these two techniques. isvOCA is sensitive to motion 
in three dimensions while Doppler OCT signal is only sensitive to motion in the axial 
direction. The artifact due to BM in speckle variance OCT could be corrected through image 
registration [23]. Similar to phase correction in Doppler OCT, this method tracked bulk 
motion by analyzing OCT signal and could only be valid when motion was constrained to one 
or two dimensions. However, BM is generally a 3D vector with x, y and z components to be 
determined by three independent variables at any time instant. The quantitative tracking of 
BM with high accuracy is extremely challenging due to its 3D nature. Nevertheless, when 
motion gradient over time is small within the interval between Bscans, BM induces the same 
displacement for every scatterer within the sample. Therefore, BM results in the same change 
in OCT signal for a collection of pixels. As a result, it is possible to estimate and remove 
image artifact caused by BM via appreciating its global nature. 

For isvOCA, BM results in motion artifact because the non-blood pixel has non-zero 
signal. On the other hand, angiography signal corresponding to blood flow does not change 
significantly with BM. It was demonstrated that the high sensitivity of OCT angiography 
based on interframe signal variation was due to the random motion of scatterers rather than 
directional flow [7]. Therefore, if the background level associated with BM can be estimated 
and subtracted, BM induced image artifact should be removed from OCT angiography. 

In this study, we analyzed isvOCA signal and conducted systematic motion analysis for 
isvOCA. We further proposed to quantify the BM induced motion artifact through 2D spatial 
averaging on isvOCA signal. As the magnitude of BM inevitably varies as time, an adaptive 
threshold corresponding to instantaneous magnitude of BM was applied to reduce motion 
artifact. To the best of our knowledge, systematic motion analysis and motion artifact 
removal through adaptive thresholding have not been investigated before for intensity 
variation based OCT angiography. 
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To perform motion analysis, we considered OCT signal at each pixel as a random variable 
and demonstrated theoretically and experimentally that the expected value of isvOCA signal 
had an explicit functional dependency on motion. Our results indicated that isvOCA signal at 
non-vessel pixels had the same expected value <vBM> due to global BM. Assuming most 
pixels in an OCT image do not correspond to blood vessels, <vBM> could be simply assessed 
through spatial averaging of the entire 2D isvOCA image. Using <vBM> as an adaptive 
threshold value, motion artifact reduction could be achieved by thresholding the original 
cross-sectional isvOCA images. We demonstrated the principle of the proposed motion 
artifact removal method and evaluated its effectiveness on phantoms. We implemented the 
algorithm for angiography reconstruction with the proposed motion artifact reduction in real-
time using graphic processing unit (GPU) [8, 23, 24] and conducted in vivo imaging of 
subcutaneous blood vessel network on human subject. It is worth mentioning that the isvOCA 
is used to provide high sensitivity microscopic visualization of blood vessel network. The 
quantification of blood flow is beyond the scope of this work. 

2. Principle 

In the following analysis, a Cartesian coordinate system (x,y,z) is used (x: Bscan direction; y: 
Cscan direction; z: Ascan direction). I(x,y,z,t) indicates OCT signal obtained at spatial 
location (x,y,z) and time t. I(x,y,z,t) can be considered as a random variable with expected 
value I0. v(x,y,z,t), the temporal variation of signal, is calculated to generate motion image for 
OCT angiography (isvOCA), as shown in Eq. (1). It is essential to normalize the right hand 
side of Eq. (1) using I0

2. Otherwise, the magnitude of motion image also depends on the 
strength of scattering. 

 ( ) ( ) ( ) 2
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, , , , , , , , , ,v x y z t I x y z t I x y z t t
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The expected value of v(x,y,z,t) is calculated in Eq. (2), where < > indicates taking the 
expected value of a random variable. 

