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Abstract

Thanks to developments in the field of nanotechnology over the past decades, more and more 

biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical 

research. Nanomaterials possess unique properties which could be employed to develop drug 

carriers with longer circulation time, higher loading capacity, better stability in physiological 

conditions, controlled drug release, and targeted drug delivery. In this review article, we will 

review recent progress in the application of representative organic, inorganic and hybrid biosafe 

nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel 

drug delivery systems. In addition, we briefly discuss the advantages and notable functions that 

make these nanomaterials suitable for the design of new medicines; the biosafety of each material 

discussed in this article is also highlighted to provide a comprehensive understanding of their 

adjuvant attributes.
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INTRODUCTION

Nanoscale materials, as a new class of pharmaceutical adjuvants, have provided many 

strategies for designing and fabricating novel medicines with a variety of advantages over 

conventional medicines.1–4 In the past decades, numerous adjuvant materials were 
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developed for drug delivery but few of them went further to clinical use. There are several 

reasons for this uncomfortable fact and we summarize these challenges in designing biosafe 

and efficient drug delivery systems as: (1) Inherent toxicity of adjuvant materials; (2) Drug 

leakage takes place before reaching the lesion; (3) The unfavorable pharmacokinetics, such 

as rapid elimination and poor stability in blood environment; (4) The non-targeted drug 

delivery in vivo. Therefore, the desired characteristics of pharmaceutical adjuvants are as 

shown in Figure 1. First, the adjuvant materials should be non-toxic as they are selected with 

an aim toward human health care. Meanwhile, stimulus-responsive materials that can 

provide controllable drug release are preferred. Drugs could be protected by the adjuvants 

through encapsulation, integration, or conjugation before they reach the disease site. After 

administration, adjuvants and drugs should be stable in physiological environment, avoiding 

from aggregation and reticuloendothelial system (RES) clearance. Surface coating and 

modification of drug-loaded nanoparticles, such as PEGylation, can improve their stability, 

resulting in a longer circulation time.5,6 Finally, targeted drug delivery, both active targeting 

by targeting ligands and passive targeting by taking advantage of the enhanced permeability 

and retention (EPR) effect (an effect that nano-sized particles and macromolecule drugs tend 

to accumulate in tumor site rather than in normal tissue due to hypervasculature and little 

recovery of tumor blood/lymphatic vessels), are desired in pharmaceutical research.7,8 

Although nanomaterial’s biosafety remains controversial and bioeffect mechanism needs 

further study, their unique attributes, such as controllable size and shape,9–11 alternative 

surface modification,12–14 high surface area to volume ratio and environmentally-responsive 

structural deformation,15–17 still attract great interest from researchers and have enabled 

them to design new medicines with more functions, including controlled release of drugs in 

specific physiological environments, targeted delivery of drugs to lesions, longer circulation 

time, and better loading efficiency of insoluble drugs.18–21

Higher accumulation of small anticancer drug molecules in the tumor site can be achieved 

by encapsulating the drug into nanocarriers, because nanoparticles show preferred retention 

in tumor as a result of EPR effect.22,23 Targeted drug delivery can be achieved by modifying 

the surface shell of drug-loaded nanocarriers with ligands which specifically bind to disease 

markers. Figure 2 illustrates the EPR effect and targeted delivery of nanoparticles, in this 

case anticancer drug doxorubicin (DOX)-encapsulated micelles, in vitro and in vivo.24 The 

non-functionalized micelles (M-Dox) showed accumulation in tumor tissue as a result of 

EPR effect. This nanoparticle was then functionalized with tumor-penetrating peptide 

CRGDK, the receptor of which are known as neuropilin-1 (NRP-1) protein and are 

expressed by tumor vessel and by various human carcinoma cells.25–28 The tumor-

penetrating peptide functionalized micelles (TPFM-Dox) are internalized more efficiently 

and exhibit better accumulation and penetration in tumor. By grafting small drug molecules 

into nanocarriers (nanoparticles, nanorods, nanocages etc.), it is possible to realize a higher 

loading capacity, and also to deliver insoluble drugs.29,30 Moreover, nanomaterials can be 

designed to release payloads triggered by environmental changes. In cancer treatment, the 

slightly altered acidic tumor microenvironment can be used to trigger drug release.31,32 

These strategies can help to optimize the biodistribution of anticancer drugs, so that more 

drug accumulates in the tumor while less is located in the normal organs and the anticancer 

efficacy is improved with less unwanted side effects. If all these features can be combined in 
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one nanoparticle system, a delivery system could be generated which acts as a 

multifunctional drug delivery system.

Traditional medical research has focused on finding and screening new chemical entities 

(NCEs), with the aim of curing the disease with one new drug. However, this method is 

expensive, time consuming, and full of unknown risks; in addition, the efficiency is very 

low. It usually takes more than 10 years, and thousands of candidates were tested. It is 

possible that only one chemical entity will gain access to the market. Some of the eliminated 

compounds may have had better efficacy than the final winner, but severe side effect or poor 

biodistribution prevented them from completing the screening process. Even the winner may 

have fatal drawbacks, like Paclitaxel (PTX). Due to its poor solubility in water, it was first 

sold in a formulation employing Cremophor EL and ethanol as solvents, which caused 

serious side effects in patients.33 It was later discovered that PTX and albumin could form 

nanoparticles in solution, and the efficacy was greatly improved without significant side-

effects.34,35 Thus, nanomaterial-based formulation can be used to increase the efficacy of 

chemotherapeutic agents and reduce the side-effects.

Biosafety is a major issue in the design of novel drugs and researchers must give careful 

consideration to this when developing nanoscale materials for medical research. The 

physicochemical properties of nanoparticles, such as size, shape, charge, colloidal stability, 

and their interaction with environmental compounds, are related to their potential 

toxicity.36–39 When nanotechnology was first emerging in the 1980s, the biosafety of 

nanomaterials, including genotoxic and cytotoxic effects, toxicity to the immune system, in 

vivo biodistribution and clearance, and the long-term effects of treatment, was unclear and 

more studies were needed to prove that nanomaterials are biocompatible and biosafe.40,41 

Biodegradable and biogenic nanoscale materials, such as proteins, nucleic acids, and 

phospholipids, are commonly used as pharmaceutical adjuvants. The two Food and Drug 

Administration (FDA) approved nanomaterial-based drug formulations, Doxil® and 

Abraxane®, employed organic nanomaterials (lipid in Doxil® and protein in 

Abraxane®).42,43 However, some of them may cause immune response (especially extrinsic 

proteins) and should be tested before clinical use. Inorganic nanomaterials, like silica and 

gold, are also employed as pharmaceutical adjuvants in research because there is evidence 

that they are biosafe.44 However, inorganic materials undergo biodegradation issue and 

clearance problem, and much research focusing on these two aspects has been done.45–47 

How does inert materials, such as gold and carbon, are degraded and cleared from body is 

the major concern before their clinical application. Some research work also implied that 

some inorganic nanomaterials would cause genomic instability, inflammatory response, and 

protein phosphorylation.48–50 In conclusion, both organic and inorganic nanomaterials have 

their advantages and drawbacks when considering biosafety issue. Neither of them should be 

neglected when talking about biosafe nanomaterials. The concept “biosafe” in this review 

does not mean “no harm at all,” but indicates that the nanomaterials we talked about are with 

low toxicity and immunogenicity, would not cause severe damage in vivo at their applicable 

dose, and have acquired recognition as potential pharmaceutical adjuvants from most 

researchers.
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In this article, we will review recent progress in biosafe nanomaterial-based pharmaceutical 

research, using representative organic, inorganic and hybrid materials as examples (Fig. 3). 

We also highlight the advantages and remarkable functions that make these nanomaterials 

ideal for use in medicine design.

ORGANIC NANOSCALE MATERIALS EMPLOYED FOR PHARMACEUTICAL 

DEVELOPMENT

Polymers

Polymers are an important class of nanomaterial in the nanomedicine field due to their 

ability to encapsulate and protect cargoes and to respond to specific extrinsic stimuli.51–53 

They have been widely used in biomedical research, in applications such as drug 

delivery,54,55 gene therapy,56–58 cell imaging,59,60 and cancer diagnosis.61 Polymers can be 

classified into two categories, natural polymer and synthetic polymer, both of which are 

important pharmaceutical adjuvant materials. Chemical structures of frequently used 

polymers in nanomedicine design are listed in Figure 4.

