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® Background and Aims The interaction between the gall-forming grapevine parasite, phylloxera, and the suscep-
tible grapevine species Vitis vinifera was investigated.

e Methods Phylloxera and grapevines were cocultivated using both potted and micropropagated grapevines.
Development of nodosities on primary roots was studied by microscopy and histochemistry, and nodosities were
analysed for biochemical changes and changes in gene expression.

e Key Results Within a nodosity, phylloxera fed at a site in the root cortex. Nodosity development was character-
ized by swelling of the root tissue distal to the feeding site, lack of development of a suberized endodermis, and
starch and amino acid accumulation, and was eventually followed by root necrosis. No evidence of a defence
response was observed in pre-necrotic nodosities, but defence-type responses were observed in tissue adjacent to
necrotic regions. Changes in gene expression were not detected by northern hybridization using DNA probes
encoding a range of V. vinifera transcripts.

e Conclusions Nodosities on V. vinifera potentially function as nutrient reservoirs, and defence responses to

phylloxera attack were not detected.
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INTRODUCTION

Grape phylloxera (Daktulosphaira vitifoliae Fitch) is an
aphid-like gall-forming parasite of grapevines (Vitis spp.). It
forms pouch-like leaf galls, and/or superficial root galls on
its natural hosts, American Vitis species, and forms
damaging root galls on the European grape Vitis vinifera
L. The fleshy galls formed on primary roots by swelling of
the root cortex are called ‘nodosities’. Galls that form on the
roots of V. vinifera are metabolically active organs suited to
the nutritional requirements of phylloxera, an obligate
biotroph on this genus, and can support populations with
high reproductive rates. Phylloxera infestation is capable of
destroying the root system of V. vinifera vines (Granett et al.,
2001).

A few studies of the interaction between phylloxera and
grapevine roots have described anatomical changes in the
root during formation of nodosities (Niklowitz, 1954;
Hofmann, 1957; Forneck et al., 2002) and investigated the
biochemical (phenolic acids, sugars) composition of
nodosities (Denisova, 1965; Sobetskiy and Derzhavina,
1973). In particular, the detailed anatomical study of
nodosity formation by Niklowitz (1954) provides an
excellent background to current observations of the inter-
action.

New technologies offer the potential to obtain more
detailed knowledge of the interaction between phylloxera

* For correspondence. Present address Museum of New Zealand Te Papa
Tongarewa, PO Box 467, Wellington, New Zealand. E-mail: alisonk@
tepapa.govt.nz

 Deceased September 2003.

and the grapevine. The present study investigates the
interaction between a susceptible grapevine, V. vinifera
‘Shiraz’, and two isolates of phylloxera, VWL-1 and SRU-1
(Corrie et al., 1997). These isolates are genetically distinct,
but the interaction of both with V. vinifera may be
considered ‘compatible’ (i.e. phylloxera are able to form
galls and reproduce on the grapevine roots; Kellow et al.,
2002). Microscopic and biochemical methods were selected
to investigate the role of nodosities as nutrient sinks, and the
defence response, if any, of V. vinifera roots to phylloxera
attack. Northern blot hybridization, using a range of cDNA
probes, was used for preliminary screening of gene expres-
sion patterns in uninfested roots compared with nodosities.

MATERIALS AND METHODS

Co-cultivation of phylloxera with grapevines

Phylloxera (Daktulosphaira vitifoliae) isolate VWL-1 was
collected from own-rooted V. vinifera. ‘Cabernet
Sauvignon’ vines at Brown Brother’s Whitlands vineyard
in the King Valley, Victoria, then maintained on excised
roots of V. vinifera using methods described by Granett et al.
(1985). SRU-1 phylloxera were collected from leaf galls on
‘Schwarzmann’ (V. riparia X V. rupestris) vines at
Campbell’s vineyard, Rutherglen, Victoria, and applied
directly to experimental (V. vinifera) grapevines. These two
strains of phylloxera were selected as they were readily
available and had both been genetically characterized
(Corrie et al., 1997).
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Potted grapevines (V. vinifera ‘Shiraz’ accession 12/
BVRC-12-C12A obtained from the Riverland Vine
Improvement Association) were propagated from rootlings
in a steam-sterilized potting mix of 2 parts peat: 3 parts
coarse sand: 4 parts perlite, in 17-5 cm diameter pots and
inoculated with phylloxera infested root pieces (2 X 5 cm)
or leaf material (5-10 leaf galls). Infested vines were
maintained in a shadehouse. To keep the potting mix
temperature at approximately 25 °C, pots were placed in pits
filled with moist sand, or were wrapped in aluminium foil to
minimize radiant heat from the sun. (Potting mix tempera-
ture in ‘untreated’ pots reached temperatures of 32-37 °C
during the day.) Vines were watered by drip irrigation, and
sprayed on alternate fortnights to control fungal disease and
some insect pests with propiconazole (0-01 % v/v) and B.t.
toxin (0-1 % wi/v) suspension, respectively. Two-spotted
mites were controlled with predatory mites. Uninoculated
vines were propagated and maintained under similar
conditions in a separate phylloxera-free shadehouse.
Nodosities were harvested 6 weeks following inoculation.