 

( ) ( ) ( )

( ) ( )

2 2

2 2
0 0

2
0

1 1
, , , , , , , , ,

2
, , , , , , ,

v x y z t I x y z t I x y z t t
I I

I x y z t I x y z t t
I

δ

δ

= + −

− −
 (2) 

To find the functional relationship between motion and <v(x,y,z,t))>, we consider I(x,y,z,t-
δt) = I(x-δx,y-δy,z-δz,t), assuming that scatterers at (x,y,z) displace for (δx, δy, δz) within the 
time interval from t-δt to t. In other words, the following conditions are equivalent: (1) OCT 
measurement performed at different time points from a moving sample with the beam at the 
same spatial coordinate; (2) OCT measurement performed with the beam at different spatial 
locations from a static sample “frozen” at a time point. Such equivalency is shown in Eq. (3) 
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Equivalence shown in Eq. (3) allows us to apply speckle tracking developed for motion 
analysis in ultrasound as well as OCT to investigate BM in isvOCA [25–29]. Based on 
previous studies, we can further writhe Eq. (3) as Eq. (4) where S(x,y,z) is the 3D convolution 
of scattering distribution function a(x,y,z) with OCT system's 3D point spread function (PSF) 
h(x,y,z). 

 ( ) ( ) ( ) ( ) 22 *
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Plugging the expression of S(x,y,z) and S(x-δx,y-δy,z-δz) into Eq. (4) and taking the fact 
that h(x,y,z) is a deterministic rather than random function, we can re-write Eq. (4) as: 
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 (6) 
Assuming that the speckle is fully developed and thus scatterers in different spatial 

location are described by identical but independent random variables, we have Eq. (7) in 
which a0 is a constant representing the scattering strength. 
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Taking the sifting property of delta function, Eq. (6) can be simplified. 
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A simplified model for OCT system allows us to express h(x,y,z) as a Gaussian function 
(Eq. (9): ωx, ωy and ωz are the 1/e width of the PSF in x, y and z directions; B is a constant 
factor taking account of system efficiency and responsivity) [30]. 
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Using Eq. (8) and (9), we can express <v(x,y,z,t)> in Eq. (10) where A = (a0
2B2/I0). 
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As shown in Eq. (10), the expected value of v(x,y,z,t) has an explicit functional 
dependency on motion. When δx = δy = δz = 0, <v(x,y,z,t)> = 0. Otherwise, <v(x,y,z,t)> takes 
a positive value. δx, δy and δz generally depend on spatial and temporal coordinates, x, y, z 
and t; therefore, <v(x,y,z,t)> varies as spatial and temporal coordinates. According to Eq. (10), 
the contrast mechanism of isvOCA is significantly different from Doppler OCT. First, 
Doppler OCT is only sensitive to motion in axial direction (δz) while isvOCA is sensitive to 
motion with arbitrary projection in δx, δy and δz directions. Second, Doppler phase shift is 
proportional to δz, therefore motion in opposite directions cancels each other out when 
contributing to Doppler signal. This does not happen in isvOCA, as image contrast essentially 
derives from the square of motion in x, y and z directions. 

If the only source of motion within a sample is the motion of particles in liquid blood, δx, 
δy and δz are non-zero only for scatterers within liquid blood. According to Eq. (10), 
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<v(x,y,z,t)> has a small value at pixels corresponding to static solid tissue but has a large 
value at pixels corresponding to flowing blood. Therefore, temporal variation of structural 
OCT signal can provide contrast for microvasculature visualization. It is worth mentioning 
that within flowing blood, particles have random motion as well as directional flow. The 
magnitude of random motion is significantly different from the ensemble directional motion 
that is quantified by blood flow. The random motion can be quantitatively evaluated using 

mean square displacement (MSD) between subsequent Bscans denoted as MSDxδ , MSDyδ , and 

MSDzδ . When signal decorrelation is primarily due to random motion within liquid blood and 

any one of MSDxδ , MSDyδ , and MSDzδ  is significantly larger than the spatial resolution in 

respective direction, <v(x,y,z,t)> approximately equals 2A2 that is independent of flow speed. 
This was demonstrated experimentally in previous work by H. Ren et al [7]. 

