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Abstract: Laser surgery enables for very accurate, fast and clean modeling 
of tissue. The specific and controlled cutting and ablation of tissue, 
however, remains a central challenge in the field of clinical laser 
applications. The lack of information on what kind of tissue is being ablated 
at the bottom of the cut may lead to iatrogenic damage of structures that 
were meant to be preserved. One such example is the shaping or removal of 
diseased cartilaginous and bone tissue in the temporomandibular joint 
(TMJ). Diseases of the TMJ can induce deformation and perforation of the 
cartilaginous discus articularis, as well as alterations to the cartilaginous 
surface of the condyle or even the bone itself. This may result in restrictions 
of movement and pain. The aim of a surgical intervention ranges from 
specific ablation and shaping of diseased cartilage, bone or synovial tissues 
to extensive removal of TMJ structures. One approach to differentiate 
between these tissues is to use Laser Induced Breakdown Spectroscopy 
(LIBS). The ultimate goal is a LIBS guided feedback control system for 
surgical laser systems that enables real-time tissue identification for tissue 
specific ablation. In the presented study, the authors focused on the LIBS 
based differentiation between cartilage tissue and cortical bone tissue using 
an ex-vivo pig model. 
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1. Introduction 

Chronic inflammatory diseases and on-going mechanical stress can affect the temporo-
mandibular joint (TMJ) [1, 2]. Alterations of the TMJ may lead to the deformation of the 
cartilaginous articular disc, the mandibular fossa or the condyles, resulting in pain and limited 
freedom of movement [3, 4]. While many of the therapeutic procedures specifically aim to 
prevent surgery on the TMJ, there are some relative and absolute indications for surgical 
intervention [5, 6]. The goals of surgical interventions range from the removal or shaping of 
diseased and altered tissues to the complete removal of joint structures, followed by insertion 
of disc, cartilage or condyle replacement prostheses [7]. These procedures require the 
selective treatment of specific articular structures. Both, minimally invasive and open surgery 
have been described in this context [8, 9]. 

Over the last years, laser surgery has developed into a generally accepted tool in various 
surgical specialties [10]. When compared to other standard treatment procedures such as 
conventional surgery using scalpels, laser surgery offers a number of advantages. The 
coagulation of small blood vessels allows for a dry operating field and better visibility [11–
15]. Furthermore, it is possible to selectively ablate very thin tissue layers [16]. Also, laser 
induced wounds generally show great healing potential and are associated with less 
postoperative inflammation and swelling [17–21]. Bone healing showed to occur faster when 
compared to mechanical surgery [22]. In particular, in the field of TMJ treatment, minimally 
invasive surgery using an Nd:YAG has successfully been demonstrated [23]. Other authors 
report on successfully using a Ho:YAG-Laser for arthroscopic procedures on the TMJ [24]. 
One of the major drawbacks connected to surgical laser procedures is, however, the inability 
to definitely determine the type of tissue that is being ablated at the bottom of the cut. The 
actual penetration depth of the Laser is unknown. This may lead to iatrogenic damage of 
nerves, blood vessels or other anatomic structures that were meant to be preserved [25–28]. 
To overcome this limitation, the authors have previously proposed to directly use the process 
emissions occurring during laser surgery for a real-time identification and differentiation of 
the ablated tissues [29–32]. In this context, Laser Induced Breakdown Spectroscopy (LIBS) 
offers great potential for a laser feedback control mechanism, enabling tissue specific 
ablation. Using LIBS, the differentiation and identification of different soft tissues (skin, fat, 
muscle, nerve) has successfully been demonstrated in a previous study [29]. 

In this study, the focus was put on the differentiation between cartilage and cortical bone 
tissue. The aim was to establish the basis for a laser surgery feedback control mechanism, in 
order to broaden the scope of applications for clinical laser systems and to make their use 
safer and more efficient. To achieve the tissue differentiation, the atomic composition of the 
different samples was qualitatively analyzed by monitoring the plasma created during the 
laser ablation procedure. This was achieved by using a nanosecond-pulsed probing laser that 
is supposed to be used in addition to the surgical laser system. 

