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d Background and Aims The relationship between composition and structure of plant primary cell walls, and cell
mechanical properties is not fully understood, partly because intrinsic properties of walls such as Young's
modulus cannot be obtained readily. The aim of this work is to show that Young's modulus of walls of single
suspension-cultured tomato cells can be determined by modelling force-deformation data.
d Methods The model simulates the compression of a cell between two ¯at surfaces, with the cell treated as a
liquid-®lled sphere with thin compressible walls. The cell wall and membrane were taken to be permeable, but
the compression was so fast that water loss could be neglected in the simulations. Force-deformation data were
obtained by compressing the cells in micromanipulation experiments.
d Key Results Good ®ts were obtained between the model and low-strain experimental data, using the modulus
and initial in¯ation of the cell as adjustable parameters. The mean Young's modulus for 2-week-old cells was
found to be 2´3 6 0´2 GPa at pH 5. This corresponds to an instantaneous bulk modulus of elasticity of approx.
7 MPa, similar to a value found by the pressure probe method. However, Young's modulus is a better parameter,
as it should depend only on the composition and structure of the cell wall, not on bulk cell behaviour. This new
method has been used to show that Young's modulus of cultured tomato cell walls is at its lowest at pH 4´5, the
pH optimum for expansin activity.
d Conclusions The linear elastic model is very suitable for estimating wall Young's modulus from
micromanipulation experiments on single tomato cells. This is a powerful method for determining cell wall
material properties. ã 2004 Annals of Botany Company
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INTRODUCTION

The relationship between the composition and structure of
plant primary cell walls, and cell mechanical properties is
not fully understood. The strength of the cell wall is
considered to be mainly due to cellulose micro®brils (Fry,
1995) but the contribution of other wall components and
their interaction with cellulose is not clear (Cosgrove,
2000a). Ideally, one would relate the material properties of
the cell wall to its composition and structure, preferably
using a functional genomics approach, and consider how
and why these properties respond to the cell environment. In
this respect, the relative simplicity of undifferentiated single
cells from suspension cultures makes them a useful tool.
Using single cells, one could conceive of using functional
genomics to de®ne the roles of different cell wall polymer
types in determining cell wall mechanical behaviour.
However, no reliable method of measuring the material
properties of walls of single cells has yet been reported.

Using mainly uniaxial stretching, mechanical tests on
isolated walls have indicated that the cell wall material is
non-linear viscoelastic-plastic (e.g. Kawamura et al., 1995).
Attempts have been made to simulate turgor and multiaxial
tensions in some experiments (Kamiya et al., 1963;

Richmond et al., 1980), but it would be preferable to
study walls in situ with the actual turgor and original
geometry of living cells. The properties of living and dead
cells with growing or non-growing walls may be different.
A micro-penetration technique has been used for mechan-
ical testing of potato tuber parenchyma tissue (Hiller et al.,
1996; Davies et al., 1998), leading to calculated values of
cell wall stiffness. Unfortunately these values depended on a
dif®cult estimation of cell radius. In any case, this method
cannot be used on single cells, although it is a potentially
valuable method for studies on tissue.

The pressure probe is an excellent tool for studying plant
water relationships and can provide some mechanical
property measurements (Tomos, 2000). However, it has
only rarely been used on single suspension cells (Tomos and
Leigh, 1999; Hukin, 2002). Furthermore, the pressure probe
method can only cause small deformations, not deform-
ations leading to cell bursting. Therefore it cannot be used to
investigate the full range of cell wall mechanical behaviour.

A method of studying particle mechanics that has
recently been used on many cell types is micromanipu-
lation, in which a single cell is compressed between ¯at,
parallel surfaces to provide information on the whole-
cell mechanical response to an applied compressive load
(Zhang et al., 1991; Thomas et al., 2000). Initial work
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on tomato cells from suspension cultures has been
undertaken using such compression experiments (Blewett
et al., 2000), and it has been shown that force-
deformation data can be obtained up to cell bursting.
Key measurements are bursting force and percentage
deformation at bursting, but these are not `intrinsic'
properties of the walls, i.e. they have values that depend
on the measurement method. Intrinsic wall material
parameters such as Young's modulus are required if the
mechanical properties of the wall are ever to be related
to its composition and structure. It would be useful
therefore to be able to extract these properties from
force-deformation data, and this can be achieved by
mathematical modelling. As pointed out by Smith et al.
(1998), this task is facilitated if the form of the cell
wall constitutive equation is known a priori. The cell
wall material properties can then be determined by
matching the force-deformation response of the math-
ematical model to that obtained in a compression
experiment.