On the other hand, when BM induces identical spatial displacement δx = δxBM(t), δy = 
δyBM(t), δz = δzBM(t) to all pixels, <v(x,y,z,t)> is no longer zero for solid tissue and the 
angiography image suffers from motion artifact. If δxBM(t), δyBM(t), δzBM(t) can be 
quantitatively extracted to restore OCT image, motion artifact in angiography image can be 
removed. However, simultaneous tracking of δxBM(t), δyBM(t), δzBM(t) is extremely 
challenging due to the 3D nature of BM. Here we propose a method to reduce motion artifact 
without quantitative tracking of 3D motion. 

It is noted that v(x,y,z,t) has non-zero expected value due to BM. However, this expected 
value denoted as <vBM(t)> is the same for solid tissue at different spatial locations, because 
δxBM(t), δyBM(t), δzBM(t) do not depend on spatial coordinate. Therefore, BM effectively 
results in an increased background noise level for non-vessel tissue. On the other hand, signal 
corresponding to blood derives from random motion of particles within flowing blood and 
would remain the same magnitude when the sample is interrupted by bulk motion. Therefore, 
we can reduce motion artifact in isvOCA, by assessing the increased background level due to 
BM (<vBM(t)>) and apply <vBM(t)> as an adaptive threshold value to isvOCA image. As the 
value of <vBM(t)> is independent of spatial location, we can estimate <vBM(t)> through spatial 
averaging if the sample volume does not contain blood vessels. For sample volume containing 
blood vessels, spatial averaging of v(x,y,z,t) also approximately equals <vBM(t)>, because only 
a few pixels within the volume are corresponding to flowing blood and signal variation from 
blood flow plays a much less significant role compared to bulk motion in spatial averaged 
signal. 

For angiography imaging, we acquire multiple structural 2D images (N frames of Bscan) 
at the same plane in the elevation direction (the same y coordinate: y = y0) and calculate the 
normalized signal variation for the same pixel in different frames, as shown in Eq. (11). 

 ( )2

, , , 12
0

1
,ij n ij n ij nv I I

I −= −  (11) 

Here discrete signal is related to continuous signal as: Iij,n = I(x0 + idx,y0,z0 + jdz, t0 + nΔt) 
with dx and dz indicating spatial domain sampling interval. 

To quantitatively evaluate BM induced artifact, we calculate the spatial average of each 
frame of signal variation obtained from Eq. (12) (Nx: number of Ascans in a Bscan; Nz: 
number of pixels in an Ascan). 

 ,

1
,n ij n

i jx z

v v
N N

=   (12) 

Equation (12) indicates taking spatial average over the entire 2D isvOCA image. Such 
extensive average can provide a reliable approximation of BM induced increase in image 
background. If spatial average is performed using a smaller amount of pixels, the estimation 
of BM can have a higher spatial resolution. However, with fewer pixels involved in the 
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averaging, motion signal from blood vessel might contribute substantially in υ n and υ n 
cannot be used to quantify artifact due to BM. 

According to our previous discussion, υ n that is the spatial average of vij,n can be used to 
approximate <vBM>, the expected value of v(x,y,z,t) induced by BM in non-blood tissue, 
assuming most pixels in OCT image do not correspond to blood vessels. Therefore, we can 

use υ n as an adaptive threshold value to threshold vij,n and reduce motion artifact, as shown in 
Eq. (13). 
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Afterwards, we perform temporal average on thresholded OCT signal variation ,îj nυ  to 

generate cross-sectional microvasculature image at the given y coordinate, as shown in Eq. 
(14). 
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The reconstruction of cross-sectional OCT angiography with motion artifact reduction is 
summarized in Fig. 1. 3D microvasculature visualization can thus be obtained from a series of 
cross-sectional angiography images acquired at different y locations. 

 

Fig. 1. Reconstruction of motion artifact reduced OCT angiography. 