During the deposition of a short laser pulse of sufficient energy on the surface of 
biological tissue, ablation of the material, followed by plasma formation, can be observed. 
The plasma formation results from the matrix effects initiated by the absorption of the laser 
energy by the ablated material [33]. When the plasma expands in the ambient air, relaxation 
of the plasma plume by different processes - one of which is the recombination of the free 
electrons with the positive ions - occurs [34]. This recombination is a radiative process which 
provides a continuum emission in addition to the bremsstrahlung. Another radiative process is 
the atomic emissions due to transitions between the different energy levels of an element from 
which spectrometric measurement can provide qualitative information on the atomic 
composition of the investigated biological samples. In addition, LIBS can also be used to 
provide information about the relative quantitative elemental composition of the samples. 
This is achieved by investigating the ratio between the intensity levels of the atomic emission 
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lines: high concentrations of an element yield a higher intensity of the characteristic elemental 
emission spectra [35, 36]. In this study, the approach on the differentiation between cortical 
bone and cartilage was based mainly on the statistical analysis of the collected spectra. These 
spectra intrinsically possess the information of the different concentration levels of the 
elements found in both tissues. Another approach was to achieve differentiation based on the 
ratio between the spectral emission lines of defined elemental pairs. 

2. Materials and methods 

2.1 Animal model and sample preparation 

This study used sagittal bisected heads of 6 domestic pigs, 6 months of age on average. The 
animals were obtained from the local slaughterhouse. Therefore, approval from the ethics 
committee was not necessary. All animals were free of local or systemic diseases that could 
have altered the results. The sample preparation and experimental procedure was conducted 
on the day of slaughter within a maximal ex-vivo time of 6 hours. The ex-vivo time was kept 
within this time frame to prevent tissue alteration due to exsiccation or protein degradation. 

For the cartilage samples, the hyaline cartilaginous support of the outer ear (regio helix- 
auriculae) was chosen. A 3x3 cm

2
 sample was cut out using surgical scissors, the covering 

skin and perichondral tissue were removed mechanically using a raspatory. 
The cortical bone samples were raised from the ascending branch of the mandibular bone 

(ramus ascendens os mandibulare). The skin and muscle tissue holding the mandible were 
severed using a scalpel. The whole mandibular bone, together with the condyle, was then 
exarticulated and cleaned from the remaining tissue, again using a raspatory. For the cortical 
bone samples, squares of approximately 3x3 cm

2
 were cut out of the bone using water cooled 

band saw. After preparation, the samples were rinsed with sterile saline solution to remove 
remaining blood or tissue particles and then stored inside a sealed, opaque container at 4°C. 

2.2 LIBS measurement setup 

The experimental setup is schematically shown in Fig. 1. The setup consisted of a frequency-
doubled Nd:YAG laser (Saga Flashlamp pumped Nd:YAG Laser, Thales Group, Neuilly-Sur-
Seine, France) in all of the measurements. The pulse frequency of the laser was set to 1 Hz. 
The pulse duration of the laser was 10 ns at a wavelength of 532 nm with average pulse 
energy of 80 mJ. A 100 mm focal length lens was used to focus the laser beam to a spot size 
of approximately 0.3 mm. A translational stage capable of moving in three dimensions was 
used to bring the surface of the samples to the focal spot of the laser beam. The light from the 
plasma generated by each laser pulse was collected by a UV-enhanced 50 µm fiber optic 
cable terminated with an SMA connector. The other end of the fiber was attached to a 
spectrometer (Mechelle ME 5000 Echelle, Andor, Belfast, UK) via another SMA connector. 
The spectrometer was equipped with an ICCD camera (A-DH334T-18F-03 USB iStar ICCD 
detector, Andor, Belfast, UK) and allowed for a spectral resolving power (λ/Δλ) of 6,000 and 
a measuring range of 200 – 975 nm. A digital delay generator (9618 Pulse Generator, 
Quantum Composers, Bozeman, USA) was used to synchronize the measurements of the 
detector with the laser. All the experiments were performed with a gate delay of the detector 5 
µs from the laser pulse, and 1 ms gate width of the detector. 
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Fig. 1. Schematic of the LIBS setup used. 