Natural Polymers—Biocompatible natural polymers have attracted great attentions of 

researchers, since they have many advantages such as low toxicity and biodegradability.62,63 

The most widely studied polymers among them are chitosan and its derivatives. And in 

order to achieve various functions, many modifications have been applied on the natural 

polymers.64

Chitosan: Chitosan, a natural linear polysaccharide, has been used to synthesize 

nanoparticles for drug delivery and tissue engineering due to its superior biocompatibility 

and versatile chemical properties.65–68 Chitosan nanoparticles will degrade into non-toxic 

compounds under the effect of lysozyme. These naturally synthesized biomaterials are 

biocompatible and biodegradable and are relatively easy to obtain at low cost.69 Chitosan 

nanoparticles can also be designed to load hydrophobic agents by introducing hydrophobic 

molecules to chitosan. Therefore, chitosan-based nanoparticles have been employed for 

delivery of several protein drugs and anticancer chemical drugs, including insulin,70 DOX,71 

cisplatin,72 and docetaxel.73 However, chitosan is only soluble in acidic solvents, resulting 

in the instability of nanoparticles in neutral or alkaline conditions.74,75 Fortunately, chitosan 

provides chemical functional groups which make chemical modification on chitosan 

possible. A chemical modified chitosan, N-imidazolyl-O-carboxymethyl chitosan 

(IOCMCS), was introduced by Bi and co-workers to improve the solubility of chitosan in 

water and make the IOCMCS-formed nanoparticle positively charged.76 Under the N/P ratio 

of 5, IOCMCS could efficiently bound with plasmid DNA. It also showed higher 

transfection efficiency and lower cytotoxicity compared to polyethyleneimine (PEI) and 

Lipofectamine™ 2000. This work is one of the various successful attempts to make chemical 

modification of chitosan to break the obstacle of solubility and made it a promising material 

in the field of medicine research. Another interesting work reported by Zhang et al. recently 

suggested a new application of chitosan.77 A modified chitosan, N-octyl-O-sulfate chitosan 

(NOSC), was applied to assemble into micelle for PTX loading. According to previous 

report, NOSC was possible to inhibit the key drug resistance-related protein P-glycoprotein 

Jin et al. Page 4

J Biomed Nanotechnol. Author manuscript; available in PMC 2014 November 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(P-gp, also known as MDR-1).78–80 Thus, PTX-encapsulated NOSC micelle (PTX-M) could 

deliver PTX into cells bypassing P-gp. After internalization, NOSC micelle disassembled 

and inhibited P-gp function, improving PTX retention in cells (Fig. 5(A)). Anticancer 

efficacy towards HepG2 cell and drug resistance cell HepG2-P of different PTX 

formulations, including taxol (PTX dissolved in Cremophor EL and ethanol), taxol + NOSC 

(physical mixture of taxol and NOSC), and PTX-M, was assessed in vitro and in vivo. 

Cytotoxicity evaluation result indicated that PTX-M possessed the best cell killing efficacy 

in HepG2-P cells with the lowest half maximal inhibitory concentration (IC 50) (0.55 μg/

mL). Meanwhile, IC 50 of PTX was 16.39 μg/mL (Fig. 5(C)). PTX-M also exhibited the 

best tumor growth inhibition efficacy in vivo as tumor growth was significantly controlled 

after PTX-M injection (Figs. 5(D), (E)). Further study of PTX accumulation in cells and 

tumors of different formulations revealed that PTX-M could increase the amount of PTX in 

cells and tumor tissues which may be a result of the dysfunction of P-gp (Figs. 5(B), (F)). 

Therefore, drug resistance of HepG2-P cell was successfully overcome in vitro and in vivo 

by encapsulating PTX into P-gp inhibiting chitosan derivative NOSC. NOSC in this work is 

a P-gp inhibitor as well as a drug carrier. More interesting work could be developed basing 

on this material.

Synthetic Polymers—Compared to natural ones, synthetic polymers are more 

designable, and can also be biocompatible by using appropriate compounds while 

synthesizing.81,82 The method of synthesizing can be various, such as polymerization, 

covalently binding, and physical assembly. Optimizing polymers to be more functional and 

biocompatible is now the most important research field of polymer science and attracts 

many scientists’ attentions.83–85

PEG and Its Derivatives: Polyethylene glycol (PEG) is another important pharmaceutical 

adjuvant in the nanomedicine research field. Most unmodified nanostructures, such as 

liposomes, micelles, and nanocrystals, usually have a high rate of uptake by the RES, 

leading to significant accumulation of nanomaterials in the liver and spleen.86 PEGylation, 

the process of covalently attachment of PEG to another molecule, can increase the 

hydrodynamic size of nanoparticles and hinder the interaction between nanoparticles and 

plasma proteins, resulting in reduced immunogenicity. Nanoparticles will then show 

improved biocompatibility, with ultra-long circulation times and high water solubility after 

PEGylation.87 Nowadays, many PEGylated medicines, especially PEG-liposomes and PEG-

proteins, have got their FDA approval because of prolonged circulation time and reduced 

immunogenicity.88 Figure 6 summarized several PEG-protected nanoparticles with 

improved pharmacokinetics. PEG was conjugated with another FDA-approved adjuvant 

materials, poly(lactic-co-glycolic acid) (PLGA), and reported by Pei and co-workers.89 I125-

labeled bovine serum albumin (BSA) was loaded in PEG-PLGA and PLGA nanoparticles to 

trace circulation and biodistribution of two nanoparticles in vivo. The PEG-PLGA 

nanoparticle exhibited longer blood circulation time than PLGA nanoparticle. Moreover, 

PEG-PLGA nanoparticles remained a much higher concentration in blood than PLGA 

nanoparticle 12 h after intravenous injection (Figs. 6(A)–(C)). PEG is also important surface 

coating agent of inorganic nanomaterials. PEG-protected gold nanorods (Au NRs) obtained 

by replacing CTAB with methyl-PEG thiol were stable in serum, while CTAB-protected Au 
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NRs aggregated.90 Blood clearance test showed that PEG-protected Au NRs has a very high 

half-life of ~ 17 h. 72 h after intravenous injection, PEG-Au NRs were still visible in tumor 

site by thermal imaging (Figs. 6(D)–(F)). In another work, Dai et al. functionalized single-

walled carbon nanotubes (SWNTs) with a branched PEG polymer, named as PMHC18-

mPEG.91 The blood circulation time of PEG polymer-protected SWNTs in mice upon 

intravenous injection was greatly prolonged (t1/2 = 22.1 h) compared to the previous record 

(t1/2 = 5.4 h). The PMHC18-mPEG was also compared with DSPE-PEG in SWNT protection 

in vivo and PMHC18-mPEG-coated SWNT showed longer half-life in blood (Figs. 6(G)–

(I)). PEG holds great potential in imaging probe protection in vivo. Mulder et al. investigated 

the biocompatibility and pharmacokinetics of quantum dots (QDs, an important imaging 

probe) containing silica nanoparticles after PEG coating.92 Both bare and PEG-coated 

nanoparticles were injected into mice and blood sample were obtained several minutes after 

injection. Then fluorescence intensity, resulting from QDs, was determined and the results 

showed that bare nanoparticles were rapidly cleared from blood. Meanwhile, PEG-coated 

nanoparticles remained in blood and exhibited fluorescence signal even 240 min post 

injection. Biodistribution analysis demonstrated that less PEG-coated nanoparticles were 

uptake by RES organ than bare nanoparticles (Figs. 6(J)–(L)). Reduced adsorption of protein 

on PEG corona is the main mechanism of PEG protection. Griesser et al. provide some 

evidence to support this viewpoint.93 Nonspecific adsorption of proteins on naked and PEG-

protected silica nanoparticles was determined by X-ray photoelectron spectroscopy (XPS) 

and Fourier transform infrared spectroscopy (FTIR) analysis, and the results confirmed that 

protein was hardly adsorbed by PEG-protected nanoparticles (Figs. 6(M)–(O)).

PLA and Its Derivatives: Poly(lactic acid) (PLA) and PLGA are the most widely used 

polymers as they have been approved by the FDA.94,95 PLA- and PLGA-based nanocarriers 

were developed to deliver various drugs;96,97 however, the rapid burst of cargo release 

without any specificity limited further in vivo application due to the low drug concentration 

at the desired site.98,99 Thus, subsequent work focused on improving the specific release of 

drugs at the disease site by linking drug release with a specific biological process. Scientists 

have now successfully synthesized polymeric nanoparticles which are responsive to specific 

external stimuli, such as light,100 temperature,101 and ultrasound,102 especially to inherently 

occurred low pH in tumor microenvironment and endosome.103 Compared to the neutral pH 

in healthy tissues, the lower pH in the tumor microenvironment and in endosomes can be 

exploited so that nanoparticles release their drug payloads in the right place.104 The most 

widely used strategy to design pH-responsive polymeric nanoparticles is to introduce a 

protonation group, such as carboxylic acids and tertiary amines, into the polymer structure 

which can be ionized at different pH values. Another strategy to achieve pH-responsive 

polymeric structures is to use acid-labile functional groups which can be hydrolyzed to 

reveal a new hydrophilic group; the polymer then becomes water-soluble and the 

nanoparticle structure decomposes, thus releasing the loaded agent. For example, Fréchet et 

al. synthesized acetal-derivatized dextran-based particles which degraded in a pH-dependent 

manner (Fig. 7(A)).105 At pH 7.4, the nanoparticles possessed a half-life of 360 h, as judged 

by measuring free dextran, but when the pH was adjusted to 5, the nanoparticles became 

unstable and the half-life decreased to 10 h. The ultra-long half-life at neutral pH and 

significantly decreased stability at acidic pH are ideal for pH-sensitive drug delivery. 