3. OCT system configuration and signal processing 

We used a spectral domain OCT (SD OCT) system at 1.3μm wavelength range for this study. 
The broadband light source (superluminescent diode, SLD1325 Thorlabs, 100nm bandwidth, 
corresponding to a 7.4 μm axial resolution) illuminates the reference and sample arm of a 
fiber-optic Michelson interferometer through a fiber-optic coupler. In the sample arm, a 3X 
scanning lens (SLM04, Thorlabs) is used in front of the specimen to focus the probing beam 
and collect back scattered photons. Light returned from sample and reference arms is routed 
by the fiber-optic coupler to the spectrometer where interference signal is detected by a 
CMOS InGaAs camera (SUI1024LDH2, Goodrich). A frame grabber (PCIe-1433, National 
Instrument) takes the interferometric signal from the camera and the signal is further 
processed. The system synchronization is achieved by triggering the camera exposure and 
controlling the galvanometer using the same data acquisition card (NI DAQ USB-6212 BNC, 
National Instrument) with the same time base. Two galvanometers scan the light beam in x 
and y directions to cover the transverse plane for 3D imaging. All the device controls and 
signal processing were performed using a host computer (Dell Precision T7600) with 
software developed in C +  + (Microsoft Visual Studio, 2012). 
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Signal processing for motion artifact reduced angiography is illustrated in Fig. 2(a). In 
brief, N frames of OCT Bscans are obtained at the same y plane; afterwards, interframe signal 
variation is calculated to obtain motion image according to Eq. (11); motion artifact is then 
assessed through spatial averaging according to Eq. (12); adaptive thresholding is applied to 
each frame of motion image to reduce BM induced artifact as in Eq. (13); multiple frames of 
artifact reduced motion image is averaged to generate cross-sectional angiography image 
using Eq. (14). Signal processing was implemented in real-time using computer unified 
device architecture (CUDA) on a graphic processing unit (GPU, NVIDIA Geforce GTX 780, 
2304 CUDA cores at 0.9GHz, 3 GB graphics memory). The speed of signal processing was 
analyzed using NVIDIA Nsight that is embedded in Microsoft Visual Studio. The average 
time to process an Ascan on GPU for the angiography image reconstruction is shown in Fig. 
2(b). With the cubic spline interpolation (wavelength to wavenumber, or λ to k) and 
interframe signal variation calculation taking the longest computation time, the total average 
time to process one Ascan for angiography imaging is about 10μs and is less than the 
minimum time interval for data acquisition determined by the highest line rate (92kHz) of the 
CMOS camera. Therefore, the imaging speed of our system is limited by the camera data 
acquisition rather than signal processing. With the maximum line scan rate of our CMOS 
camera equal to 92kHz, it takes about 3.6 seconds to generate a 256 × 256 en face 
angiography image by acquiring 5 Bscans (N = 5) at each y coordinate. 

 

Fig. 2. (a) Data processing flowchart of motion artifact reduced angiography; (b) Time 
expenditure of each processing step preformed on the GPU. 

4. Results 

To show that Eq. (10) is valid for BM in a solid sample, we imaged a solid scattering 
phantom and introduced bulk motion with known magnitude during imaging. The phantom 
was fabricated by curing the mixture of epoxy and titanium dioxide that served as scatterer. 
Bscans were obtained by steering the light beam in x direction using a galvanometer. In 
addition, we used another galvanometer to translate the beam in y direction to introduce a 
known beam displacement δyBM between the acquisitions of subsequent Bscans. As a result, 
every pixel in a Bscan was displaced for the same magnitude in y direction between adjacent 
frames. For each value of δyBM, we acquired multiple Bscans Iij,n (n = 1,2,…,25), used Eq. 
(11) to obtain interframe signal variation vij,n, used Eq. (12) to obtain the spatial average of 

vij,n denoted as υ n, and calculated BMyδυ : 
2

( ) / ( 1)BM

N
y n

n
Nδυ υ

=
= − . N = 25 is chosen 

because this value can provide sufficient temporal averaging to reduce random noise in the 

obtained values of BMyδυ . However, when N is significantly larger than 25, the denoise effect 

of temporal averaging saturates. Results obtained at different magnitudes of bulk motion in y 
direction are shown in Fig. 3 as red circles. Error bar at each data point corresponds to 

standard deviation between υ n for n = 2, 3, …, 25, at each δyBM. Clearly, BMyδυ  increases as 