2.3 LIBS measurement procedure 

The LIBS measurements were performed on each of the cartilage and cortical bone tissue 
samples of the 6 animals investigated. LIBS spectra were collected from 5 different spots of 
each sample, 5 spectra were collected from each spot. This results in a total of 150 spectra of 
cartilage tissue (5 spectra x 5 spots x 6 pigs) and 150 spectra of cortical bone tissue (5 spectra 
x 5 spots x 6 pigs). Before each measurement, 3 laser pulses were sent to the surface of each 
of the investigated spots. This was to remove any remaining superficial contamination of the 
samples, such as blood, small tissue particles or the saline solution used to clean the tissues 
after preparation. The ablation crater resulting from the cleaning pulses was examined under a 
microscope and using OCT, and it was concluded that it was deep enough to remove all of the 
superficial contaminants. 

2.4 Element identification and Intensity ratio analysis 

The LIBS spectra gathered from the samples were processed from the raw data using the 
SOLIS software (Andor, Belfast, UK). The Matlab software (Matlab R2014a, MathWorks, 
Natick, USA) was used for data processing. To perform the differentiation between the two 
tissues, first, the elements responsible for the emission at the monitored wavelengths were 
determined with the help of the atomic database of the National Institute of Standards and 
Technology (NIST, Gaithersburg, USA) [37]. For analysis purposes, only those elements 
which were common and prominent in the spectra of both tissue types were considered. The 
assignment of the elements was performed on the average spectra that represent both types of 
tissue. The software OriginLab (OriginLab, Northampton, USA) was used for identifying the 
peak wavelengths and for displaying the spectra. Then, by using the common prominent 
emission lines monitored in the LIBS measurements of the two tissues, three exemplary pair-
wise combinations of the atomic emissions (Ca(422.67) to Na(588.99), Na(588.99) to 
K(766.48) and Ca(616.21) to K(766.48)) were formed to calculate ratio values. These ratio 
values, specific for the individual tissue type, were then compared to differentiate between the 
tissues. 

2.5 Statistical analysis 

The measured LIBS spectra from all the 6 animals were first normalized and mean centered. 
The data from 5 animals were then mixed to generate new variables with reduced 
dimensionality using Principal Component Analysis (PCA). The spectra from the remaining 
one animal were then projected on the derived variables. In this manner, PCA was performed 
six times by taking 5 animals to generate new fewer variables (Principal Components, PCs) 
by which the remaining one animal is represented. The PCA results showed that the majority 
of the variance in the data was contained in the first few PCs and therefore all the subsequent 
analyses were performed on the data represented by those. After that, Multiclass Linear 
Discriminant Analysis (LDA) was performed using six fold leave-one-out cross-validation on 
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the data from the 6 animals represented by the derived variables (PCs). Each time, 5 animals 
were taken as the training data and the remaining one animal as the sample data. This resulted 
in a prediction of class membership of the tissues of each animal. The prediction performance 
of the classifier was then evaluated using Receiver Operating Characteristic (ROC). The Area 
under the ROC curve (AUC) of the investigated tissue pair of all the animals was computed. 
Additionally, the values of the sensitivity and specificity at the cut–off point of the tissue pair 
of each animal were calculated. Computation of PCA, LDA and ROC analysis was performed 
using the Matlab statistical tool box. 

3. Results and discussion 

To exemplify, the mean spectra (Mean Value and Standard Deviation) of 25 cartilage spectra 
and 25 bone-spectra of animal #1 are shown in Fig. 2. Spectral analysis of the other animals 
yielded similar results. To exemplify, the most prominent peaks existing in the spectra of both 
tissue samples were used to show the standard deviation of all of the 50 spot-measurements (5 
Spectra x5 Spots x 2 Tissues) of animal #1 (Fig. 2). The elements and a molecule with 
prominent emissions common to both tissue types, found under the measurement conditions 
of this study, were Ca, Na, K and CN (Fig. 2). Already, a difference in wavelength-associated 
intensity values between bone and cartilage tissue can be observed. 