Jin et al. Page 6

J Biomed Nanotechnol. Author manuscript; available in PMC 2014 November 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Nanoparticles would be extremely stable in normal tissue and response sensitively once they 

get to the disease site. Another merit of this approach is that both hydrophobic and 

hydrophilic agents were successfully encapsulated within the nanoparticles and, as dextran 

is biocompatible, these particles are non-toxic to cells in vitro.

PVP and Its Derivatives: Poly(N-vinylpyrrolidone) (PVP) has a lot of properties which 

make it an outstanding candidate as pharmaceutical adjuvant material, such as solubility in 

water, very low toxicity, good biocompatibility, and high complexation ability.106 PVP was 

initially used as a blood plasma substitute and then be widely used in medicine and 

pharmacy.107 The highly hydrated structure of PVP suppressed its interaction with immune 

system and made PVP a good choice as coating agent to reduce immunogenicity of 

nanomaterials.108 The slow degradation of PVP under ultraviolet (UV) or ultrasound 

irradiation is another promising aspect.109 It has also been reported that PVP can cause 

intracellular vesicular swelling and diminish the fusion of endosomes to lysosomes.110 

These unique features of PVP make it a good drug and gene carrier. However, the non-

biodegradability of macromolecular PVP will lead to accumulation in vivo. To deal with this 

problem, PVP with molecular weight below the kidney threshold was synthetized through 

various methods. Saxena et al. reported a cross-linked PVP nanoparticle of size less than 

100 nm which can encapsulate plasmid DNA.111 The result showed these particles have 

high transfection efficiency both in vitro and in vivo. This synthesis method provided a low 

molecular weight PVP nanoparticle which was a promising vehicle for drug and gene 

delivery.

Amphiphilic Copolymers: Copolymers, especially amphiphilic copolymers, are the most 

common polymers in nanotechnology.112–114 Amphiphilic copolymers can self-assemble 

into micelles or nanoparticles in aqueous solution, with a hydrophobic core inside and a 

hydrophilic shell outside. Each chain of the copolymer can also provide different functions, 

to make the particle multifunctional. For example, Guo et al. synthesized a copolymer 

composed of three polymers, methoxy polyethylene glycol-block-(polycaprolactone-graft-

poly(2-(dimethylamino)ethyl methacrylate)) (PEG-b-(PCL-g-PDMAEMA)).115 The 

polycaprolactone (PCL) backbone can (1) form a hydrophobic core to carry hydrophobic 

drugs such as PTX and DOX; (2) improve drug/gene delivery efficiency by enhancing the 

cellular uptake through effective interaction between the hydrophobic chains and cell 

membrane. The side chain poly(2-(dimethyl-amino)ethyl methacrylate (PDMAEMA) is 

positively charged which can condense plasmid DNA and provide endosome escaping 

capability. As described above, PEG, the biocompatible part of backbone, forms a 

hydrophilic shell to protect the particle and decrease the surface positive charge. This well 

designed amphiphilic copolymer can self-assemble into nanoparticle and shows high gene 

delivery efficiency in vitro.

Lipids

Lipid is a group of natural molecules including fats, sterols, fat-soluble vitamins, glycerides, 

phospholipids, and others. Among these lipids, phospholipids are widely employed as 

nanoscale pharmaceutical adjuvants in the form of liposomes and micelles and will be 

highlighted in this review.116,117 Phospholipids are amphiphilic compounds, with a 
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hydrophilic polar group and a hydrophobic chain, which mimic the components of naturally 

occurring membrane bilayers.

The best-known lipid-based nanostructures are liposomes, in which an internal aqueous core 

is separated from the bulk aqueous phase by a closed lipid bilayer shell.118 Micelles, a 

nanostructure similar to liposomes, are usually composed of closed lipid monolayers with a 

fatty acid core and a polar surface, or a polar core with fatty acids on the surface (inverted 

micelle). Nowadays, many amphiphilic polymer-based micelles have been developed as a 

result of their more versatile structure and function compared to that of lipid.119,120 

Liposomes are capable of carrying both hydrophobic and hydrophilic drugs at the same 

time. The hydrophobic drugs can be integrated into the fatty acid shell while the hydrophilic 

drugs can be loaded into the aqueous core. In contrast, either hydrophobic or hydrophilic 

drugs can be encapsulated into micelles, determined by the core’s polarity. Micelles are 

much smaller in size (1–20 nm) than liposomes (100–200 nm); however, the size of micelles 

is more uniform. The surface of liposomes can also be functionalized with a variety of 

ligands and reporters, such as antibodies,121 nucleic acids,122 and luminescent sensors.123 

The methods for liposome preparation are well developed and the process is very easy to 

control. Under specific conditions, amphiphilic lipids will self-assemble into liposomes. By 

adjusting the formulation (lipid ratio, source) and changing the synthesis conditions 

(temperature, solvent, ion concentration, and sonication), the size, uniformity, and stability 

of liposomes can be manipulated. The first FDA-approved nanodrug, known as Doxil® in 

the market, is a liposome loaded with the anticancer drug DOX. DOX is commonly used in 

the treatment of a wide range of cancers; however, the adverse side effect is life-threatening 

heart damage.124 Using the Doxil® formulation, the drug circulation time is prolonged and 

more drug accumulates in the tumor site as a result of the passive targeting of liposomes to 

the leaky tumor vasculature.125

Lipids can also be grafted onto other nanomaterials as surface coatings for further 

modification, better stability, and improved biocompatibility.126,127 PLGA nanoparticles are 

great siRNA carriers due to their stability and low toxicity.128 However, the transfection 

efficiency of PLGA nanoparticles is low and not comparable to that of cationic lipid 

nanoparticles.129 Thus, DeSimone et al. combined them and developed lipid-coated PLGA 

nanoparticles that could deliver multiple siRNAs for the treatment of prostate cancer (Fig. 

7(B)).130 The encapsulation efficiency was high (32–46%) and target gene expression was 

greatly down-regulated.

Lipids can be classified according to their surface charge: neutral lipids, anionic lipids, and 

cationic lipids. Cholesterol is separately introduced due to its special role in lipid-based 

nanomaterials. Table I shows the commonly used lipids in pharmacy research.

Neutral Lipids and Anionic Lipids—Neutral lipids and anionic lipids are similar in 

character and application. They are the main composition of conventional liposomes for 

pharmaceutical applications. Phosphatidylcholine (PC), phosphoethanolamine (PE), 1,2-

dioctanoyl-sn-glycerol (DG), L-α-phosphatidic acid (PA), L-α-phosphatidylglycerol (PG) 

and their derivatives are commonly used in various liposomes. For instance, PC is a major 

constituent of cell membranes, which have been shown to stabilize membranes and can form 
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a lamellar structure that is insensitive to the pH.131 Due to their membrane structure and 

neutral or negatively charged surface, neutral and anionic liposomes can decrease the non-

specific protein adsorption and remain longer in blood circulation in vivo. Awasthi et al. 

prepared PEGylated neutral and anionic liposome-encapsulated hemoglobin (LEH).132 The 

neutral and anionic LEH showed long-lasting ability and the circulation half-life of LEH 

was improved after PEGylation. Besides, neutral and anionic lipids can be modified and 

cooperated with other functional groups. We have recently reported a novel pH-sensitive 

liposome which can circumvent the DOX-resistance of cancer cells.133 One way that cells 

develop multi-drug resistance (MDR) is by expressing high levels of certain membrane 

proteins, such as P-gp, which mediates efflux of intracellular drugs.79,80 We developed a 

system to create a sudden increase in the intracellular drug level, thus killing the cell before 

drug export can occur. This liposome is composed of neutral lipids hydrogenated soy 

phosphatidylcholine (HSPC) and PEGylated 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine (DSPE). We loaded liposomes with ammonium bicarbonate and DOX 

and demonstrated that at pH 5.0, the bicarbonate ions decomposed and released CO2 gas, 

which raised the internal pressure and ruptured the liposomes. When these liposomes 

reached the endosomes (pH ~ 5.0) in MDR breast cancer cells, they released all their DOX 

at the same time and the intracellular drug concentration reached the effective concentration 

immediately. Thus, resistant cells were killed before their MDR mechanisms had time to 

work. This work illustrates a new strategy for designing and synthesizing pH-sensitive 

liposomes.