All co-cultivations were carried out in the summer, within
the phylloxera quarantine district of Rutherglen, Victoria,
Australia and root material was disinfested by freezing or
chemical fixation, before transport to The University of
Adelaide, Glen Osmond, South Australia for analysis.

Microscopy

Uninfested primary roots and nodosities formed at root
tips by either VWL-1 or SRU-1 phylloxera isolates were
harvested and most were cut into 1 cm lengths, fixed in FAA
(5 % formaldehyde, 5 % propionic acid, 90 % ethanol) for at
least 48 h, and dehydrated through an alcohol series (ethanol
2 h, propanol 2 h, butanol 2 h). The hydrated material was
embedded in glycol methacrylate [GMA; 93 % 2-hydroxy-
ethyl methacrylate, 7 % polyethylene glycol 400, 0-6 %
(w/v) benzoyl peroxide] as follows: 1 part butanol: 1 part
GMA for 2 h, GMA for 48 h, fresh GMA for 48 h, then
polymerized in fresh GMA in sealed gelatine capsules in an
oven at 60 °C for 48 h. Sections 4 um thick were cut on a
Reichart-Jung Supercut microtome fitted with glass knives.
Some nodosities with isolate SRU-1 were cut into 2-mm
lengths, fixed for 48 h in 1-25 % glutaraldehyde, 4 %
paraformaldehyde, 4 % sucrose, pH 7-2, then washed twice
for 30 min in phosphate buffered saline (PBS) with 4 %
sucrose. These samples were post-fixed in 1 % (w/v) OsOq4
in PBS for 2 h, then dehydrated through an alcohol series
(70 % ethanol 3 X 20 min, 90 % ethanol 3 X 20 min, 95 %
ethanol 3 X 20 min, 100 % ethanol 3 X 20 min, 100 %
ethanol 1 X 60 min). The dehydrated material was
embedded in Procure araldite-epoxy resin as follows:
1 part ethanol: 1 part resin for 8 h, 100 % resin 3 X 8 h,
then polymerized in fresh araldite-epoxy resin in a vacuum
oven at 70 °C. Sections 0-5 um thick were cut on a Reichart-
Jung Ultracut microtome fitted with a glass knife.

Staining of sections embedded in GMA with periodic
acid/Schiff’s reagent (BDH, Poole, UK) with a Toluidine
Blue O counterstain (PAS/TBO) was according to O’Brien
and McCully (1981). The presence of starch was confirmed
by PAS staining with no TBO counterstain. For staining
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with TBO alone, GMA sections were stained in 0-05 % (w/
v) TBO pH 4-5, while araldite-epoxy resin sections were
stained in 0-5 % (w/v) TBO pH 11-1. Sudan Black staining
of GMA sections was according to Bronner (1975). Stained
sections were mounted in Surgipath mounting medium. For
examination of autofluorescence, unstained GMA sections
were mounted in either 70 % (v/v) glycerol or Surgipath
mounting medium and observed under UV excitation
(365 nm excitation, 400 nm barrier filters). All photographs
were taken using an Olympus BH-2 compound photomicro-
scope with a BH2-RFCA excitation cube for fluorescence
microscopy.

For the study of nodosity development, nodosities with
isolate VWL-1 were sorted into four categories according to
the developmental stages (instars) of the phylloxera present.
Stages two and four (Fig. 1) were selected as being
representative of an immature (with first and second instar
phylloxera) and a mature nodosity (with adult phylloxera),
respectively. Sections were cut from at least three nodosities
of each stage. For the histochemical studies, at least three
uninfested roots were sectioned 0-5—1-0 cm behind the root
tip. Thus the distance from the root tip was the same for
sections of uninfested roots and nodosities. At least ten
sections were observed for each replicate and each
histological method.