The LIBS spectra of cortical bone exhibit more prominent atomic spectral lines than those 
of cartilage. This may be owed to the higher concentration of the elements in bone than in 
cartilage [38]. LIBS measurements of the two different tissues yielded similar tissue specific 
results in all of the investigated animals. Similar spectral features within tissues of one class 
but different features between classes were successfully demonstrated. This indicates that the 
concentration of the elements responsible for the emissions at the monitored peaks is different 
in the two classes of tissues. 

 

Fig. 2. (A) Mean LIBS spectra of cartilage of animal #1. (B) Mean LIBS spectra of cortical 
bone of animal #1. 
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When comparing the LIBS spectra of cortical bone and cartilage, the spectra collected 
from the bone samples were observed to have much more prominent atomic spectral lines 
under the conditions of the experiments. This may result from the higher number of excited 
atoms due to the higher density of cortical bone [33, 39]. Based on the results obtained, three 
approaches may be taken to perform the differentiation: based on unique emission lines in the 
spectrum of cortical bone; based on the ratio values calculated from the intensity level of the 
atomic spectral lines that are common to both tissue types; or based on statistical analysis 
techniques. However, the use of unique emission lines can be an unstable approach when 
higher excitation energies are used. Higher excitation energies may provide spectra with 
common emission lines differing only in intensity levels as the qualitative elemental 
composition of the two tissues is similar. Calculation of the ratio values among the emission 
lines and statistical analysis techniques were attempted to differentiate between both tissue 
types. 

3.1 Intensity ratio analysis 

One approach to differentiate the tissues is to calculate intensity ratio values between different 
pairs of emission lines, as described above. To generate ratio features from the spectra, 
emissions from Ca, Na and K at the selected wavelengths (Fig. 2) were used. The choice of 
Ca emissions for ratio analysis was mainly owed to its high concentration in the tissue 
samples. This may help to detect the element regardless of the highly heterogeneous nature of 
the tissues which resulted in the variation of the intensity of the spectra. The choice of Na and 
K peaks and their wavelength is mainly due to their higher intensity values to facilitate the 
visualization and discussion of the results. However, it should be noted that the spectra 
obtained in this study are rich in information and many other ratio features from other 
elements with low intensity values can be generated. 

Many different combinations of ratios can be established using the emissions of the 
selected three elements. For discussion purposes, three pairs of emissions will be considered 
for ratio analysis (Ca(422.67) to Na(588.99), Na(588.99) to K(766.48) and Ca(616.21) to 
K(766.48)). The results of ratio values calculated from the emission intensities of the pairs are 
shown in Fig. 3. The ratio between the intensity levels of Ca(616.21) to K(766.48) can be 
seen to differentiate the tissues very well. This ratio showed to consistently produce values 
less than one in cartilage and greater than one in bone (Fig. 3). As already mentioned, several 
other ratio combinations from the measured spectra may be considered to differentiate 
between the two tissue types. Although analyzing the spectra using the ratio of the intensity of 
emissions can provide a very good differentiation results, focus is laid on statistical analysis 
techniques in order to make use of the difference in the spectra along the entire wavelength 
range investigated. 

 

Fig. 3. Intensity ratio values of cartilage and cortical bone calculated from three pairs of atomic 
emission lines. (Black) Ca(422.67) to Na(588.99), (Red) Na(588.99) to K(766.48) and (Blue) 
Ca(616.21) to K(766.48)). 
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3.2 Statistical analysis 