Cationic Lipids—Cationic lipids, for example ethyl phosphocholine (ethyl PC), 1,2-di-O-

octadecenyl-3-trimethylammonium propane (DOTMA), and cationic cholesterol, have 

cationic hydrophilic head to attract negatively charged molecules, especially nucleic acids, 

and form complexes. In this way, cationic lipids can be used as nucleic acid carriers and are 

regarded to be the most promising non-viral gene vectors.134 Tenchov et al. synthesized 

various ethyl PCs with different hydrophobic moieties, and investigated their transfection 

efficiencies in human umbilical artery endothelial cells (HUAEC). The result showed that 

the compounds exhibited very high transfection efficiencies.135 Through the investigation of 

liposome phase-conversion during transfection process, they found that high transfection 

efficiency was resulted from enhanced liposome fusion with cellular membranes. This work 

could be useful to assess the effect of cationic lipid carriers and for further design of new 

and effective gene delivery system.

Cholesterol—Cholesterol is an essential structural constituent of animal cell membranes. 

The addition of cholesterol to lipid bilayers decreases its permeability to water and thus drug 

leakage is prevented.136 Cholesterol is also incorporated into the liposome layers to increase 

their ordered state as it has an additional stabilizing effect.137 It limits the mobility of acyl 

chains of phospholipids, rigidifies the membrane in the liquid-crystalline phase, and 

increases the mobility of these chains while in the gel phase. This character decreases the 

phase transition temperature of lipid membranes, a parameter that is important for the 

relative fluidity and mobility of lipid molecules in the bilayer. Thus, cholesterol is a 

regulator in lipid bilayer and plays an important role in lipid-based nanoparticles.
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Proteins, Peptides and Nucleic Acids

Proteins, peptides, and nucleic acids have many different roles in the development of 

nanomedicines. They can act as drugs (e.g., interferon, insulin, tesamorelin, siRNA), target 

ligands (e.g., aptamer, antibody, nuclear localization signal peptide), and carriers (e.g., 

albumin, DNA origami). As they are the most common materials in the human body, their 

biodegradability is in no doubt. Much higher systemic concentrations of proteins, peptides, 

and nucleic acids can be administered than that of inorganic nanoscale materials. As 

pharmaceutical adjuvants, proteins, peptides, and nucleic acids are irreplaceable because of 

their targeting ability. Illustrative examples of targeting ligands, including proteins, peptides, 

and nucleic acids, are listed in Table II. Metabolism mechanism of them is also clearly 

studied, making them more advantageous than other materials. However, the disadvantage is 

that their structures are vulnerable and it is difficult to make modifications. Once the fine-

designed structure is changed, they will lose functions and integrity. Another issue that 

should be addressed is the immunogenicity as immune system will be activated by 

exogenous proteins and DNA sequences.138

Proteins—Self-assembled protein-based nanocages can be considered as natural drug 

carriers. In nature, some protein structures, such as microtubules, are assembled from 

multiple copies of protein subunits.139 Recently, albumin, gelatin, and silk protein-based 

protein nanoparticles have been developed as drug delivery systems following the successful 

model of Abraxane®.140–142 These particles are biosafe and non-antigenic; furthermore, they 

can realize active targeting as well as passive targeting. For example, albumin can penetrate 

the microvessel endothelial cells in angiogenic tumor vasculature with the assistance of the 

albumin-binding protein gp60 and combine with the target protein SPARC which is over-

expressed in many tumors.143,144 Cao and co-workers used protein nanoparticles for active 

tumor targeting.145 They employed human ferritin H-chain protein (FTH1) as the framework 

and combined it with epidermal growth factor (EGF), the ligand of EGFR, a receptor that is 

over-expressed in many malignant tissues.146,147 The EGF-FTH1 nanoparticles were 

specifically internalized by two breast cancer cell lines, MCF-7 and MDA-MB-231, but the 

uptake by normal epithelial MCF-10A cells was negligible. In vivo experiments also 

demonstrated the accumulation of EGF-FTH1 nanoparticles in breast tumors in a mouse 

xenograft model. Jiang et al. cross-linked the milk protein casein with transglutaminase to 

form nanoparticles, which were then loaded with cisplatin, a model anti-cancer drug (Fig. 

7(C)).148 In the murine xenograft model, cisplatin-loaded nanoparticles inhibited tumor 

growth 1.5-fold more effectively than free cisplatin and analysis of tumor sections 

demonstrated that the casein nanoparticles could penetrate through the tumor tissue and 

deliver cis-platin to cells far from the vasculature.

Collagen is another important biosafe nanomaterial that should be addressed. It is the main 

structural protein in animals and accounts for one third of total protein in human.149 28 types 

of collagen have been identified in vertebrate and 90% of the collagen in the body is type 

I.150,151 As collagen is the major component of the extracellular matrix (ECM), the 

biocompatibility of collagen is good.152–154 In a recent work reported by Cai and coworkers, 

collagen was linked to silica nanoparticles via disulfide bond as a protein cap to protect 

encapsulated fluorescence probe FITC.155 Silica nanoparticle is an excellent reservoir for 
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drugs, and end-capping of them could protect encapsulated cargos, separate cargos from 

external environment. As a capping material, collagen has advantages in biosafety. In 

addition, collagen is full of sulfydryl, which are necessary to form disulfide bond that can be 

broke by various reducing agents, including cell-expressed glutathione.156 Then, specific 

cargo release from nanoparticles in cytoplasm can be realized. This work subtly utilized this 

property and conjugated collagen with nanoparticle through disulfide bond. Redox-

responsive release of cargo FITC from nanoparticles was successfully identified after adding 

another reducing agent, dithiothreitol (DTT), to the nanoparticle solution. Targeting moiety, 

lactobionic acid (LA), was also introduced to the collagen-capped nanoparticle and was 

demonstrated to be effective in cell-specific targeting in vitro. Therefore, redox-responsive 

release and targeted delivery were achieved in this work.

Gelatin, a derivative of collagen, has similar potential as pharmaceutical adjuvant just like 

collagen. It is widely used in food and pharmaceuticals as gelling agent.157 Gelation would 

be easily triggered by increasing the temperature and suddenly cooling of gelatin solution. 

Nanoparticles protected by a gelatin cap could then be obtained by this method. He, Wang, 

and co-workers reported a work employing gelatin as a cap to protect DOX-loaded 

nanoparticles recently.158 The gelatin cap was successfully grafted to the nanoparticles by 

temperature-induced gelation and stabled by glutaraldehyde mediated cross-linking. 

Interestingly, gelatin is a natural pH-sensitive agent and the authors take this advantage and 

successfully made the gelatin-capped nanoparticles pH-sensitive. As a mixture of protein 

and peptide, gelatin contains many protonation groups like carboxyl and amine, making it 

negatively or positively charged determined by the pH value. Moreover, the isoelectric point 

of gelatin can be modified by removing or retaining the protonation group.159 Thus, the 

charge of gelatin can be precisely controlled. In this work, the loaded-DOX was well-

protected upon neutral pH and released from the nanoparticles once the solution was 

adjusted to be acidic. This pH-sensitive behavior was also confirmed in vitro by co-

localization analysis of DOX and endosome assisted by confocal laser scanning microscopy 

(CLSM). DOX was first trapped in endosome, exhibiting high co-localization ratio with 

endosome at 5 h. Then DOX escaped from endosome and entered into cell nucleus at 12 h, 

indicating that gelatin cap was eliminated from the nanoparticle surface.

Peptides—Peptide, natural outcome from protein metabolism, played a crucial role in 

biological activity. Accompanied by the progress of peptide synthesis, peptides are more 

widely used as therapeutics, targeting ligands and drug vectors.160,161 Especially, peptide 

presents an advanced and rapid developing in the field of drug delivery. Compared to other 

drug carrier materials, peptides possess several advantages for drug delivery, including 

smallness, versatile structures, facile synthesis, biocompatibility, and biodegradability.162

Many studies have confirmed the potential and superiority of peptide applied as drug 

delivery system. For example, Divita and co-workers successfully developed a peptide-

based novel method to delivery siRNA into mammalian cells.163 They designed an 

amphiphilic peptide (CADY) of 20 residues combining aromatic tryptophan (Trp, W) and 

cationic arginine (Arg, R) residues. The recombinant peptide forms stable complexes with 

siRNA, thereby increasing the stability of the complexes forming from peptide and siRNA 

and improving their transfection efficiency into a wide variety of mammalian cells, notably 
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including primary cell lines. The siRNA delivery based on the CADY peptide significantly 

knockdown the target gene at subnanomolar concentration of siRNA. And more importantly, 

the cytotoxicity results showed that the CADY peptide was non-toxic and entered cells in an 

endosome-independent way, delivering therapeutics into cells without enzymolysis under 

lysosome enzymes. CADY peptide can then be used for the delivery of unstable drugs and 

those whose therapeutic efficacy are compromised due to the lysosome sequestration. 