Starch content of roots and nodosities

Root tips harvested from uninfested vines, and nodosities
harvested from vines infested with phylloxera isolate
VWL-1, were quickly immersed in liquid nitrogen.
Uninfested root tips and nodosities at developmental stages
two and four were selected from pooled samples for
determination of starch content using an enzymatic assay
modified from Burton er al. (2002). Frozen root tissue
(100 mg), ground to a fine powder in a mortar and pestle,
was mixed with 1-5 mL 80 % ethanol, incubated on ice for
20 min and then centrifuged at 3000 g for 10 min, and the
supernatant discarded. The remaining pellet was washed
twice by resuspending in 2 mL 80 % ethanol and
centrifuging as above. After resuspending the pellet in
2 mL H,0, the total volume of the suspension was
measured, then duplicate 0-5 mL aliquots were placed in
screw-capped eppendorf tubes and the starch solubilized by
autoclaving at 121 °C for 15 min. To each tube the
following were added: 0-5 mL 100 mM sodium acetate
pH 52, 2 uL o-amylase (18 000 U mL-!, Boehringer,
Mannheim, Germany), 8§ UL amyloglucosidase (at 14 U
mL-!, Sigma, St Louis, MO, USA), and incubated at 37 °C
for 4 h yielding ‘digested starch’. The resultant glucose
concentration was determined spectrophotometrically by
mixing 25 puL ‘digested starch’ in a 1 mL cuvette with the
following: 925 puL buffer mix (100 mM Bicine pH 7-7, 5 mM
MgCl,, 0-5 mM NAD), 50 pL 20 mM ATP, 2-5 mL
hexokinase (200 U mL~!, Boehringer, Mannheim,
Germany). The optical density (OD) was measured at
340 nm and then 2-5 pL glucose 6-phosphate dehydrogen-
ase (1000 U mL-!, Sigma St Louis, MO, USA) was added to
the cuvette. After mixing, the OD was monitored at 340 nm
until stable. The concentration of glucose (mol per 25 puL
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F1G. 1. Development and anatomy of nodosities induced by isolate VWL-1. (A, B) Stage two and stage four nodosities, respectively. Scale bars =
2 mm. (C, D) Transverse sections though stage two and stage four nodosities, respectively, stained with PAS/TBO. Amyloplasts are evident in the
cortex (C) between the feeding site (FS) and stele (S). Scale bars = 100 um.

‘digested starch’) was calculated as AODsyy X 6227
(extinction coefficient for reduction of NAD* to NADH
622 mM~! cm™!). The concentration of starch in the initial
samples was then calculated on the basis of 1 wmol glucose
being released from 162 pg starch, with appropriate dilution
factors taken into account.

Free amino acid and amide content of roots and nodosities

Root tips and stage four nodosities from vines infested
with phylloxera isolate VWL-1 were harvested in the same
manner as for starch assays, with each tissue type sampled
in triplicate, and the means presented. Frozen root tissue
(0-5 g) was ground to a fine powder in a mortar and pestle
and placed in a 2 mL eppendorf tube with the following
added: 600 UL methanol, 250 UL chloroform, 150 pL de-
ionized water, 100 UL 1 % (w/v) homoarginine hydro-
chloride in water (internal standard). The tubes were mixed
for 20 min, then centrifuged at 13 000 g at 4°C for 5 min and
the aqueous phase transferred to a fresh tube. From this, a
100 pL aliquot was transferred to a fresh tube and diluted
1 :5in 0-0131 % (w/v) carboxymethyl cysteine (internal
standard) in borate buffer (pH 8-5), then centrifuged at
13 000 g for 30 min. The final supernatant was analysed by
reversed phase HPLC at the Australian Wine Research
Institute (AWRI), Urrbrae, Australia as described in Stines
et al. (2000).

Northern blot analysis of gene expression

Northern blot analyses were carried out using total RNA
extracted from uninfested root tips or nodosities from vines