Several investigators have modelled the compression
mechanics of thin-walled, liquid-®lled spheres. Thin walls
in this mechanical context are often referred to as `mem-
branes'. Such a membrane is a thin material element that
cannot support bending stresses across its thickness. A cell
wall might be considered to be a (mechanical) membrane.
Feng and Yang (1973) considered the problem of the
deformation and the consequential stresses in an in¯ated,
non-linear elastic, gas-®lled spherical membrane com-
pressed between two frictionless rigid plates. Lardner and
Pujara (1980) extended this model further by considering
the sphere to be ®lled with an incompressible liquid rather
than gas. Their model was able to predict accurately the
deformation of sea urchin eggs, as previously reported by
Yoneda (1973). Liu et al. (1996) improved the computa-
tional algorithm, and applied the model to data on
microcapsules. None of these studies allowed for water
loss from the sphere. Smith et al. (1998) created a ®nite
element model in which volume loss was included, and
applied this to compression data from yeast cells (Smith
et al., 2000). Using a ®nite element method, it was possible
in principle to consider any cell wall material constitutive
equation, although in practice Smith et al. (2000) only
considered the linear elastic case.

There are only two reports of use of the compression
experiment to characterize intrinsic material properties of
plant primary cell walls. Liu (1995) attempted to estimate
Young's modulus from compression experiments on single
pericarp tissue tomato cells, but obtained few data. In an
extensive study, Blewett (2000) developed the experimental
method used here, but found it dif®cult to derive Young's
modulus by mathematical modelling. Bounds of 100±
2300 MPa were found for single suspension-cultured tomato
cells. In the present work, a linear elastic material model
was used to determine Young's modulus of walls of single
undifferentiated tomato cells from suspension cultures. The
quality of the ®t of this model to experimental data, and the
sensitivity of the model to changes in parameter values,
were investigated.

MATERIALS AND METHODS

Tomato cell suspensions

Cell cultures and isolation of single tomato cells have been
described elsewhere (Blewett et al., 2000). The tomato cell
line Lycopersicon esculentum vf36 was used as a model
system. This is a suspension culture derived from a root
radicle callus (provided by Unilever Research Colworth,
Bedford, UK). Cells were subcultured weekly in medium
consisting of MS basal salts (43 g for 10 L), 30 g sucrose
L±1, 2 mg 2,4-dichlorophenoxy acetic acid (2,4-D) L±1, 1 mg
2,isopentyladenine L±1, and 50 mL vitamin solution (100 mg
nicotinic acid, 40 mg glycine, 10 mg pyridoxine hydro-
chloride, 10 mg thiamine hydrochloride, 10 mg folic acid,
1 mg biotin, 20 mL water). The pH was initially 6´0. Cells
were grown in a horizontal rotary shaker set at 100 rpm and
25 °C with low light. Suspension cultures obtained by this
method are nearly in synchronous growth, and so the cells
within a sample are of similar age (Blewett et al., 2000).

Single cells were evident in the culture from week 2 and
passage through a 72 mm mesh separated them from any
aggregates. The single cells were suspended in 0´03 M

mannitol at pH 5, the same osmolality and pH as the
medium at harvest. They were held at 27 6 1 °C during
compression testing.

Compression experiment

The basic experimental apparatus and procedure were
described by Blewett et al. (2000). Cells were compressed
between the ¯at end of an optic ®bre (the micromanipulation
probe) and a glass surface (see Fig. 1). The probe was
mounted on a force transducer, which in turn was mounted
on a micromanipulator (MicroInstruments Ltd, Oxford,
UK). This allowed the probe to be driven at a chosen speed
towards the slide, compressing the cell. The chosen speed
here was 23 mm s±1. The voltage and the time of deformation
could be recorded on a PC-30D data acquisition card
(Amplicon Live-line, Brighton, UK) in a personal computer.
Figure 2A shows typical raw data. A ®ve-point moving
average was used to smooth the data and to determine the
exact start of the compression. Using the speed of motion of
the probe, and allowing for compliance (Mashmoushy et al.,
1998), the probe displacement and the cell deformation
could be calculated, and a force-deformation curve gener-
ated, as shown in Fig. 2B.

The parameters required and the measurements taken

To remove some of the risks of the model producing non-
unique solutions that would ®t the experimental curve using
different combinations of parameter values (Smith et al.,
1998), some of the parameters were ®xed by using values
previously measured on cells grown under the same
conditions. These are described below.

Initial thickness of the cell wall. Using freeze-fracture
scanning electron microscopy, the mean cell wall thickness
of 2-week-old tomato cells from suspension cultures has
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been found to be 126 6 16 nm (Blewett, 2000). This value
was used as the initial wall thickness in the model.

Internal osmotic pressure of the cell and the initial turgor

pressure. The mean initial osmotic pressure of the cells
under the conditions of test was measured directly by single-
cell sampling followed by freezing point depression (Tomos
et al., 1994). The mean initial turgor pressure was calculated
by subtracting the external osmolality from the internal
osmolality. For the 2-week-old tomato cells, the mean initial
osmotic pressure difference and therefore the mean initial
turgor pressure was found to be 0´363 MPa.