Meanwhile, peptides possess a great potential in the chemotherapy drug delivery. Recently, 

a self-assembled peptide hydrogel formed by peptide and anti-cancer drug taxol was 

successfully designed by Yang and co-workers.161 The peptide hydrogels of taxol could 

markedly inhibit tumor growth and metastasis through local administration of taxol 

hydrogels. In addition, the peptide-based taxol hydrogels enhanced the dosage tolerance of 

mice to taxol by reducing the plasma concentration of taxol which is due to the local 

administration, and finally decreased the side effects of taxol. Peptide hydrogel can be 

applied for controlled and sustained release of drugs to skin tissues, which is important for 

wound healing, anti-inflammation, and dermatosis.

Except for drug carrier, peptide also plays an important role as functional agent in drug 

delivery system. Cell penetrating peptides (CPPs) and pH-sensitive peptides are two major 

categories of functional peptides. CPPs are a series of peptides which can facilitate cellular 

uptake, endosomal escape, and nuclear targeting.164,165 Tat peptide, a CPP derived from 

transactivator of transcription (tat) of type I human immunodeficiency virus (HIV-1), has 

been widely used in drug delivery and gene transfection.166,167 Polyhistidine, as a famous 

example of pH-sensitive peptide, has a pKa of ~ 6.5. When the pH is turned to be below 6.5, 

polyhistidine would shift from hydrophobic to hydrophilic.168,169 Caruso et al. recently 

successfully combined these two functional peptides in one, named H4R4, and reported its 

application in nanoparticle-based drug delivery.170 R4 stands for 4 arginines, and it is 

mimicking the functional region of tat peptide which is rich of arginine 

(GRKKRRQRRRPQ). H4 is 4 histidines, and is the pH-sensitive part of the combined 

peptide. R4, like many other CPPs, is highly hydrophilic and cannot be used alone without 

conjugation in nanoparticle functionalization. However, conjugation makes it hard to vary 

the amount of CPP used.171 Here H4 provides a hydrophobic part and makes H4R4 an 

amphiphilic peptide under neutral pH. It is simply mixed with a PEG-DOX conjugate and a 

poly(2-diisopropylaminoethyl methacrylate) (PDPA) homopolymer. PEG-DOX and PDPA 

can assemble into a nanoparticle with a hydrophilic corona and hydrophobic core, which 

provide space for the amphiphilic H4R4. In the acidic endosomal compartment, H4 become 

hydrophilic and H4R4 is released from the nanoparticle. Then, R4 could facilitate the release 

of PEG-DOX from endosome and its further entrance into cell nucleus. The PEG-DOX 

loaded in H4R4 mixed nanoparticle exhibits better endosome escape ability and higher 

accumulation in nucleus than that loaded in non-H4R4 mixed one, confirmed by co-

localization analysis. More importantly, the cytotoxicity of the nanoparticle is tunable by 

adjusting the amount of H4R4 mixed. This work provides us a new sight in the application 

of peptides. Peptide is versatile in functions and combination of two functional peptides is 

easy. We may have more multifunctional drug delivery systems in peptide-involved 

nanoparticles.
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Nucleic Acids—Nucleic acids are considered to be fragile due to their instability in 

physiological environments which contain DNase and RNase. It may seem impossible that 

nucleic acids could be used as pharmaceutical adjuvants to carry drugs, but the opposite has 

proved to be true. Compared to the common linear structure, engineered DNA structures can 

be very stable, and have been used to build nanoparticles for the past 30 years. DNA 

nanostructures have great potential in the areas of molecular and cellular biophysics, energy 

transfer and photonics, and diagnostics.172 Recently, Ding and co-workers successfully 

applied “origami” DNA nanostructures, made of folded nucleic acid strands, to the drug 

delivery field (Fig. 7(D)).173 The electrostatic attraction between DOX and DNA structure 

was subtly used in this work. The stability issue of DNA was also settled by converting 

linear strands into origami nanostructure. These self-assembled, spatially addressable, DNA 

origami nanostructures were very stable in cell lysates, and the DOX loading efficiency was 

high because the drug was non-covalently bound to the DNA through intercalation. The 

cellular uptake of DOX was increased by this DNA origami nanostructure, resulting in a 

better cell killing efficiency. Meanwhile, RNA nanotechnology has achieved rapid 

development in biomedicine applications in recent years. A packing RNA (pRNA) of 

bacteriophage phi29 DNA-packaging motor is developed by Guo and coworkers to work as 

a highly efficient nanovector to carry siRNA (MT-IIA) for cancer therapy.174 The pRNA/

siRNA can protect the siRNA from RNase and keep stable in serum. The messenger RNA 

(mRNA) levels of MT-IIA and its downstream gene survivin were down-regulated by this 

pRNA/siRNA complex, resulting in suppressed cell proliferation. Furthermore, the dimmers 

that were obtained by tagging the pRNA/siRNA complex with folate can be delivered cell–

specifically to ovarian cancer cells which express folate receptor. From both examples we 

can find that stability is the major problem for nucleic acids as pharmaceutical adjuvants. If 

this can be settled properly, DNA and RNA have a promising future as a potent tool for drug 

delivery.

Other Organic Materials

Besides polymer, lipid, protein, peptide, and nucleic acid, saccharide is another important 

nanoscale pharmaceutical adjuvant materials. Cyclodextrins (CDs), a family of compounds 

made of saccharide molecules forming a ring structure, will be introduced as an outstanding 

saccharide. They are produced from starch by enzymatic conversion.175 CDs are composed 

of 5 or more α-D-glucopyranoside units and typical CDs are formed by 6–8 monomers in a 

cone shape, known as α-CD (6 monomers), β-CD (7 monomers), and γ-CD (8 monomers) 

(Fig. 4).176 Compared to chitosan and other polymers, CDs are commonly used as one of the 

most versatile aids in pharmaceutical technology to enhance the aqueous solubility and 

chemical stability of biologically active compounds.177 Especially by using guest-host 

chemistry, CDs can introduce the guest functional groups to the host compounds. Ma et al. 

conjugated β-CDs to a branched PEI as a host unit.178 Then a guest hydrophobic polymer 

poly(β-benzyl L-aspartate) (PBLA) was introduced to the host scaffold to mediate the 

assembly process. The hydrophobic core formed by PBLA serves as a nanocarrier to load 

hydrophobic drugs, while the positively charged hydrophilic PEI shell is capable of 

condensing plasmid DNA and achieve its transfection in vitro. In this way CDs produce a 

new way of assembly, and can be used as a new generation of multifunctional nanocarriers.
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INORGANIC NANOSCALE MATERIALS AS POTENTIAL ADJUVANTS IN 

PHARMACEUTICS

Silica

In the past decade, silica-based nanoparticles have attracted more and more attention as 

pharmaceutical adjuvants.179 The biocompatibility of silica nanoparticles has also been 

thoroughly studied in different cell lines, and there is strong evidence that they are only 

toxic at a high dose.180 Some recent results indicated that silica nanoparticles are 

biocompatible in mice after serological, hematological, and histopathological examinations 

of blood samples and tissues.181

Silica Nanoparticles—The most well-developed of these silica-based nanoparticles are 

mesoporous silica nanoparticles (MSNs) because of their tailored mesoporous structure and 

high surface area.182–184 Mesopores can be modified with different chemical groups to be 

hydrophobic or hydrophilic, enabling MSNs to encapsulate a variety of drugs. Meanwhile, 

high surface area allows a much higher drug loading capacity compared to that of solid 

nanoparticles.

By preferentially manipulating the biodistribution of encapsulated pharmaceutical agents in 

the target organ/tissue, MSN-based systems have the potential to deliver an effective 

concentration of drug to the lesion at a relatively low systemic drug dose. The adverse side-

effects can therefore be minimized without compromising treatment efficacy. To accomplish 

this goal, the surface of MSNs can be modified with a variety of functional agents, such as 

polymers, proteins, and stimulus-responsive groups. These surface coatings work as 

gatekeepers to protect the pharmaceuticals inside the pores and achieve a controlled 

release.185,186 β-CD, a saccharide which is responsive to the acidic conditions within 

endosomes, was employed by Zink and co-workers to work as a nanovalve in MSNs for pH-

sensitive drug release.187 This nanovalve is tightly closed at pH 7.4 and acidic environment 

is the key to open the valve and release cargos. The leak and rapid burst of drug from 

nanoparticles are crucial problems for drug delivery and nanovalve is a good strategy to 

overcome these challenges. Mesopores can be sealed under physiological condition and 

release drug slowly under certain stimuli. Figure 8 shows three typical nanovalve-based 

controlled release mechanisms. Gatekeeper molecules are covalently attached to MSNs 

while plug molecules are then plugged into the gatekeepers through host–guest interaction. 