infested with phylloxera isolate VWL-1. Root tips or
nodosities were harvested and immediately frozen in liquid
nitrogen. Total RNA was extracted using methods described
by Davies and Robinson (1996). RNA was separated in
denaturing formaldehyde—agarose gels and blotted onto
nylon membranes (Hybond N, Amersham) using standard
protocols (Ausubel et al., 1999). Northern hybridization was
carried out as follows: membranes were prehybridized in 5—
10 mL 5 X SSC, 0-5 % (v/v) SDS, 5X Denhardts reagent,
100 pug mg~! freshly denatured, sheared salmon testes DNA
(Sigma) for 1 h at 65 °C. cDNA probes labelled with o-32P
dCTP (Geneworks, Adelaide, Australia) using a Megaprime
labelling kit (Amersham) were added directly to the
prehybridization solution and hybridized at 65 °C overnight.
Hybridized blots were washed twice in 2X SSC, once in 1 X
SSC then once in 0-1X SSC as described in Tattersall et al.
(1997). Hybridized blots were exposed and viewed using a
Molecular Dynamics phosphorimager, and images con-
verted to TIFF files for preparation of figures. The cDNA
clones used as probes are listed in Table 1. In all cases the
cDNA sequences were extracted from their plasmid vectors
and purified by agarose gel electrophoresis prior to
labelling.

RESULTS
Nodosity development and anatomy

Phylloxera-induced nodosities developed immediately
behind the root tip, in or near the zone of elongation.
Examples representative of VWL-1-induced nodosities,
stages two and four, including transverse sections, are
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shown in Fig. 1. All sections of stage two nodosities
showed that the root tissues were differentiated with a
recognizable primary root anatomy (Fig. 1C). Cells of the
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cortex and stele adjacent to the feeding site were flattened
in a radial direction, while those distal to the feeding
site  were rounded. There was little evidence of
hypertrophy of cortical cells distal to the feeding site, with
root swelling in the cortex more likely to be caused by
increased cell division. In sections of some stage two
nodosities, the endodermis was poorly defined, indicating
a partial failure to differentiate, while in sections of
other stage two nodosities, the endodermis was clearly
defined. More mature, stage four, nodosities (Fig. 1B, D)
had clearly differentiated vascular tissues in the stele
indicating ‘normal’ development of root tissue. Nodosities
induced by isolate SRU-1 showed similar morphology
(Kellow, 2000). Nodosities eventually became necrotic,
and while the cause was unknown, it was not due to
fungal infection, as it occurred in aseptic tissue culture
cocultivations.

Location of feeding sites

Transverse sections through a stage four (mature) SRU-1-
induced nodosity in GMA illustrate how the stylet pene-
trated through the cortical cells and terminated in a single
cell, from which the phylloxera was presumably feeding
(Fig. 2A, B). Observations of sections of four nodosities
indicated that the stylet tip was usually located four to five
cell layers below the epidermis, and was never observed
within the stele. It was not clear, at this level of resolution,
whether the stylet tip actually penetrates the cytoplasm or
the vacuole of the putative feeding site cell. Cells
immediately surrounding those penetrated by the stylet
appeared unaffected.

TBO staining of sections in epoxy resin of stage four
nodosities induced by isolate SRU-1 showed that cells
through which the stylet had passed were plasmolysed.
Figure 2C shows a typical example of cells where the
plasmalemma has collapsed inward from the cell wall and
the cytoplasm is dark and irregular with vesicles apparent.
In another section from the same nodosity as shown in
Fig. 2C, a stylet-penetrated cell one to two layers deeper in
the cortex appeared to have even less cytoplasm remaining
(Kellow, 2000). In all sections examined, most of the cells
surrounding those penetrated by the stylet appeared
unaffected, containing lightly stained cytoplasm of more
regular appearance, and one or more vacuoles, some of
which are heavily stained. The exceptions were those cells
towards which the stylet was directed, which also contained
some granular structures.

Stylet tracks (the remainder of stylet sheaths left behind
when the aphid withdraws its stylet; Miles, 1999) were
viewed by autofluorescence under UV excitation. In
V. vinifera stage four nodosities induced by both phylloxera
isolates, only a single, unbranched stylet track was visible at
any one feeding site and no other evidence of multiple
penetration points formed by a single insect was observed
(e.g. Fig. 2D).

F1G. 2. Location of feeding sites in nodosities induced by isolate SRU-1
(A-C) or VWL-1 (D). (A) 4 um transverse section in GMA of nodosity
at point of stylet penetration (arrow), viewed with Nomarski differential
interference contrast optics. Scale bar = 10 pum. (B) As for (A), adjacent
section showing stylet tip (arrow). The stylet penetrates through the
epidermis (Ep) and several cell layers into the cortex (C) of the root, but
does not reach the stele. Scale bar = 20 wm. (C) 0-5 pum transverse
section in epoxy resin, stained with TBO, showing epidermis (Ep);
collapsed plasmalemma (Pl); vesicles (V); granular structures (G);
section cuts obliquely through stylet (St). Scale bar = 10 um. (D) 4 um
transverse section in GMA viewed under UV (365 nm) excitation,
showing stylet track of feeding phylloxera. Epidermis (Ep); hypodermis
(H); stylet track (ST); feeding site (FS). Scale bar = 50 um.