To reduce the high dimensionality nature of the data, PCA was used to derive new variables 
(PCs) using the original spectra represented by intensities in the investigated wavelength 
range. The establishment of PCs was performed based on the data of 5 animals. An example 
of PCA analysis on animals # 1 – #5 is shown in Fig. 4. The results of these 5 animals show a 
clear separation of the two tissue classes, see Fig. 4(A). The ability of the PCs to separate the 
two classes can however be best evaluated by projecting on the PCs the measurements from a 
separate animal which was not used when deriving the PCs. This is shown in Fig. 4(B) where 
the data from animal #6 is projected on the PCs shown in Fig. 4(A). The figure shows that the 
PCs separate the tissues consistently based on their type. In this manner, each animal was 
used as a verification data for the PCs derived from the other 5 animals (six different groups 
were investigated). Clear separation of the two classes could be seen in all the results. The 
results of PCA on the six different groups of the animals shows almost all the variance (more 
than 99.5%) of the data is contained in the first 10 PCs. Table 1 shows the details of the 
portions of the variance contained in each of the PCs of the different groupings of the 6 
animals. An average of 84.59% of the total variance accounts for by PC1. PC2 represents an 
average of 10.57%, PC3 an average of 2.46% of the total variance. The remaining portion of 
the 99.5% was contained in PC4 – PC10. Therefore, the high dimensionality nature of the 
data was reduced to only 10 PCs by ignoring the remaining PCs containing less than 0.5% of 
the total variance. The results of PCA representing the data of each animal in terms of new 
variables were used to perform classification analysis using LDA. 

Table 1. Portion of variance covered by the PCs on the total variance of the LIBS spectra. 

Animal 

Group 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 Total 

1,2,3,4,5 .8379 .1153 .0240 .0070 .0042 .0027 .0021 0.0011 .0007 .0005 .9954 

1,2,3,4,6 .8655 .0870 .0240 .0060 .0048 .0035 .0024 0.0011 .0007 .0005 .9954 

1,2,3,5,6 .8454 .1063 .0244 .0067 .0046 .0035 .0023 0.0009 .0008 .0006 .9956     

1,2,4,5,6 .8443 .1106 .0224 .0061 .0042 .0033 .0024 0.0011 .0008 .0005 .9956 

1,3,4,5,6 .8291 .1186 .0278 .0074 .0050 .0027 .0022 0.0011 .0009 .0006 .9953 

2,3,4,5,6 .8532 .0964 .0251 .0060 .0054 .0040 .0027 0.0012 .0007 .0006 .9953 

 

Fig. 4. (A) PCA of animal #1 - #5. (B) Projection of animal #6 on PCs of animal #1 - #5. 

Table 2 shows the confusion matrices resulting from the LDA classification analysis, used 
to predict the class membership of the measurements using six fold leave-one-out cross-
validation. As shown in Table 2, high classification performance was achieved in the analysis 
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of each of the 6 animals. The misclassification error was zero in all the classification results. 
The classifier could accurately differentiate all the measurements of cartilage of each animal 
from the corresponding cortical bone measurements. The performance of the classifier was 
further evaluated by ROC analysis. 

Table 2. Confusion Matrices of the classification result of cartilage and cortical bone of 
six animals. 

Animal 1 Cartilage Cortical Animal 2 Cartilage Cortical 

Cartilage 25 0 Cartilage 25 0 

Cortical 0 25 Cortical 0 25 

Animal 3 Cartilage Cortical Animal 4 Cartilage Cortical 

Cartilage 25 0 Cartilage 25 0 

Cortical 0 25 Cortical 0 25 

Animal 5 Cartilage Cortical Animal 6 Cartilage Cortical 

Cartilage 25 0 Cartilage 25 0 

Cortical 0 25 Cortical 0 25 

The ROC analysis results from all the six animals also shows high classification 
performance of the classifier. The value of the area under the ROC curve (AUC) of each 
animal was 1.00. Table 3 shows the values of AUC of all the investigated animals. Figure 5 
shows an exemplary ROC curve obtained from the classification result of animal #6. Similar 
ROC curves were also obtained from the classification results of the remaining 5 animals. 
Therefore, the ROC analysis confirmed the high classification performance of the classifier. 

Table 3. Area under the ROC (AUC) curve values of cartilage and cortical bone 
classification of 6 animals. 

Animal 1 AUC Animal 2 AUC Animal 3 AUC Animal 4 AUC Animal 5 AUC Animal 6 AUC 

1.00 1.00 1.00 1.00 1.00 1.00 

 

Fig. 5. ROC curve of animal #6. 

Table 4. Sensitivity and specificity values of 6 animals. 