MODELLING

Model de®nition

To derive material properties from force-deformation data,
a mechanical model must be developed. The model
formulated here is based on that of Lardner and Pujara
(1980), considering the plant cell wall and membrane as a
liquid-®lled sphere. Unlike Lardner and Pujara (1980), the
wall is considered to be permeable. The outer radius of the
unin¯ated sphere (equivalent to the cell at incipient
plasmolysis) is r0 (Fig. 3A; see Table 1 for list of symbols
used) and its initial wall thickness is h0. The sphere is
in¯ated by an internal pressure to an outer radius of ri

(Fig. 3B). Then the initial stretch ratio ls is de®ned as ls =
ri/r0. The in¯ated sphere is then compressed between two
¯at, parallel surfaces, with the top surface moving at a
constant velocity towards the bottom surface. Following
Lardner and Pujara (1980), it is also assumed that the cell is
axi-symmetrical around its vertical axis before and during
compression, and is symmetric across its equatorial plane.
The geometry of this problem is shown in Fig. 3C.

The liquid is taken to be incompressible, but the wall is
considered permeable and so the internal volume decreases
with compression. Equation (1) describes the volume
change (Kedem and Katchalky, 1958).

dV

dt
� LpA�DPÿ Dp� �1�

where V is the instantaneous internal volume, t is time, Lp is
the hydraulic conductivity of the cell wall, A is the area
available for ¯ow, DP = Pexternal ± Pinternal is the hydrostatic
pressure difference and Dp = pexternal ± pinternal is the
osmotic pressure difference. As the probe velocity (v) is
constant, the volume change can be related to the distance
that the cell has been compressed, rather than to time (Smith
et al., 1998):

dV

dz
� 2Lp

v
A�DPÿ Dp� �2�

where z is half the distance the cell has been compressed
(see Fig. 3C). Equation (2) assumes that solutes do not pass
through the cell membrane, that the cytoplasm is a dilute
and ideal solution, and that the hydraulic conductivity of the
wall, Lp, is constant throughout compression. It is further
assumed here that the osmotic pressure difference (Dp) is
constant during compression, i.e. the water ¯ows into or out
of the cell cause negligible changes in internal cell solute

F I G . 1. Photograph of a single tomato cell from a suspension culture
being compressed between a micromanipulation probe and a glass

surface.

F I G . 2. (A) Raw voltage±time data for compression of a single tomato
cell, and (B) the corresponding calculated force-deformation curve.
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concentrations. The area available for ¯ow is taken to be the
exposed area, i.e. the area not in contact with the two ¯at
surfaces.

To model the cell, the cell wall material properties (its
constitutive equation) need to be considered. Here the cell
wall is considered to be isotropic and its constitutive
equation to be linear elastic and compressible (Poisson's
ratio n is not 0´5). The behaviour is also assumed to be time-
independent, i.e. no viscoelasticity. It should be noted that
the time-scale of the compression experiments is of the
order of 1 s, far too rapid for many physiological responses
that may change the cell wall material characteristics, e.g.
the creep phenomenon described by Cosgrove (2000b).

The theoretical analysis and numerical simulation

The derivation of the equations governing the deform-
ation of the cell is based on analysis by Feng and Yang
(1973) and Lardner and Pujara (1980). The derivation is
given in the Appendix.

In the numerical simulations, the governing equations
were solved by a Runge±Kutta method, using the Matlab
(MathWorks Inc.) ode45 solver. As the chosen constitutive
equation for the wall material is time-independent, the
compression of the cell was solved as a series of static
equilibrium problems following the calculation procedure
of Liu et al. (1996). In each step, the model simulates the
displacement of the probe corresponding to the time

between steps. The probe displacement deforms the cell
from its previous shape. During the time taken for the step
there may be water loss, depending on the wall permeabil-
ity. At the end of the step, the volume of the deformed
sphere is determined from the calculated cell boundary
coordinates r and h (see Fig. 3C). The equations are given
in the Appendix. As in the method of Liu et al. (1996), the
simulated pressure is then adjusted until the new volume
equals the previous volume minus any estimated water loss.
This pressure is then the starting pressure for the next step.
The simulations lead to predicted force-deformation data,
which depend on the values of the model parameters. These
are the hydraulic conductivity (Lp), which determines the
water ¯ow from the cell; Young's modulus (E); Poisson's
ratio (n), which describes the compressibility of the cell wall
material; and the initial stretch ratio (ls), which is the
diameter of the cell at the start of compression compared
with that at incipient plasmolysis.

Dimensionless analysis

To reduce the number of variables and to gain insight, a
dimensionless analysis was conducted. The force has a
dimensionless form of F/(Eh0r0l0

2) and the deformation X =
z/(r0ls), where z is half the distance the cell has been
compressed, i.e. half the displacement of the probe.