Histochemistry of root responses to phylloxera feeding

Sudan Black staining demonstrated the presence of
suberin lamellae in all walls of endodermal cells in
uninfested roots (Fig. 3A) but, in three out of three
nodosities sectioned, no suberin was detected in the
endodermis (Fig. 3B). Suberization of epidermal or cortical
cells, which could indicate the activation of a defence
response (Boubals, 1966; King and Rilling, 1991), was
never observed at active feeding sites. Similarly, no
autofluorescent compounds were detected in pre-necrotic
(healthy) nodosities other than those already present in
uninfested roots (Fig. 2D). Not even very localized accu-
mulation of autofluorescent compounds was observed at the
feeding site.

In a stage four nodosity showing early signs of necrosis,
observation under UV excitation showed accumulation of a
compound emitting bright blue-white autofluorescence in
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F1G. 3. Histochemistry of root response to phylloxera feeding. Shown
are transverse sections stained with Sudan Black (A, B, D), or observed
under UV (365 nm) excitation (C). (A) An uninfested root endodermis
with ‘state two’ suberization (arrows). Scale bar = 20 um. (B) A nodosity
induced by isolate VWL-1 where the endodermis has no detectable
suberization. Scale bar = 20 um. (C) A nodosity induced by isolate SRU-
1 with necrotic region (Ne) surrounded by blue-white fluorescence
(arrowhead) and royal blue fluorescence, which is indicative of suberin
(arrow). Cells in the necrotic region were filled with phenolic
compounds. This region extends beyond the endodermis (En). Scale bar =
100 um. (D) As for (C), showing suberization (arrow) of healthy tissue
surrounding necrotic region (Ne). Scale bar = 50 pm.

tissue immediately adjacent to the necrotic region of the
cortex (Fig. 3C). Suberin lamellae, detected by both royal
blue autofluorescence (Fig. 3C), and by Sudan Black stain
(Fig. 3D), were deposited in walls of the cell layers
immediately outside this necrotic region.

Accumulation of starch, free amino acids and amides

Starch accumulation, in the form of amyloplasts, was
evident in the cortex of PAS/TBO stained VWL-1-induced
nodosities adjacent to phylloxera feeding sites (Fig. 1C, D).
Amyloplasts were also seen in SRU-1-induced nodosities
and confirmed by PAS staining (Kellow, 2000). In
uninfested roots, amyloplasts were much smaller and
scattered throughout the root cortex (Kellow, 2000). The
concentration of starch in stage two nodosities formed by
VWL-1 phylloxera, as measured by an enzymatic assay,
was at least ten times that of uninfested root tips (Table 2).
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TABLE 2. Concentration of starch in uninfested roots or
nodosities of V. vinifera ‘Shiraz’

Starch concentration ug mg™' f. wt
(mean * range)*

Tissue sample Rep. 1 Rep. 2

Uninfested root 1-80 = 0-19 2-89 * 038
Immature nodosities (stage two) 30-25 £ 2-56 3155 £ 7-19
Mature nodosities (stage four) 19-72 = 0-68 26-63 = 1:32

* Each replicate represents individual tissue samples, each result being
the mean of duplicate assays on these samples.

The concentration of starch in stage two nodosities indicates
a relatively early onset of starch accumulation.

The total concentration of free amino acids and amides in
VWL-1-induced nodosities was greater than that in un-
infested roots (Table 3). There were also changes in the
relative amounts of particular compounds, with the
nodosity : root ratio varying from 0-70 (ornithine) to
26-66 (histidine). Aspartic acid constituted 49 % of the total
amino nitrogen pool in uninfested roots, but only 17 % of
the total pool in nodosities. All other compounds except
ornithine were increased in absolute concentration in
nodosities. In particular, glutamine increased from 14 %
to 31 % of the total pool, to become the predominant form of
free amino nitrogen.