In some work only gatekeeper molecules are employed. Initially, cargo molecules are loaded 

in the channels of MSNs. Drug release can be initiated in three ways:

1. cutting off the covalent bonds between gatekeeper molecules and MSNs;

2. pulling out the plug molecules by interfering host-guest interaction;

3. destroying gatekeeper molecules.

These mechanisms can be designed to be responsive to various stimuli, including pH, light, 

thermal, ultrasound, oxygen stress, and several enzymes. It is a hot pursued area to develop 

smart drug delivery systems with nanovalves. Reversible and precisely controlled 

nanovalves will be the future trend.
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MSNs are also good candidates for multifunctional nanoparticles. Nanoparticle-based drug 

delivery systems are confronting many challenges, including uptake by the RES, interaction 

with serum proteins, and poor accumulation at the disease site. Thus, researchers have 

concentrated much effort on integrating several functions into one particle and, as a result, 

many MSN-based multifunctional nanoparticles have recently been developed.188–190 Lin et 

al. functionalized MSNs with folate groups, the receptors of which are highly expressed in 

human cancer cells (Fig. 7(E)).191 They demonstrated that the endocytosis of the modified 

nanoparticles is a receptor-mediated process and can be inhibited by free folic acid. Hyeon 

and co-workers reported functionalized MSNs that could be used for magnetic resonance 

imaging (MRI), fluorescence imaging, and drug delivery, thus combining therapeutic and 

diagnostic functions.192 DOX was loaded into the pores and the particles were stabilized by 

coating with PEG to increase the circulation time. The anticancer effect of DOX-loaded 

nanoparticles was also observed in vitro and in vivo. In this work, both MRI and PEG 

coating are employed for integrated multifunction. MRI is superior than fluorescence 

imaging in clinical use because the latter will photobleach and the imaging depth is only a 

few millimeters. PEG is the best stealth delivery cover so far as introduced in the polymers 

section. MSN is a well-established integration platform on which multiple functions could 

be combined thanks to the versatility and compatibility of MSNs.

Compared to other adjuvant materials, MSNs are superior in various aspects: higher 

available surface area allows for more functionalization; tailored mesoporous structure 

provides sealed compartment for hydrophilic and hydrophobic cargos; strong adsorptive 

capacity results in higher drug loading; toxicity study and previous application as food 

additive stands for their biosafety. However, we should also pay attention to the hydrolysis 

of MSNs’ backbone (Si–O–Si) caused by acidic pH environment. In addition, unmodified 

silanol groups on MSNs will interact with red blood cell membrane and cause hemolysis.193 

Further modification of silanol groups and hemolysis test are needed before MSNs’ 

intravenous injection in the pre-clinical development.

Silica Nanotubes—Silica nanotube (SNT), a novel nanomaterial, has been developed for 

drug delivery,194 biocatalysis,195 and protein immobilization.196 SNT has several 

advantages including large internal volume, large surface area, favorable biocompatibility, 

and the ability of being chemical modified.197 More importantly, the size of SNT can be 

controlled easily.198 Because of their unique physicochemical properties, SNT used as drug 

delivery system drew considerable attention from pharmaceutics researchers in recently. 

SNT possesses the potential as effective drug delivery vehicle owing to

1. the large internal space of SNT can improve the drug loading capacity compared 

with other vectors. And the drug molecules incorporated in the inner of material 

cannot interact with the environment, so that the drug leakage was prevented until 

they reach the target destination;

2. SNT possesses a plentiful of hydroxide radical on the surface which lead to the 

high hydrophilicity of nanotubes. The drug delivered by SNT can effectively avoid 

the capture by the RES, and improve the bioavailability of drug molecules;
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3. SNT can be further modified to acquire more functions through the active 

hydroxide radicals on the surface. Bhattacharyya and coworker reported the sol–gel 

template synthesized SNTs that can be applied for controlled drug delivery in 

which ultrasound acts as the trigger.194

In order to control drug delivery, SNTs were coated by dihydroxynaphthalene (DN) and 

ibuprofen was chose as a model drug. The ibuprofen loading of SNTs and DN-SNTs 

analyzed by thermogravimetric analysis was 46% and 25%, respectively. The release 

kinetics of ibuprofen from SNTs demonstrated that the drug release is heavily dependent on 

the ultrasound impulse in vitro. Fluorescent silica nanotubes prepared via sol–gel reaction 

were also successfully applied for plasmid DNA delivery.199 This work further 

demonstrated that SNTs have enormous potential in biomolecule drug delivery.

Gold

Among metal nanomaterials, those made of gold have been widely utilized in biomedical 

research. Gold nanomaterials have a variety of potential applications, including gene and 

drug delivery,200 cell imaging,201 thermotherapy,202 and colorimetric detection of 

biomolecules and ions.203–205 Nowadays, the synthesis and modification of gold 

nanomaterials can be effectively manipulated, and spheroids, rods, dodecahedra, octahedra, 

and cubes can be designed with a high level of precision.206 The surface can also be 

modified with chemical functional groups, including amines, lipids, antibodies, peptides, 

oligonucleotides, and small molecules. In addition, the inherent non-toxicity and unique 

properties of gold nanomaterials, such as size- and shape-dependent cellular uptake and high 

surface area to volume ratio, make them excellent drug carriers.207 Thus, considerable effort 

has been put in to develop gold nanomaterials as pharmaceutical adjuvants.

Gold Nanoparticles—Gold nanoparticles (Au NPs) have many attributes which meet the 

needs of nanomedicine research. Many works have focused on the modification of Au NPs 

with therapeutic agents and targeting ligands. Liang and co-workers recently synthesized 

novel small (2 nm) Au NPs that were functionalized with a therapeutic peptide, PMI (p12), 

and a targeting peptide, CRGDK, which selectively binds with cancer cells through the over-

expressed receptor NRP-1.208 The results demonstrated that these targeting nanocarriers 

improve the delivery of the therapeutic p12 peptide, which is thought to activate p53, into 

cancer cells. When employing Au NPs as drug carriers, conjugation is commonly used for 

drug loading and ligand modification. The problem is that available chemical groups on the 

surface are limited, so it is difficult to functionalize Au NPs with both therapeutics and 

targeting ligands. This work employed 2 nm Au NPs, the surface area to volume ratio of 

which is much higher than that of commonly used Au NPs, to provide more space for drugs 

and functional groups.

Gold Nanorods—The localized surface plasmon resonance (LSPR) effect is a widely 

utilized property of some special shaped gold nanomaterials, including nanorods, nanocages, 

nanoshells, and nanostars. Plasmon resonance occurs when gold nanomaterials are irradiated 

by light with specific wavelengths, and the luminous energy is converted into heat.209 Direct 

killing of surrounding cells can be achieved by taking advantage of the heat released. This is 

called photothermal therapy. The heat released can also be further utilized to control the 
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behavior of nanomaterials by introducing thermosensitive materials into them.210 Therefore, 

many gold nanomaterial-based light-controlled drug release systems have been developed 

based on the LSPR effect. Moreover, the absorption of light with specific wavelengths can 

be utilized for in vivo imaging (Fig. 9).

Among these gold nanostructures with LSPR effect, Au NRs are an outstanding one due to 

two reasons: (1) the uniformity and size of Au NRs are easier to control than that of other 

materials; (2) by manipulating the aspect ratio, the LSPR maximum of Au NRs can be tuned 

to the near-infrared (NIR) window (700–900 nm), which is the wavelength range in which 

lasers can penetrate deeply through tissues.211 Wu and co-workers reported promising 

results in this area (Figs. 7(F), (G)).212 They coated light-responsive Au NRs with 

mesoporous silica to overcome two major disadvantages of Au NRs, namely low specific 

surface area and poor stability. DOX was encapsulated into the mesoporous silica shell of 

the Au@SiO2 nanoparticles. Low intensity laser irradiation triggered drug release, while 

high intensity laser irradiation also triggered hyperthermia. Furthermore, the Au@SiO2 

nanoparticles can be visualized by two-photon microscopy, so that imaging is also 

successfully integrated into this platform. The advantage of Au NRs is that they can be used 

as drug vehicle, photothermal agent, and two-photon microscopy probe. Thus, Au NRs are 

an inherent multifunctional drug delivery system. However, low loading capacity and 

template residues caused toxicity impede their application as pharmaceutical adjuvant. This 

work successfully solved both challenges at the same time by mesoporous silica coating, the 

unique properties of Au NRs were also maintained and utilized.