F I G . 3. Schematic diagram showing: (A) the geometry of the initial
sphere; r0 is the initial radius of the cell before in¯ation; (B) the
geometry of the in¯ated sphere before compression; ri is the radius of the
cell after in¯ation; and (C) the geometry of a compressed sphere; h is the
half-distance between the probe surface and the plate, r is the maximum
radius of the deformed wall and membrane. In compression, a typical
point like A, at an angle y to the vertical axis of symmetry, moves to
point B. The angle G identi®es points that move to the edge of the

contact region, which has radius rc.

TABLE 1. List of symbols

A Surface area available for ¯ux, mm2

E Young's modulus, MPa
F Compressive force, mN
h0 Initial wall thickness, nm
Lp Hydrostatic conductivity, ms±1 MPa±1

P Turgor pressure, MPa
r0 Initial cell radius, mm
rc Radius of contact region, mm
ri In¯ated cell radius, mm
t Time, s
T Membrane tension, N m±1

v Probe velocity, mm s±1

V Instantaneous internal volume, mm3

W Strain energy function
X Deformation
z Half the distance that the cell has been compressed, mm
Greek letters
e Bulk modulus of elasticity, MPa
h Coordinate perpendicular to the cell equatorial plane
h Half distance between the probe surface and the plate
l Principle stretch ratio
ls Initial stretch ratio
n Poisson's ratio
Dp Osmotic pressure difference, MPa
r Coordinate in equatorial plane
r Maximum radius of the deformed sphere
y Angular position of point on cell wall from vertical

axis of symmetry
G Value of y for points on the edge of the contact region
Subscripts
i In¯ated state
0 Initial state
1 Meridian direction
2 Equatorial direction
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RESULTS

One aim of developing the model was to run a series of
simulations that would show how changes in the parameters
alter the shape and magnitude of the force-deformation
curves generated by the model. These simulations were
carried out by changing the hydraulic conductivity (Lp),
Poisson's ratio (n) and initial stretch ratio (ls). Other
parameters were either ®xed a priori (h0, Dpi and v) or were
to be found by ®tting (E).

Effect of hydraulic conductivity (Lp)

Typical simulation results are shown in Fig. 4. It can be
seen that increasing the hydraulic conductivity (Lp) pro-
duced a lower force for a given displacement. If the cell
membrane has a higher hydraulic conductivity, then the
resistance to ¯ow is lower, and this will lead to a lower
increase in pressure during the deformation because of the
greater water loss. It has been reported that Lp values of
different plant cell types range from 2 3 10±8 to
10±5 ms±1 MPa±1 (Maurel, 1997). For single tomato cells,
the hydraulic conductivity is about 10±7 ms±1 MPa±1

(Maggio et al., 1995; Hukin et al., 2002). The two curves
in Fig. 4 for Lp = 0 and Lp = 10±7 ms±1 MPa±1 almost
coincide, especially at smaller cell deformations (up to
about 20 %). So, although the wall is considered permeable,
it is reasonable in the case of rapid compression at small
deformations to neglect water loss in simulations.

Effect of Poisson's ratio (n)

In previous analyses of compression of a liquid-®lled
sphere or a cell (Lardner and Pujara, 1980; Smith et al.,
1998), the wall was taken to be incompressible, equivalent
to a Poisson's ratio of 0´5. In this study cell wall material is
considered to be compressible, with a Poisson's ratio of less
than 0´5. However, no data are available concerning the

Poisson's ratio of tomato cell walls and there is no reliable
method to measure this parameter. Therefore a range of
values from 0´3 to 0´5 was used in simulations to investigate
the in¯uence of Poisson's ratio on the force-deformation
curves. Figure 5 shows typical simulation results. There is
no great difference in the force at a given deformation for a
change in Poisson's ratio from 0´3 to 0´5, especially at small
deformations. This is consistent with the low sensitivity to
Poisson's ratio of the calculated elastic modulus of cell
walls of potato tuber parenchyma tissue, found by a micro-
penetration technique (Hiller et al., 1996). To con®rm that
the results are insensitive to Poisson's ratio, the simulated
deformed pro®les of the compressed cells were compared at
a different Poisson's ratio. No difference was observed that
could be distinguished easily (e.g. by image analyses of cell
pro®les). Thus, it was not possible to obtain a reliable value
of Poisson's ratio from ®ts to force-deformation data, but as
the choice is not critical, a Poisson's ratio of 0´4 was chosen
for all subsequent model ®ts.

Effect of initial stretch ratio (ls)

Among the factors that might in¯uence the force-
deformation curves, some were ®xed a priori. These were
the initial thickness of the cell wall (126 nm), the osmotic
pressure difference across the cell wall (0´363 MPa), and the
probe motion velocity (23 mm s±1). As described above,
hydraulic conductivity and Poisson's ratio were not found to
be of signi®cance. However, the initial stretch ratio, ls, i.e.
the in¯ation of cell above incipient plasmolysis, was
potentially important. It is very dif®cult to measure the
initial stretch ratio of tomato cells accurately and, in any
case, it is not practical to measure this ratio for individual
cells before each compression experiment. Therefore a
series of initial stretch ratios were tried in simulations.
Figure 6 shows the resulting simulated force-deformation
curves. The in¯uence of initial stretch ratio on force-
deformation curves was clearly signi®cant. A check on the
simulated shape of the cell boundary con®rmed this (see
Fig. 7).