Northern blot hybridization analysis

The results of the northern blot hybridizations using the
cDNA probes listed in Table 1 are shown in Fig. 4.
Hybridizing transcripts were readily detected in both
uninfested roots and VWL-1-induced nodosities using
cDNA probes for stilbene synthase (StSy; Fig. 4B), chal-
cone synthase (CHS; Fig. 4C), PAL (Fig. 4D), Grip 15
(Fig. 41), Grip 28 (Fig. 4]), Grip 68 (Fig. 4L), VvSUC27
(Fig. 4N) and Grip 21 (Fig. 40). VvTL2 (Fig. 4G)
transcripts were present at lower levels, and polyphenol
oxidase (PPO; Fig. 4E), VVTL1 (Fig. 4F), VvPR4a (Fig. 4H)
and Grip 31 (Fig. 4K) transcripts were not detected in either
tissue type. VvSUC12 also showed little to no expression in
uninfested roots or nodosities (Fig. 4M). In no case was any
observable difference apparent in steady state levels of
hybridizing transcripts in RNA from nodosities when
compared with that from uninfested roots.

DISCUSSION

This study set out to investigate changes in primary root
tissue following infestation by phylloxera and formation of
phylloxera-induced galls, or ‘nodosities’. These nodosities
are nutrient reservoirs from which grape phylloxera,
obligate biotrophs of grapevines, are able to obtain all
their nutritional requirements. The feeding site of phyl-
loxera within nodosities was confirmed by observation of
stylet tracks in parenchyma cells in the outer region of the
root cortex. Most aphids feed directly from phloem, but
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TABLE 3. Free amino acids and amides in uninfested roots and nodosities of V. vinifera ‘Shiraz’

Uninfested roots

Nodosities

Mean conc. * s.d. % of total*

Mean conc. * s.d. % of total* Ratio nodosity:

(ng g f. wt) (ug g f. wt) root**
Aspartic acid 653-64 = 36-12 49.75 581-39 *= 62-68 17-60 0-89
Glutamic acid 209-15 = 3920 15-92 448-68 * 50-28 1358 2-15
Hydroxyproline 6-66 = 1-47 0-51 20-08 £ 195 0-61 3.02
Asparagine 36-07 = 1638 275 212-89 * 37-67 6-44 590
Glutamine 180-83 = 43-15 13-76 1016-88 = 447-69 30-78 5-62
Serine 2276 *+ 2-52 1.73 84-35 + 22.01 2:55 3.71
Histidine 1-28 = 070 0-10 34.13 = 22-17 1.03 26-66
Glycine 7-09 = 0-51 0-54 14-80 = 1.72 0-45 2-09
Threonine 12:15 = 273 0-92 81-42 * 23.34 2-46 6-70
Alanine 4732 * 9:62 3-60 143-33 = 63.95 4.34 3.03
GABA 50-57 £ 13-60 3-85 87-30 = 20-36 2-64 1.73
Proline 25-18 = 339 1.92 154-51 *= 84-85 4-68 6-14
Tyrosine 8:42 = 045 0-64 32:49 * 3-60 0-98 3-86
Arginine 972 + 0-49 0-74 139-28 = 70-72 422 14-33
Isoleucine 10-07 = 173 0-77 60-48 * 1428 1-83 6-01
Leucine 2:45 = 1.82 0-19 821 = 1.75 0-25 3.35
Valine 7-40 = 121 0-56 3277 = 7-06 0-99 443
Methionine 7-35 = 0-56 0-56 4276 = 871 1-29 5-82
Phenylalanine 6-28 = 092 0-48 87-51 £ 20-21 2-65 13-93
Ornithine 3.54 + 2.58 0-27 2:47 = 2.02 0-07 0-70
Lysine 6-00 = 522 0-46 18:39 = 604 0-56 3.07
Total 1313-90 = 111-89 100-00 3304-13 = 861-78 100-00 2:51

* Concentration of each amino acid/amide as % of total pool.
*#* Ratio of concentration in nodosities to that in uninfested roots.

there are a number of aphid groups (e.g. adelgids) that feed
from parenchyma (reviewed by Pollard, 1973). Phylloxera
appears to fall into this category of feeders.

The insect appeared to feed from one cell, or possibly a
column of adjacent cells progressing successively deeper
towards the stele. Few cells near the stylet track appeared to
be changed or damaged other than those through which the
stylet had passed, which had collapsed plasmalemma, dark
staining indicating an accumulation of tannins (or other
polyphenolics), and vesicles in their cytoplasm. Changes
described here are similar to those reported by Niklowitz
(1954); in particular the collapsed plasmalemma and
vesicles, which Niklowitz described as ‘bubble filled
looking structures’.