Photothermal therapy is a unique application of gold nanomaterials as they are not just drug 

vehicles, also therapy agents. The irradiation area, time, and intensity are tunable and the 

killing effect is direct. Future work should focus on the targeting ability of photothermal 

therapy agents as the therapy efficacy is determined by the biodistribution of heat source. 

Moreover, gold is inert in most conditions and its degradation and clearance remains 

unclear. As a result, the accumulation and excretion mechanism of gold nanomaterials in 

cells, organs, and bodies needs further study.

Other Gold Nanostructures—Other gold nanostructures, such as gold nanocages, gold 

nanoshells, and gold nanostars, are developed recently as photothermal therapy agent. Many 

work successfully combined photothermal therapy with imaging and drug delivery by 

employing these novel gold nanostructures.213,214 For, example, a NIR laser-controlled drug 

release system which was based on smart polymers covered gold nanocages was 

successfully developed by Xia et al. The smart polymer undergoes a phase transition from a 

hydrophilic state to a hydrophobic state when the temperature is raised above its low critical 

solution temperature (LCST). Once covalently anchored to the surface of gold nanocages, 

the smart polymer would undergo the phase transition and aggregate under the heat 

converted by gold nanocages after NIR laser irradiation. The pre-loaded drug, lysozyme, can 

therefore be released in a controllable fashion using photothermal conversion of gold 

nanocages. Furthermore, gold nanocages have a potential for multi-functional drug delivery 

system after functionalized with targeting ligands. Hollow gold nanostructures are superior 

in drug loading as it would be easier than that of Au NRs and Au NPs as drug will diffuse 

into the hollow structure when incubating with these gold nanostructures and no chemical 
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reaction is needed. Moreover, hollow structure can provide more space compared to surface 

area. The biggest challenge is that the synthesis of these novel gold nanostructures is much 

more complicated than that of Au NRs and Au NPs. Thus, more efforts should be done to 

optimize the synthesis method and we believe that these gold nanostructures would become 

important members of gold-based nanoscale pharmaceutical adjuvant materials.

Other Inorganic Materials

Apart from silica and gold, other inorganic nanomaterials, such as carbon,215 iron,216–218 

and calcium,219 also have been used as pharmaceutical adjuvants. Some of these have 

special applications in pharmaceutical adjuvant research. For example, calcium phosphate 

nanoparticles can work as vaccine adjuvants, inducing immunity to viruses.220 Results 

indicated that calcium phosphate nanoparticles were more potent as vaccine adjuvant than 

traditional aluminium adjuvant because less inflammation was caused and high titer of 

antibody was induced. Graphene oxide, a novel carbon nanomaterial with monolayer 

structure, is promising in aromatic drug delivery via non-covalently π–π stacking. SN38, a 

water-insoluble aromatic anticancer drug derived from camptothecin, is attached to graphene 

oxide by Dai and co-workers.221 The obtained composite exhibited excellent water 

solubility while the anticancer efficacy was not compromised. Graphene oxide also showed 

potential in photothermal therapy, making it popular in novel medicine design.222 Our 

previous work demonstrated that metallofullerene nanoparticles Gd@C82(OH)22, another 

promising carbon-based nanomaterial, can circumvent tumor resistance to cisplatin by 

reactivating endocytosis, which is a new strategy to fight with tumor drug resistance.223 

Further studies demonstrated that Gd@C82(OH)22 nanoparticles are inherently anticancer 

drug.224,225 They can inhibit pancreatic tumor metastasis by affecting matrix 

metalloproteinase-9 (MMP-9) function. Another potential pharmaceutical adjuvant material 

is superparamagnetic iron oxide nanoparticles (SPIONs) which are well-known as contrast 

agents.226 Thus, SPIONs are appropriate for design of traceable drug delivery system. 

Tumor site accumulated SPIONs will enable to monitor the growth, metastasis, and location 

of tumor tissue. Following these established examples, inorganic nanomaterials can be used 

selectively to design drug vehicles with more functions.

HYBRID ORGANIC AND INORGANIC NANOMATERIALS FOR 

PHARMACEUTICAL APPLICATION

Multifunctional nanoparticles, which are desired for advanced drug delivery, can be created 

by incorporating more than one nanomaterial into a nanostructure. These combined 

nanomaterials are known as hybrid nanomaterials, and they combine the advantages of each 

component. In another way, fatal drawbacks of one component are made up by the other 

one. Recently, thermal and pH dual responsive hybrid nanoparticle based on this strategy 

was successfully developed (Fig. 7(H)).227 The hybrid nanoparticles had a SiO2 shell and a 

polymer core made of poly(N-isopropylacrylamide) (PNiPAM)-co–acrylic acid (AA) 

hydrogel, which is responsive to both heat and pH. By lowering the temperature, DOX was 

loaded into the nanoparticles and by manipulating the pH, DOX was rapidly released. 

Compared with traditional MSNs, these hybrid nanoparticles had a better uniformity and 

stability. Moreover, the in vitro results showed that these novel nanoparticles were more bio-
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compatible and less toxic than conventional MSNs, while the anticancer efficiency was not 

compromised. In this work, SiO2 is employed as the drug container, but pH-responsive drug 

release could not be realized in pure silica system. As a result, pH-sensitive polymer is 

introduced as the core of the nanoparticle. This core–shell drug delivery system works like a 

tank: SiO2 shell is the armor, DOX is the cannonball, and PNiPAM/AA hydrogel is the fire 

control system. It cruises everywhere, resists attack from clearance system, and fires in the 

battle-field (slightly altered acidic tumor microenvironment and endosomes).

Theranostic, a new concept combins therapy and diagnostic, is emerging with the 

development of hybrid adjuvants.228,229 It is difficult to realize theranostic with only one 

adjuvant material. Therefore, hybrid adjuvants composed of more than one material are 

employed. For instance, after the drug-loaded nanoparticles are administered for therapeutic 

treatment, biodistribution of these nanoparticles is expected to be monitored in organs and 

disease site. In this case, fluorescence probes or MRI contrast agents can be integrated into 

the drug vehicle. The labeled hybrid nanoparticles are then monitored non-invasively 

throughout the treatment and researchers can get more information from a single injection.

Actually, most examples we mentioned in this article are hybrid materials but only one 

component is discussed in detail in individual context. It is a trend to combine more 

functions in one nanoparticle, resulting in the widely application of hybrid nanomaterials. 

Although it is fascinating to design multifunctional drug delivery system with hybrid 

nanomaterials, there are two disadvantages under consider in application. First, the 

preparation will become complicated compared to that of single-component nanoparticles, 

resulting in the reduction of reproducibility. Second, the drug release pathway and 

metabolism mechanism will be unclear after the addition of another material. Both of them 

are of great importance for pharmaceutical adjuvants. Therefore, every aspect of hybrid 

materials should be thoroughly studied.

CONCLUSIONS

Recent progress reveals the great potential of nanoscale materials as novel pharmaceutical 

adjuvants. Nanomaterials are capable of transporting insoluble drugs in aqueous solution, 

reducing adverse side-effects, delivering dual therapeutic agents simultaneously, targeting 

drugs to disease lesions and controlling drug release in the desired environment. However, 

despite the enormous potential of nanoscale materials, considerable challenges must be 

addressed before they can be translated into clinical use. Pharmaceutical adjuvants must 

fulfill specific criteria, like biocompatibility, stability in physicochemical conditions, 

protection of active drugs, and low toxicity, in order to meet the requirements of the FDA. In 

addition, these materials should be reproducible in a scalable manner with high purity and 

low cost. Most reported nanomaterials are synthesized and modified in small batches. 

Standard protocols must be provided for industrial-scale production of nanoscale 

pharmaceutical adjuvant materials. Comprehensive assessment of the biosafety issues of 

nanomaterials, such as biocompatibility, biodegradation and biodistribution, should also be 

provided. Drug delivery mechanisms should be further studied for a better understanding of 

pharmacodynamics and pharmacokinetics of different nanocarriers. As far as we know, size, 

shape, charge, functional groups, and other propeties of nanomaterials all have an impact on 
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their interaction with biosystems. We need to understand the role played by each property, 

so that the pharmacological attributes of nanomaterials can be optimized. Nowadays, many 

scientists are working hard to overcome these challenges and we are sure that nanoscale 

materials have a bright future as pharmaceutical adjuvants.
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Figure 1. 
The desired characteristics of a multifunctional nanosystem composed of nanoscale 

pharmaceutical adjuvant materials. (A) The materials should be non-toxic to satisfy 

biosafety criteria and responsive to stimuli for triggered release of drugs. (B) Drugs should 

be carefully protected before they reach the disease site. (C) The drug vehicle should be 

stable in the physiological environment and resistant to clearance. (D) By conjugating with 

targeting ligands, active targeting can be achieved. Meanwhile, passive targeting can be 

realized by controlling the size of the multifunctional nanosystem.
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Figure 2. 
Passive and active targeting of nanoparticles. M-Dox: non-functionalized Dox-encapsulated 

micelle; TPFM-Dox: tumor-penetrating peptide functionalized Dox-encapsulated micelle. 