F I G . 4. Simulation of how hydraulic conductivity changes can alter the
dimensionless force-deformation curves generated with the linear elastic
model (initial stretch ratio, 1´01; Poisson's ratio, 0´40; initial cell radius,
30 mm; compression speed, 23 mm s±1; Young's modulus, 2´30 GPa;

initial wall thickness, 126 nm).

F I G . 5. In¯uence of Poisson's ratio on the force-deformation curves
generated with the linear elastic model (initial stretch ratio, 1´01).
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Given the signi®cance of ls, and the dif®culty of its
measurement, it was decided to treat it as an adjustable
parameter to be identi®ed during data ®tting.

DATA ANALYSIS

Matching force-deformation curves

The remaining unknowns, i.e. initial stretch ratio ls and
Young's modulus, E, can be found by matching force-
deformation curves from simulations with data obtained
from compression experiments. A series of simulations with
different initial stretch ratios were generated. The values
chosen were 1´005, 1´01, 1´015, 1´02, 1´03, 1´04 and 1´05.
Figure 6 shows data for initial stretch ratios of 1´005, 1´01
and 1´015 only. In each case simulated and experimental
force-deformation curves were compared for deformations
up to 20 %, with Young's modulus adjusted to give best ®t,
using a minimum root mean square error. For each
experimental force-deformation curve, this method resulted
in a value of Young's modulus for each ls value. Root mean
square errors were then used to choose overall best ®t, and
therefore to determine the best value of ls and Young's
modulus.

An example of such ®tting is shown in Table 2 and Fig. 8.
As can be seen from Table 2, the best value of ls and
Young's modulus for these data were 1´015 and 2´41 GPa,
respectively. The good ®t, which is typical, indicates that
the linear elastic model is suitable for determining the
Young's modulus of the walls of the tomato cells used in
this study. Fitting data from 22 cells, the mean Young's
modulus of 2-week-old tomato cell walls at pH 5´0 and 27 °C
was found to be 2´3 6 0´2 GPa, which is comparable with
values reported in the literature, as discussed later. An
average initial stretch ratio of 1´01 6 0´002 was obtained,
consistent with a value of 1´01 6 0´002 found using image
analysis on similar cells (Blewett, 2000). This shows that it
is possible to determine the initial stretch ratio of tomato
cells through modelling force-deformation data.

Because the micromanipulation method does not allow
meaningful hysteresis experiments on rapidly adapting
cells, the appropriate deformation range for elastic beha-
viour of the cell walls could not be found directly. The
chosen upper bound of 20 % cell deformation was validated
by determining Young's modulus for the typical data of
Fig. 2, with upper bounds of 10, 15, 20 and 25 % cell
deformation. Table 3 shows the results. The modulus was
not signi®cantly different whether 10, 15 or 20 % was used,
but appeared to drop at 25 %. This suggested elastic
behaviour up to 20 % cell deformation. It should be noted
that the correlation coef®cient for all the bounds was very
high (>0´95). It was assumed that an upper bound of cell
deformation of 20 % could be used in all subsequent
analyses, and this was con®rmed by continued good ®ts of
experimental and simulation data. 20 % cell deformation
represents a wall strain of about 0´07 at the cell equator.

DISCUSSION

Compression of cells by micromanipulation can be used to
obtain force-deformation data up to cell bursting. However,
bursting force and percentage deformation at bursting are
not intrinsic parameters, as they depend on bulk cell
behaviour, not only on cell wall composition and structure.
In the present study, a linear elastic material model has been
used to extract Young's modulus of cell walls of single
suspension tomato cells from low-strain force-deformation
data. Although the cell wall and membrane were taken to be
permeable and the model could therefore account for any
volume loss by ¯ow from the cell, this was found to be
insigni®cant on the time scale of the compression (1 s),
assuming a reasonable value for the hydraulic conductivity
of single tomato cells (10±7 ms±1 MPa±1). Water loss through
the cell wall was therefore neglected in simulations.
However, given the range of Lp values for plant cells in
general (2 3 10±8 to 10±5 ms±1 MPa±1; Maurel, 1997), this
assumption might not be true for compression tests on other
plant cell types nor indeed on single tomato cells under
other conditions. Should the assumption not be valid,

F I G . 6. In¯uence of initial stretch ratio on the dimensionless force versus
deformation curves generated with the linear elastic model (Poisson's

ratio, 0´40).
F I G . 7. In¯uence of initial stretch ratio on the cell wall boundary shapes

generated with the linear elastic model.
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simulations could still allow for water loss during compres-
sion, using a separately determined value of Lp. Preliminary
studies have shown that Lp might be found by compressing
cells and holding them, and measuring volume loss directly
using image analysis (Blewett, 2000). This would be a
powerful adjunct to the present method.