δyBM. To further demonstrate the functional dependency of BMyδυ  on δyBM, we used the known 
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values of δyBM and BMyδυ  to fit the following model derived from Eq. (10) with δx = δz = 0 

and δy = δyBM: 2 2 22 [1 exp( / )]BMy BM yA yδυ δ ω β= − − + . ωy took a value of 17μm according to 

the optical property of scanning lens used in the sample arm. The constant β  was included in 

this model to take account for signal decorrelation due to random perturbation from ambient 
environment. Least square fitting of this model is shown as the black curve that is highly 
consistent with measured data points. The fitting lead to β  = 0.2075 and A = 1.1. The R2 

statistics of the fitting is larger than 0.99, indicating Eq. (10) appropriately models the 
functionally dependency of isvOCA signal on the magnitude of bulk motion. 

 

Fig. 3. Measured spatial average of intensity variation (red circles with errorbar) and fitted 
curve (black). 

To further validate Eq. (10) for BM in different directions, we performed Bscan on the 
same phantom as described above and introduced BM by applying additional voltage to x and 
y galvanometers respectively so that BM had both x and y components: δxBM = δdcosθ and 
δyBM = δdsinθ. The direction of motion was determined by θ and the magnitude of motion 
was determined by δd. With different values of θ and δd, we obtained multiple sets of 

structural OCT images. Similarly, we calculated vij,n, υ n and the average of υ n denoted as 

,dδ θυ  for different BM. Results are shown in Fig. 4 with δd as horizontal axis. Data points in 
different colors correspond to different θ, or different direction of motion. Figure 4 indicates 

,dδ θυ  remains the same for transverse motion in different direction but with the same 
magnitude. This is because of the circular geometry of imaging optics that leads to ωx = ωy = 

ωt. When transverse motion is considered and δzBM = 0, ,dδ θυ  can be expressed as: 
2 2 2 2 2 2 2

, 2 {1 exp[ ( ) / ]} 2 [1 exp( / )]d B B t tA y x A dδ θυ δ δ ω β δ ω β= − − + + = − − + . Clearly, ,dδ θυ  

does not depends on θ when δxBM = δdcosθ and δyBM = δdsinθ and this is consistent with 
results in Fig. 4. In Fig. 4, larger inconsistency can be observed between results obtained with 

motion in different directions at larger displacements, because ,dδ θυ  suffers from noise that is 
larger when δd is larger. This is also illustrated in Fig. 3 where error bars are larger for larger 
displacement. 
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Fig. 4. Spatial average of motion image obtained with BM that has different magnitude and 
direction. 

To demonstrate the principle of adaptive thresholding in motion artifact removal, we 
established a phantom by embedding a transparent polyimide tube in solid scattering medium 
(cured mixture of epoxy and titanium dioxide) and filling the polyimide tube with bovine 
milk. We used milk as a scattering fluid to mimic the blood flow because the fat particles in 
milk scatter light similarly to red blood cells (RBC’s) in blood [31]. We performed structural 
and isvOCA imaging on the phantom. Figure 5(a) shows the Bscan OCT image (log scale) of 
the phantom and Fig. 5(b) shows the isvOCA image (linear scale) obtained without bulk 
motion. In Fig. 5(b), the tube filled with liquid has large signal amplitude due to random 
motion of protein particles within the liquid milk. In comparison, the solid part of the 
phantom has small signal amplitude in isvOCA image because the scatterers were static. 
Notably, the capillary filled with scattering liquid was placed in horizontal plane and we did 
not use any external mechanism to generate direction flow. Therefore, motion signal was 
completely derived from random motion of scatterers in liquid medium. 