Without ultrastructural studies it was not possible to
determine whether or not the stylet penetrated the
plasmalemma of the cell from which it was actively feeding,
or only penetrated the cell wall. Phylloxera’s feeding may
be comparable with that of the ring nematode Criconomella
xenoplax. This nematode also feeds on root cortical cells
through a stylet, but does not penetrate the plasmalemma of
its food cell (Hussey et al., 1992). Rather, the aperture of the
stylet is closely appressed to the plasmalemma forming a
small hole through which the nematode feeds.

Only single unbranched stylet tracks were observed at
any phylloxera feeding site. This is in contrast with feeding
sites on resistant rootstocks, where multiple and branched
stylet tracks, presumably representing aborted feeding
attempts, were observed in regions in which a single insect
had been probing (Kellow, 2000). Thus, on susceptible
vines, phylloxera appear to be predominantly sedentary

feeders, gaining sufficient nutrition from a single feeding
site to support the growth and development of an individual
(and the production of 100-200 eggs).

Although little is known about the mechanism of gall
induction by insects, it is believed they result from the
injection of some inductive agent, possibly IAA or its
precursors, by the gall-forming insect (reviewed by Miles,
1990). Artificial injection of secondary grapevine roots with
IAA has produced swellings superficially similar to
tuberosities (phylloxera-induced galls on secondary roots;
Granett, 1990), however these swellings failed to attract
phylloxera as tuberosities do. This may be because they
were not functioning as nutrient sinks.

The accumulation of starch in the cortex of nodosities is
consistent with their function as a nutrient sink. This
accumulation would require both enhanced import of
sucrose and its subsequent conversion to starch, which is
normally rapidly turned over in growing primary roots
(Farrar, 1991). Root galls formed by the endoparasitic
nematode Nacobbus aberrans (false root-knot nematode)
also accumulate large quantities of starch (Jones and Payne,
1977). The starch in these galls declines during the
reproductive phase of the nematodes, suggesting its role
as an energy reserve for the nematodes. Other gall-forming
nematodes (e.g. root-knot and cyst nematodes) induce only
minor starch accumulation in plant roots; however, these
nematodes create much more elaborate and specialized
feeding sites (reviewed by Sijmons et al., 1994).

Starch accumulation in nodosities could result from
slowed root growth, from a direct effect on the pathways of
sucrose uptake and starch synthesis, and/or from an indirect
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F1G. 4. Northern hybridization of RNA of V. vinifera ‘Shiraz’ roots and nodosities induced by isolate VWL-1 with defence-related and other cDNA
probes (described in Table 1). For each hybridization, the left lane is 10 ug uninfested root RNA, the right lane 10 pg nodosity RNA; each row
represents one RNA gel. (A) Ethidium bromide-stained lanes show relatively even loading of RNA on each of four gels. (B) Stilbene synthase probe
cDNA clone pSV696. (C) Chalcone synthase probe cDNA clone pBS305. (D) Phenylalanine ammonia lyase probe cDNA clone pBS204.
(E) Polyphenol oxidase probe cDNA clone pID96. (F) Thaumatin-like protein probe cDNA clone VvTLI. (G) Thaumatin-like protein probe cDNA
clone VVTL2. (H) PR-4 type protein probe cDNA clone VvPR4a. (I) Nodule cell wall-related protein cDNA clone Grip 15 (J) Nodule cell wall-related
protein cDNA clone Grip 28. (K) Nodule pericycle-related protein cDNA clone Grip 31. (L) Nodule pericycle-related protein cDNA clone Grip 68.
(M) Sucrose transporter cDNA clone VvSUCI2. (N) Sucrose transporter cDNA clone VvSUC27. (O) Sucrose starvation-related protein cDNA
clone Grip 21.

effect of other physiological changes within the root cortex.
Starch synthesis follows a complex pathway (reviewed by
Ziegler, 1991, and Atwell et al., 1999, pp. 182—185) that is
not yet fully understood. Sucrose, the main solute trans-
ported in the phloem (Atwell et al., 1999, p.167), is
imported into starch-storing sink tissues along a negative
concentration gradient. In the cytoplasm it is metabolized by
sucrose synthase (Zrenner et al., 1995; Koch, 1996) to UDP-
glucose, the substrate for starch synthesis (Sung et al., 1989;
Patrick, 1990; Wang et al., 1993). The regulation of the
enzymes in this pathway is under complex control and it is
possible that starch accumulation in nodosities could be
precipitated, via changes in gene expression, due to a high
level of sucrose import.