The cell wall was taken to be compressible in this study,
which meant that Poisson's ratio could not be 0´5, as often
assumed in other compression experiment studies (e.g.
Lardner and Pujara, 1980; Smith et al., 2000). However, it
was shown in the simulations that there was no great
difference in the force at a given deformation for changes in
Poisson's ratio from 0´3 to 0´5. This is unfortunate, as it does
not seem likely that the Poisson's ratio of plant cell walls
could ever be estimated from force-deformation data, or
even from a study of the cell shape during compression. On
the other hand, the insensitivity of the modelling to this ratio
means that Young's modulus might be found without this
knowledge. The choice of a Poisson's ratio of 0´4 for model
®tting seems reasonable, although it would be equally
acceptable from a modelling viewpoint to assume a value of
0´5, i.e. incompressible cell walls.

Compared with Poisson's ratio, the in¯uence of Young's
modulus and initial stretch ratio on the force-deformation
curves was found to be very signi®cant. Adjusting these
parameters allowed very good ®ts between model and low-
strain experimental data. Low strain in this study was taken
to mean <20% cell deformation. Typically this represents
wall strains of <0´07. The good ®tting up to these strains
indicates that the linear elastic model is very suitable for
determining primary cell wall Young's moduli from
micromanipulation experiments, at least for these undiffer-
entiated tomato cells. It is not known if this observation is
applicable to other plant cell types.

The mean Young's modulus of the walls of 2-week-old
cultured tomato cells was found to be 2´3 6 0´2 GPa. This
value cannot be compared with values for similar cells in the
literature, as such data are not available. Besides Blewett
(2000), who estimated values for single suspension-cultured
tomato cells of 100±2300 MPa, the nearest study was on
potato tuber parenchyma tissue cells, using a micro-
penetration technique (Hiller et al., 1996). A value of
3 GPa was indicated by the analysis, assuming a cell wall
thickness of 100 nm. For giant algal cell walls, the modulus

has been found to be 407±662 MPa for Chara corallina
(Toole et al., 2001) and up to 4 GPa for Nitella opaca
(Probine and Preston, 1962). Other than these relatively
direct determinations, many investigators have also studied
the mechanical properties of plant cell wall components or
wall analogues. The modulus of individual cellulose
micro®brils has been both measured and calculated
(MarhoÈfer et al., 1996; Ishikawa et al., 1997) giving a
modulus range of 0´7±3´5 GPa. These calculated values are
close to those obtained from measurements made on
cellulosic networks under uni-axial tensile conditions, e.g.
moduli of 2´7 GPa for softwood ®bres at a relative humidity
of 50 % (Hamad, 1998) or 1±3 GPa for a cast network of
sugar beet cellulose micro®brils (Dufresne et al., 1997). By
deforming cell wall analogues based on Acetobacter xylinus
cellulose under equi-biaxial tension, moduli ranging from
200 MPa to 500 MPa have been obtained for a cellulose-
only system (Chanliaud et al., 2002). Overall, it appears that
Young's modulus estimated by the present method gives
values that are reasonable compared with prior estimations
on related materials.

It should be noted that the value of Young's modulus
from model ®tting depends critically on the chosen value of
the initial cell wall thickness, as also reported by Hiller et al.

TABLE 2. Example of ®tting the model to force-
deformation data up to 20 % cell deformation, and the

choice of best ®t

Initial stretch ratio, ls

Young's modulus,
E (GPa)

Root mean
square errors

1.005 3.26 0.0075
1.01 2.76 0.0046
1.015 2.41 0.0038
1.02 2.15 0.0039

The minimum root mean square error was 0.0038. The chosen initial
stretch ratio, ls, was therefore 1.015, with a corresponding Young's
modulus of 2.41 GPa.

F I G . 8. An example of a ®t of the experimental data to the model up to
bursting using low-strain parameters (parameters for the model: initial
stretch ratio, 1´015; Poisson's ratio, 0´40; initial thickness of the cell
wall, 126 nm; Lp = 0 ms±1 MPa±1; Young's modulus for the cell wall,

2´41 GPa).

TABLE 3. In¯uence of choice of upper bound of the cell
deformation range ®tted by the model

Upper deformation bound (%)
Young's modulus,

E (GPa)
Initial stretch

ratio, ls

10 2.39 1.015
15 2.43 1.015
20 2.41 1.015
25 1.78 1.03
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(1996) for modelling of micro-penetration tests on potato
tuber parenchyma tissue cells. Indeed, the modulus is
inversely proportional to wall thickness for given force-
deformation data. Freeze fracture scanning electron micro-
scopy was used to measure the wall thickness used in this
study (Blewett, 2000), which should give a reliable value.
However, it should be noted that not all of the cell wall is
necessarily load-bearing. It may therefore be wisest to treat
Eh0 as one parameter combining modulus and wall thick-
ness. This should be invariant for any set of data.
Furthermore, it was necessary to use a mean value of the
thickness, as measurements of thickness for speci®c cells
are not possible during the compression experiment. Some
possible effects of variations around the mean are shown in
Table 4.