 

Fig. 5. Structural (a) and flow (b) image of a phantom with a polyimide tube filled with bovine 
milk embedded in solid scattering medium 

To illustrate how bulk motion degrades the quality of isvOCA image, we introduced BM 
in x and y directions respectively in addition to raster scanning pattern by applying pre-
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defined voltage to the galvanometer. This was done in a way similar to our previous 
experiments on solid phantom. We calculated interframe signal variation vij,n. Afterwards, we 
performed spatial averaging on vij,n for solid and liquid parts of the phantom as enclosed by 

rectangles in Fig. 5(a) to obtain υ solid,n and υ liquid,n. υ solid and υ liquid were thereafter obtained 

through averaging υ solid,n and υ liquid,n for different values of n. υ solid and υ liquid (normalized) 
obtained with different magnitudes of x (red circles) and y (green circles) displacement are 

shown in Fig. 6(a) and 6(b), respectively. Clearly, υ solid increases as increased bulk motion, 
which is consistent with Eq. (10) and our experimental results in Fig. 3 and 4. On the other 

hand, υ liquid remains approximately the same at different magnitude of bulk motion, because 
it was the random motion of particles within the tube that resulted in complete decorrelation 
between signals in different frames. This is consistent with our previous analysis and also 
consistent with experimental results in a previous study that stated the high sensitivity of 
microvasculature visualization based on interframe OCT signal variation was due to random 
Brownian motion of scatterers [7]. As signal at solid part of the sample increases with BM 
while signal remains the same at liquid part of the sample, suppressing background signal due 
to BM by thresholding can effectively enhance the visualization of flow in isvOCA. 

 

Fig. 6. (a) υ solid increase as motion in both x and y directions; (b) υ liquid remains almost 
constant with bulk motion 

To demonstrate the effectiveness of adaptive thresholding in cross-sectional flow imaging, 
we obtained multiple Bscans from the same phantom as shown in Fig. 5(a) at the same y 
coordinate. We calculated interframe signal variation using Eq. (11), and performed temporal 
averaging on the signal variation obtained to generate flow image. Figure 7(a) and 7(b) were 
obtained without adaptive thresholding when bulk motion was in x and y directions 
respectively. The magnitude of displacement between adjacent Bscans is 6μm. Due to bulk 
motion, flow signal at the solid part of the phantom does not diminish. For comparison, we 
applied our adaptive thresholding method to the same OCT data set used to obtain Fig. 7(a) 
and 7(b). The results are shown in Fig. 7(c) and 7(d) where solid part of the sample appears to 
be dark. To quantitatively evaluate the enhancement in image quality by using adaptive 

thresholding, we calculated the image contrast defined as C = 20log10[( S liquid- S solid)/ S solid] 

where S liquid and S solid were obtained by calculating the averaged isvOCA signal within 
rectangles shown in Fig. 5 (a). Figure 7(e) and 7(f) show contrast of isvOCA image obtained 
without (blue) and with (green) adaptive thresholding when BM was in x and y directions. 
Figure 7(g) and 7(h) show adaptive thresholding could enhance the contrast of isvOCA. 
Clearly, a 5 to 10 dB enhancement in contrast was achieved through adaptive thresholding. 

Results in Fig. 7 suggest that the proposed adaptive thresholding method can reduce BM 
induced artifact more effectively when the magnitude of angiography signal derived from 
global BM is smaller. This is because, v(x,y,z,t), the interframe signal variation that provides 
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contrast for motion imaging, is a random variable and can have different values in the vicinity 
of its expected value. When large BM results in large signal decorrelation, pixels 
corresponding to solid tissue or flow cannot be differentiated by their magnitudes and thus 
adaptive thresholding would fail to reduce motion artifact. As shown in Fig. 7(c) and 7(d), 
although background due to BM is significantly suppressed through adaptive thresholding, 
signal due to particle motion within liquid at the bottom of the polyimide tube also 
diminishes. Moreover, Fig. 7(g) and 7(h) indicate contrast enhancement obtained from 
adaptive thresholding decreases when BM has a larger magnitude. 