The shade of color in the images stands for the amount of nanoparticles in tumors and in 

cells. Reprinted with permission from [24], T. Wei, et al., Functionalized nanoscale micelles 

improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett. 13, 2528 (2013). © 

2013, American Chemical Society.
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Figure 3. 
Representative biosafe nanoscale pharmaceutical adjuvant materials.
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Figure 4. 
Chemical structures of representative polymers and cyclodextrins as pharmaceutical 

adjuvant materials.
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Figure 5. 
A chitosan-based micelle that can overcome drug resistance of HepG2 cells. (A) Scheme of 

P-gp inhibition of NOSC and P-gp bypassing of PTX. (B) Cellular uptake of different PTX 

formulations in HepG2 and HepG2-P cells. (C) Cytotoxicity evaluation of different PTX 

formulations toward HepG2-P cells after 48 h treatment. (D) Tumor weights of HepG2-P 

xenograft mice model after different PTX formulation treatment at day 21. (E) H&E stained 

tumor sections after the treatment at day 21. (F) PTX accumulation in tumor tissue after 

intravenous injection of different PTX formulations into Heps and Heps-P tumor-bearing 

mice. Reprinted with permission from [77], X. Jin, et al., Paclitaxel-loaded N-octyl-O-

sulfate chitosan micelles for superior cancer therapeutic efficacy and overcoming drug 

resistance. Mol. Pharm. 11, 145 (2014). © 2014, American Chemical Society.
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Figure 6. 
PEG-protected nanoparticles with improved pharmacokinetics. (A) Structure of the PEG–

PLGA copolymer. (B) Blood clearance curves of I125-labeled BSA in PEG-PLGA and 

PLGA nanoparticles. (C) Tissue distribution of I125-labeled BSA at 12 h in PEG-PLGA and 

PLGA nanoparticles. Reprinted with permission from [89], Y.-P. Li, et al., PEGylated 

PLGA nanoparticles as protein carriers: Synthesis, preparation and biodistribution in rats. J. 

Control Release 71, 203 (2001). © 2001, Elsevier. (D) Molecular schematic of PEG coating 

on NR surface and stability of NRs in water and serum. (E) Blood clearance curves of PEG-

protected Au NRs. (F) Thermal imaging of PEG-protected Au NRs in tumor tissue 72 h post 

intravenous injection. Reprinted with permission from [90], G. von Maltzahn, et al., 

Computationally guided photothermal tumor therapy using long-circulating gold nanorod 

antennas. Cancer Res. 69, 3892 (2009). © 2009, American Association for Cancer Research. 

(G) SWNTs coated with PMHC18-mPEG. (H) Blood circulation curves of different PEG-

coated SWNTs. (I) Blood circulation half-lives of different PEG-coated SWNTs. Reprinted 
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with permission from [91], G. Prencipe, et al., PEG branched polymer for functionalization 

of nanomaterials with ultra-long blood circulation. J. Am. Chem. Soc. 131, 4783 (2009). © 

2009, American Chemical Society. (J) Schematic representation of PEG-protected QD 

containing silica particle. (K) Fluorescence intensity of blood samples taken at different time 

points (indicated in minutes). (L) Biodistribution analysis of bare and PEG-protected 

particle by cadmium (Cd, a component of the QD) quantification. Reprinted with permission 

from [92], M. M. van Schooneveld, et al., Improved biocompatibility and pharmacokinetics 

of silica nanoparticles by means of a lipid coating: A multimodality investigation. Nano Lett. 

8, 2517 (2008). © 2008, American Chemical Society. (M) Schematic structure of the 

PEGylated silica nanoparticle. (N) Nonspecific protein adsorption of protein on naked and 

PEG-protected silica nanoparticles after incubation with protein solution. (O) FTIR spectra 

of naked and PEG-protected silica nanoparticles after incubation with 5% serum solution. 

Reprinted with permission from [93], B. Thierry, et al., Electrostatic self-assembly of PEG 

copolymers onto porous silica nanoparticles. Langmuir 24, 8143 (2008). © 2008, American 

Chemical Society.
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Figure 7. 
Microscope images of (A) acetal-derivatized dextran nanoparticles. Reprinted with 

permission from [105], E. M. Bachelder, et al., Acetal-derivatized dextran: An acid-

responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc. 130, 

10494 (2008). © 2008, American Chemical Society. (B) lipid-coated PLGA/siRNA 

particles. Reprinted with permission from [130], W. Hasan, et al., Delivery of multiple 

siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 

12, 287 (2011). © 2011, American Chemical Society. (C) cisplatin-loaded milk protein 

nanoparticles. Reprinted with permission from [148], X. Zhen, et al., Cellular uptake, 

antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. 

Biomaterials 34, 1372 (2012). © 2012, Elsevier. (D) DNA origami nanostructures. 

Reprinted with permission from [173], Q. Jiang, et al., DNA origami as a carrier for 

circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396 (2012). © 2012, American 

Chemical Society. (E) MSNs. Reprinted with permission from [191], I. Slowing, et al., 

Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the 

endocytosis by human cancer cells. J. Am. Chem. Soc. 128, 14792 (2006). © 2006, 

American Chemical Society. (F) Au NRs; (G) Au@SiO2 nanoparticles. Reprinted with 

permission from [212], Z. Zhang, et al., Mesoporous silica-coated gold nanorods as a light-

mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 24, 1418 

(2012). © 2012, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (H) PNiPAM/

AA@SiO2 nanoparticles. Reprinted with permission from [227], X. Hu, et al., 

Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release 

with thermal and pH dual response. J. Mater. Chem. B 1, 1109 (2013). © 2013, Royal 

Society of Chemistry.
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Figure 8. 
Schematic illustration of three different nanovalve-based stimuli-responsive controlled drug 

release mechanisms in MSNs.
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Figure 9. 
Applications of LSPR effect of gold nanostructures in pharmaceutical research.
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Table I

Structures of commonly used lipids in pharmacy research.

Lipid Abbr. Structure

L-α-phosphatidylcholine, hydrogenated (Soy) HSPC

1,2-dioctadecanoyl-sn-glycero-3-phosphoethanolamine DSPE

1,2-dioctanoyl-sn-glycerol DG

L-α-phosphatidic acid PA

L-α-phosphatidylglycerol PG

1,2-dilauroyl-sn-glycero-3-ethylphosphocholine Ethyl PC

1,2-di-O-octadecenyl 3-trimethylammonium propane DOTMA

Cholesterol Chol.
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Table II

Examples of targeting ligands.

Category Name Target and indication Refs.

Protein

 Antibody Trastuzumab (Herceptin®) HER2/neu [230, 231]

Bevacizumab (Avastin®) VEGF [232]

Cetuximab (Erbitux®) EGF receptor [233, 234]

Rituximab (Rituxan®) CD20 [235]

Ibritumomab tiuxetan (Zevalin®) CD20 [236]

Tositumomab and tositumomab (Bexxar®) CD20 [237]

Gemtuzumab ozogamicin (Mylotarg®) CD33 [238]

Alemtuzumab (Campath®) CD52 [239]

 Others Transferrin Transferrin receptor [240, 241]

Low density lipoprotein Folate receptor [242]

Heavy-chain ferritin Transferrin receptor 1 [243]

Peptide RGD ανβ3-integrin [244, 245]

CRGDK Neuropilin-1 [24]

NGR CD13 [246]

SP5-52 Tumor neovasculature [247]

PIVO-8 Tumor angiogenesis [248]

PIVO-24 Tumor angiogenesis [248]

LyP-1 Tumor hypoxia and lymphangiogenesis [249]

RVG Acetylcholine receptor [250]

TAT Cell nucleus [166, 251]

Nucleic acid: aptamer Macugen Vascular endothelial growth factor [252]

AS1411 Nucleolin [253, 254]

sgc8 Protein tyrosine Kinase 7 [255]

S1.3/S2.2 Mucin 1 [256]

TD05 Immunoglobulin μ-heavy chains [255]

A10 Prostate-specific membrane antigen [257]

TBA α-thrombin [258]

Apt-αvβ3 αvβ3 integrin [259]

B28 HIV gp120 [260]

A30 HER3 [261]
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