Using the pressure probe, measurements have been made
of the instantaneous bulk modulus of elasticity, e, of single
suspension tomato cells (Tomos and Leigh, 1999; Hukin,
2002). ei is de®ned by:

ei � dP

dV
V �3�

As the name and de®nition imply, ei is not an intrinsic
material property of a cell as it depends on bulk parameters
such as cell size. Nevertheless, it is possible to use the
Young's modulus found in the present work to estimate ei

for the cells under test. Assuming linear elastic behaviour
during pressure probe measurements, ei was estimated to be
about 7 MPa. This value agrees very well with direct
pressure probe measurements (5´9±7´1 MPa; Hukin, 2002).
This is further validation of the present approach and the
value of Young's modulus determined here.

This method for determining Young's modulus of single
undifferentiated plant cells has great potential for further
studies, speci®cally in investigating how the elasticity of
primary plant cell walls depends on their composition and
structure, and environmental conditions. Table 5 shows
some preliminary data obtained using the method, which
show how Young's modulus varies with pH. Although these
data need proper interpretation, it is interesting to note that
the optimum pH for expansin activity is between 3´5 and 4´5
(McQueen-Mason et al., 1992), while at pH 4´5 Young's
modulus is lowest, i.e. the cell wall is least stiff.

It is sometimes suggested that plant cell walls might be
viscoelastic (Preston, 1974), although it is dif®cult to

separate water ¯ows and true viscoelasticity for tissue
samples. Such time-dependent behaviour was not con-
sidered here. The compression experiment is relatively fast,
and creep and enzyme responses act on longer time-scales
(Haughton et al., 1968; Cosgrove, 2000b). By using
additional techniques such as image analysis of cell shape,
and different compression speeds, it may eventually be
possible to use the compression experiment to investigate
any true time-dependent behaviour, as well as measuring
cell hydraulic conductivity directly.

CONCLUSIONS

Compressing cells by micromanipulation to obtain force-
deformation data has been used widely to investigate the
mechanical properties of cells, including single plant cells
from suspension cultures (Blewett et al., 2000). Normally it
can only provide the bursting force and percentage
deformation at bursting to characterize the mechanical
properties of the cells. The intrinsic material properties of
cell walls cannot be obtained directly from these compres-
sion experiments. In this study, it was shown that a linear
elastic model could be used to determine the Young's
modulus of single cultured tomato cell walls from micro-
manipulation data. It was surprising how well this simple
model ®tted the data. Because of the speed of the
compression, it appears water loss due to cell permeability
was not signi®cant. Although the Poisson's ratio could not
be determined, it seemed that Young's modulus did not
depend greatly on its value, and a reasonable value of the
modulus was found.

Combining the compression experiment with mathemat-
ical modelling is a powerful method for investigating plant
cell wall mechanics. It should be useful in determining how
the elasticity and the strength of plant cell walls depend on
their composition and structure, and how these change
under different environmental conditions.
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APPENDIX

Theoretical analysis of cell compression

For a linear elastic material, Cheng (1987) gives an
expression for the generalized Hooke's law strain energy
function (W). This is important as it can be used to identify
the tensions in a cell wall, if this can be assumed to show
linear elastic behaviour. In the case of a (mechanical)
membrane, a simpli®ed expression for W is given by eqn
A1, where bending and shear effects can be neglected. At
any given compression,

W � Eh0

2�1ÿ n2� �l1 ÿ 1�2 � �l2 ÿ 1�2 � 2n�l1 ÿ 1��l2 ÿ 1�
n o

�A1�

where W is the strain energy per unit volume caused by
deformation; l1 and l2 are the principal stretch ratios, each
de®ned (in a given direction) as the ratio of the length of a
small section of membrane after deformation, to its original
length in the unin¯ated state. Subscripts 1 and 2 refer to the
meridian and circumferential direction, respectively (see
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Table 1). E is the Young's Modulus; n is the Poisson's ratio;
and h0 is the initial wall thickness before in¯ation.

It can be seen that the strain energy not only depends on
the stretch ratios but also on the parameters E, n and h0. The
tensions in the wall may be found from the strain energy
function using eqn (A2), adapted from Skalak et al. (1973).

Ti � 1

l1l2

@W

@li

�li�2 �A2�

where Ti is the tension in the ith direction with a stretch ratio
li.

The tension±stretch relationships are therefore found by
combining eqns (A1) and (A2).