 

Fig. 7. Cross-sectional flow image obtained without adaptive thresholding when bulk motion 
was in x dimension (a) and y dimension (b); Cross-sectional flow image obtained with adaptive 
thresholding when bulk motion was in x dimension (c) and y dimension (d); contrast of flow 
image, with (green) and without (blue) adaptive thresholding at different magnitude of motion 
in x direction (e) and y direction (f); contrast enhancement through adaptive thresholding when 
motion was in x direction (g) and y direction (h). 

Using real-time software based on GPU, we conducted in vivo subcutaneous 
microvasculature imaging on healthy human volunteer and obtained motion artifact reduced 
isvOCA. A cross-sectional structural OCT image and the corresponding cross-sectional 
isvOCA image of the palm skin are shown in Fig. 8(a) and 8(b). 5 Bscans were obtained at 
each y coordinate to generate cross-sectional isvOCA. To obtain en face visualization of 
angiography image, raster scanning was performed in both x (fast axis) and y (slow axis) 
directions to obtain 3D OCT data volume. To reduce the 3D data volume for en face 
visualization, we averaged angiography signal in z direction at small (500μm - 650μm), 
medium (650μm - 800μm) and large (800μm - 1100μm) depths (referred to zero-delay plane) 
as indicated by blue, green and red arrows in Fig. 8(a). En face blood vessel maps at small, 
medium and large depths are shown in Fig. 8(c), 8(d) and 8(e). Figure 8(c) shows a smaller 
amount of superficial capillaries that follow the arrangement of friction ridges of human hand. 
More blood vessels are seen in Fig. 8(d). Figure 8(e) suggests more and larger blood vessels 
are located further from the skin surface. We assigned pixel values in Fig. 8(c), 8(d) and 8(e) 
to blue, green and red channels in a RGB color image as shown in Fig. 8(f). Scale bars in Fig. 
8 represent 500μm. isvOCA imaging was also conducted on human fingertip and a skin lesion 
with results shown in Fig. 9(a) and 9(b). Figure 9(a) shows that microvasculature at fingertip 
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follows the fingerprint, which is consistent with previous studies using OCT and scanning 
electron microscopy (SEM) [32]. Figure 9(b) shows larger blood vessels connected to the 
lesion to supply its increased metabolism activity. 

 

Fig. 8. (a) structural OCT image of human palm skin (E: epidermis; D: dermis); (b) cross-
sectional angiography image that highlights blood vessel; (c) – (e) en face microvasculature 
image in small, medium and large depths; (f) microvasculature image that encodes signal depth 
with color. 

 

Fig. 9. isvOCA image obtained from human fingertip (a) and a small skin lesion (b). 

As discussed before, adaptive thresholding can effectively remove artifact when BM is 
sufficiently small in magnitude compared to the random motion of scatterers within liquid 
blood. To demonstrate this, we conducted in vivo imaging from the palm of our subject. 
Figure 10(a) and 10(b) were obtained from the palm of subject using the same set of raw 
structural OCT signal, without and with adaptive thresholding. During data acquisition for 
Fig. 10(a) and 10(b), the magnitude of bulk motion was minimized with a hand rest to 
constrain the bulk motion. However, motion artifacts still exist in Fig. 10(a), shown as the 
horizontal lines. In comparison, Fig. 10(b) does not have horizontal lines and has a 
significantly improved image contrast, indicating the effectiveness of adaptive thresholding in 
motion artifact removal. The hand rest was removed in acquiring data for Fig. 10(c) and 
10(d). With larger magnitude of motion, adaptive thresholding cannot completely remove 
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motion artifact. Although blood vessels are more visible in Fig. 10(d) compared to Fig. 10(c), 
the image quality of Fig. 10(d) is inferior to Fig. 10(b) and horizontal line artifacts still exist 
in Fig. 10(d). This is consistent with results from controlled experiment shown in Fig. 7. 