Nodosities contained higher levels of free amino nitrogen
compounds, in particular glutamine, compared with unin-
fested roots. The high concentrations of amides in particular
are likely to result from increased phloem unloading and
would be expected in active sink tissues, as amides are
thought to become the prominent form of nitrogen transport
into plant tissues during periods of nitrogen assimilation
(Pate, 1975). The total concentration of soluble protein was

increased in nodosities, while the protein profile as assessed
by SDS-PAGE was not significantly altered (Kellow,
2000), indicating that the increase in free amino acid
content in nodosities is not due to enhanced proteolysis or
net tissue breakdown. Increases in the amino nitrogen
content have also been reported in phylloxera-induced leaf
galls when compared with uninfested leaves (Sobetskiy and
Derzhavina, 1973). Ryan et al. (2000), however, were
unable to demonstrate a change in free amino acid levels
that was positively correlated with phylloxera infestation of
excised secondary roots.

Accumulation of starch and amino acids implies
enhanced transport of solutes through plasmodesmata and/
or via an apoplastic route from the phloem into the root
cortex, or slowed growth. This study cannot determine
which mechanism(s) are involved but has shown that
nodosities possess some structural features which might
facilitate solute transport into the cortex. First, cells of the
root cortex and stele adjacent to the feeding site do not
expand radially, meaning the phylloxera feeding site
remains close to the phloem. Secondly, transport of
nutrients to the feeding site would be facilitated by the
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development of apparently normal vascular tissue in
nodosities. Finally, and importantly, the endodermis
in nodosities lacks the suberin lamellae detectable in
uninfested roots.

Non-suberization of the endodermis may enable enhan-
ced apoplastic and/or symplastic transport of solutes from
the stele to the root cortex throughout nodosity develop-
ment. The endodermis in primary roots of dicotyledons
normally goes through two states of suberization as the root
differentiates (Peterson and Enstone, 1996). State two
suberization was present in uninfested grapevine roots at
an equivalent distance from root tip as nodosities described
here. State two endodermis has all walls thickened with
suberin lamellae, resulting in constriction of plasmodesmata
and consequently reduced symplastic, as well as apoplastic,
transport of solutes to the root cortex (Warmbrodt, 1985). In
some cases phylloxera feeding also appeared to inhibit
further differentiation of the endodermis (also noted by
Petri, 1907, cited in Niklowitz, 1954). The mechanism by
which endodermal differentiation is inhibited is unknown. It
may simply result from the prevention of root elongation
subsequent to nodosity formation, but this does not appear
to affect the differentiation of vascular tissues which
continue to develop in nodosities.

No localized defence responses were observed histo-
chemically at any of the phylloxera feeding sites in this
study, in contrast with responses seen in roots of resistant
grapevines (Kellow, 2000). The results of the northern blot
hybridizations, which included several defence-related
cDNAs as probes, further suggest the lack of a defence
response. It seems likely that unless a systemic response is
expected, for example a defence response in a resistant
variety, any changes in gene expression may be only
transient or localized to the site of attack, such that northern
blot hybridization analyses of RNA or total soluble protein
extracts prepared from total gall tissue (Kellow, 2000) are
not likely to detect them.

The accumulation of blue-white autofluorescent material
surrounding the necrotic region in decaying nodosities was
similar to that reported by Dai er al. (1995) in resistant
grapevine leaves following infection with Plasmopara
viticola (downy mildew), indicating a defence-type
response that might include the accumulation of trans-
resveratrol. Similarly, the deposition of suberin lamellae in
the walls of cells surrounding a necrotic region in a decaying
nodosity is reminiscent of the suberized wound periderm
which develops in secondary roots of resistant grapevines
(Boubals, 1966; King and Rilling, 1991). Clearly, however,
neither of the responses observed in decaying nodosities was
strong enough, or rapid enough to protect the root from
either phylloxera attack or further nodosity decay.

These results suggest that the roots of V. vinifera are
capable of defence-type responses, but that they do not
exhibit them in response to phylloxera attack, either because
they do not recognize it as a pest, or because immediate,
localized defence responses are somehow suppressed. Vitis
vinifera is susceptible to many pathogens, and often shows
little or no induced response to their attack (Langcake,
1981; Calderdn et al., 1992; Dai et al., 1995). It is possible
that the stylet sheath (a lipoprotein-rich matrix secreted by
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aphids during stylet penetration) could ‘disguise’ phylloxera
and thus avoid activation of a defence response (Miles,
1999). The induction of nodosity formation clearly indi-
cates, however, that V. vinifera does at least in some way
recognize and react to the presence of this pest.
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