T1 � Eh0

�1ÿ n2� �
l1

l2

�l1 ÿ 1� � n�l2 ÿ 1�f g �A3�

T2 � Eh0

�1ÿ n2� �
l2

l1

�l2 ÿ 1� � n�l1 ÿ 1�f g �A4�

Lardner and Pujara (1980) derived two groups of governing
equations for two separate deformation regions: the contact
region and the non-contact region. The contact region is
where the cell wall touches the compression surfaces (see
Fig. 3C). The details of the derivation of these equations are
given elsewhere (Feng and Yang, 1973; Lardner and Pujara,
1980). Only the ®nal equations are presented here. The
independent variable in these equations is y, which relates
the position of any point on the boundary of the cell back to
the original position of that point in the in¯ated but
uncompressed cell. y is the angular position of the point
measured from the vertical axis of symmetry.

Contact region:

dl1

dy
� ÿ l1

l2 sin y
f3

f1

� �
ÿ l1 ÿ l2 cos y

sin y

� �
f2

f1

� �
�A5�

dl2

dy
� l1 ÿ l2 cos y

sin y
�A6�

where f1, f2 and f3 depend on the tensions and are de®ned
later.

Non-contact region:

dl1

dy
� d cos y ÿ w sin y

sin2 y

� �
f2

f1

� �
ÿ
�

w
d

�
f3

f1

� �
�A7�

where

d � l2 sin y �A8�

and

w � dd
dy

�A9�

For the linear elastic case, f1, f2 and f3 are found to be:

f1 � @T1

@l1

� Eh0

�1ÿ n2�
1

l2

2l1 ÿ 1� n�l2 ÿ 1�f g �A10�

f2 � @T1

@l2

� Eh0l1

�1ÿ n2�
1ÿ l1 � n

l2
2

�A11�

f3 � T1 ÿ T2 � Eh0

�1ÿ n2�
1

l1l2

�l1 ÿ 1��l2
1 ÿ l2

2n� ÿ �l2 ÿ 1��l2
2 ÿ l2

1n�
n o

�A12�

There is a relationship between the (turgor) pressure P in the
cell and w given by:

dw
dy
� dl1

dy
w
l1

� l1
2 ÿ w2

d

� �
T2

T1

� �
ÿ

l1�l1
2 ÿ w2�1=2

Pr0

T1

" #
�A13�

Equation (A13) allows the deformation to be linked to the
force on the cell through the pressure P.

One boundary condition for this problem is

y � 0;l1 � l2 �A14�

Other boundary conditions refer to the edge of the contact
region, where it meets the non-contact region. For the points
on the edge, y = G by de®nition. See Fig. 3C in the main
text. For these points:

y � G; l1�contact region� � l1�nonÿ contact region� �A15�

y � G; l2�contact region� � l2�nonÿ contact region� �A16�

y � G; h � h �A17�

where h is the coordinate perpendicular to the equatorial
plane, and h is the distance between the rigid plate and the
equator of the spherical membrane after deformation. Note
that the distance moved by the probe is 2z, where z is related
to h by eqn (A18).

z � lsr0 ÿ h �A18�

Finally, on the equatorial plane

y � p=2; w � 0 �A19�

because of the symmetry.
When all the boundary conditions have been satis®ed, the

model equations give corresponding values for P and h for
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given E, n, h0 and ls. The force (F) and the deformation (X)
can be obtained from P and h using the following equations:

F � P� Ac �A20�
where P is the (turgor) pressure inside the compressed cell at
deformation X, and Ac is the contact area between the cell
and the probe surface. This equals to prc

2 (where rc =
r0l2 sinG).

X � z

r0ls

� 1ÿ h
r0ls

�A21�

Using chosen values of E, n, h0 and ls, corresponding
values of F and X can be found and compared with
experimental data. If some of these parameters are pre-
determined, ®tting of the model to the experimental data can
be used to derive the others. This is described more fully
below.

Numerical simulation

Since the original boundary-value problem has been
transformed into an initial value problem, the governing
equations (eqns A5 to A7 and A13), with their boundary
conditions can be solved by the Runge±Kutta method, here
using the Matlab (MathWorks Inc.) ode45 solver.

As the constitutive relationship of the wall material is
time-independent, the compression of the cell was solved as

a series of static equilibrium problems following the
calculation procedure of Liu et al. (1996). In each step,
the model simulates the displacement of the probe corres-
ponding to the time between steps. The probe displacement
deforms the cell from its previous shape. During the time
taken for the step, there may be water loss, depending on the
wall permeability. At the end of the step, the volume (V) of
the deformed sphere is determined from the boundary
coordinates of the cell (r and h; see Fig. 3C).

V � 2p
�h

0

r2dh �A22�

For any boundary point, h can be found from eqn. (A23):

dh
dy
� ÿr0 l2

1 ÿ
dd
dy

� �2
" #1

2

�A23�

while

r � r0d �A23�

In the method of Liu et al. (1996), the pressure P in eqn
(A13) is adjusted at each step until the new volume V equals
to the previous volume minus any water loss. When this is
achieved, the force for a given simulated deformation is
known (eqns A20 and A21).
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