 

Fig. 10. Angiography image obtained (a) with small magnitude of BM without adaptive 
thresholding; (b) with small magnitude of BM with adaptive thresholding; (c) with large 
magnitude of BM without adaptive thresholding; (b) with large magnitude of BM with 
adaptive thresholding. 

It is worth mentioning that the CMOS camera was operated at its highest speed (92 kHz, 
line scan rate) during our experiments. For 2D imaging on phantom with results shown in Fig. 
3-7, each Bscan contained 1024 Ascans and the time interval between each Bscan was 0.011s. 
For in vivo imaging of human skin, we acquired 512 Ascans in each Bscan, so that large 
enough field-of-view could be achieved at a reasonably high frame rate to illustrate 
morphological feature of subcutaneous microvasculature. Therefore, in vivo imaging was 
conducted at a 180Hz frame rate or a 0.0056s time interval between adjacent Bscans. 

5. Discussion 

Adaptive thresholding can reduce motion artifact in isvOCA because signal level of flowing 
blood does not depend on BM while noise floor does. Physical origin of image contrast in 
OCT angiography based on interframe signal variation was attributed to random Brownian 
motion by H. Ren et al [7]. The magnitude of Brownian motion of blood cells can be 
estimated according to Einstein’s theory ([Δd(t)]2 = 2Dt) and measured experimentally [33–
35]. However, the square root of [Δd(t)]2is smaller than 1μm for the experimental setting in 
this study. In other words, the magnitude of Brownian motion is not large enough to 
completely decorrelate OCT signal between Bscans. Therefore, Brownian motion of 
individual blood cells might not be the most appropriate description of random motion that 
decorrelates OCT signal. A more appropriate modeling is needed. 

It is assumed throughout the manuscript that BM resulted in identical displacement for all 
pixels corresponding to solid tissue. However, biological tissue is not rigid and the 
assumption of identical displacement is not valid when tissue deforms. However, if the 
mechanical property of tissue can be considered as homogeneous within sub-regions and we 
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can quantify the impact of BM by averaging signal from a smaller number of neighboring 
pixels, adaptive thresholding can still be used to reduce motion artifact. 

We conducted experiments with BM in x and y directions by simply applying pre-defined 
voltage to the galvanometers. However, as shown in Eq. (10), <v> depends on motion that 
can have non-zero components in x, y and z directions. Therefore, our method for motion 
artifact reduction is also valid for motion with axial component. In fact, during in vivo 
imaging of microvasculature, BM could be in arbitrary directions and our method 
successfully removed motion artifact, indicating adaptive thresholding is effective for BM 
with both lateral and axial components. 

Large motion artifact as shown in Fig. 10(c) and 10(d) can be easily removed using a 
larger value to threshold the interframe signal variation signal. This can be achieved by 

replacing nυ  in Eq. (13) with nAυ  where A is a constant larger than 1. In real application, the 
maximal bulk motion amplitude that current method can remove effectively depends on the 
speed of blood flow of interest. Artifact due to large motion can be suppressed with a larger 
threshold which however also excludes signal due to blood flow from being detected, as 
shown in Fig. 7. As a result, the trade-off between the motion artifact removal and blood flow 
detection is inherent to the thresholding based motion artifact removal. 

Our theoretical analysis in this study is based on fully developed speckle. With the 
assumption of fully developed speckle, <v(x,y,z,t)> only depends on motion but does not 
depend on local optical property of tissue, as shown in Eq. (10). This implies that contrast of 
flow image based on normalized signal variation only derives from motion. However, speckle 
does not always develop fully in practice. As a result, the correlation between spatially shifted 
scattering distribution functions is not a Dirac Delta function and the expected value of 
normalized signal variation depends on both motion and optical property of sample. 
Nevertheless, signal due to bulk motion in motion image can have the same value if tissue has 
homogeneous optical property, when fully developed speckle assumption does not hold. 
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