 Sensitivity Specificity  Sensitivity Specificity 

Animal 1 1.00 1.00 Animal 4 1.00 1.00 

Animal 2 1.00 1.00 Animal 5 1.00 1.00 

Animal 3 1.00 1.00 Animal 6 1.00 1.00 
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The sensitivity and specificity values of all the animals were calculated at the optimum 
cut-off point (Table 4). In all the analyses 100% sensitivity and specificity were achieved. 
This again confirms the clear differentiation of cartilage from bone with very high accuracy. 

In the measured spectra from the two tissues, several spectral feature differences were 
observed. This may be owed to the significant difference in the physical characteristics of the 
samples, mainly in terms of density and surface topology. Variations of plasma volume, 
temperature and electron density always result in shot-to-shot variations of both the absolute 
and relative intensities of spectral lines, which results in poor reproducibility of the spectra 
[33, 39]. In this study, the substantially different physical characteristics of the investigated 
tissues may, however, have negated the effect of shot-to-shot variations on the differentiation 
performance. Therefore, the investigated tissues can be differentiated using the technique on a 
pulse-to-pulse basis without the need for spectral averaging. Depending on the speed and 
extent of ablation caused by the surgical Laser system, in-vivo experiments will have to show 
whether continuous pulse-to-pulse measurement is really necessary, or if timed sampling in 
predefined intervals is sufficient for the clinical implementation of a feedback system. 

3.3 Technical and medical considerations 

This study used sagittal separated pig heads as an animal model for the experiments. The 
results may not be directly comparable to those found in humans. Additionally, the fact that 
ex-vivo material was used might have had an influence on the observed data, although the ex-
vivo time was kept as short as possible. Tissue degeneration, protein degradation, exsiccation 
and the lack of blood perfusion may have altered the measured spectra. The measurements 
were performed on cartilage tissue from the auricle. Using the articular disc was not possible. 
The young (6 months of age) animal’s discs were, upon preparation, found to be very thin and 
fragile. Isolation would have been associated with major structural mechanical damage and a 
clear visual differentiation between connective tissue and cartilaginous articular disc was not 
possible. The cartilage found in the auricle is of the hyaline sort and that of the articular disc 
is fibrocartilaginous. Both tissue variants share the same basic structure, examination of the 
fibrocartilaginous articular disc may however yield different results. 

As previously assumed by Strassl et al. [40], discrimination between the two tissue types 
was possible. Performing statistical analysis techniques, PCA followed by LDA, on the 
atomic emission spectra measured from the plasma created during laser ablation allowed for 
highly accurate differentiation. Using the less complicated ratio comparison approach yielded 
equally significant differentiation performance. The demonstrated technique could be an 
excellent candidate for the development of a real-time feedback control mechanism that 
prevents the unwanted removal of cortical bone or cartilage tissue during laser based surgical 
procedures. One of the future goals derived from this study is to extensively investigate the 
ablation thresholds and ablation rates of the tissues to minimize possible collateral damage 
caused by the lasers. Different Laser systems and experimental parameters should be 
investigated taking into account both technical and medical aspects. This may help to broaden 
the field of application of surgical laser systems and make their use more robust and safer; a 
future application in the field of TMJ-surgery is imaginable. 

4. Conclusion 

This study successfully demonstrated the LIBS-based differentiation between porcine ex-vivo 
cartilage and cortical bone tissue using PCA for feature extraction and performing LDA for 
the prediction of the class membership. Classification results that enable the differentiation of 
the investigated samples with 100% sensitivity and 100% specificity are achieved. 
Furthermore, equally effective differentiation by emission-intensity-ratio comparison between 
specific atomic emission lines was demonstrated. This suggests that LIBS can provide real-
time qualitative information about the atomic composition of a processed sample. However, it 
should be noted that in a clinical setting, the investigated tissues may also need to be 
identified from other surrounding soft tissues. These surrounding tissues may not show usable 
atomic emissions like those considered for ratio analysis in this study. Therefore, the use of 
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statistical analysis may be more feasible and certainly more accurate when including 
unknown parameters, such as other tissues, in the analysis. Moreover, it should be noted that 
the experiments were performed on ex-vivo tissue samples. Further in-vivo studies will have 
to demonstrate if these results are reproducible. 
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