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Abstract

This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that 

improves on ad hoc classical approaches. Our framework relies on dedicated factor models and 

simultaneously determines the number of factors, the allocation of each measurement to a unique 

factor, and the corresponding factor loadings. Classical identification criteria are applied and 

integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. 

A Monte Carlo study confirms the validity of the approach. The method is used to produce 

interpretable low dimensional aggregates from a high dimensional set of psychological 

measurements.
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1 Introduction

As the production of social statistics proliferates, aggregation and condensation of data have 

become increasingly important. William Barnett has made and continues to make numerous 

important contributions to constructing economically meaningful monetary aggregates (see, 

e.g., Barnett and Chauvet, 2011). In the spirit of Barnett’s pioneering research, this paper 

addresses the problem of constructing reliable and interpretable aggregates from myriad 

measures. It is the first paper in the literature on Bayesian factor analysis to make inference 

on a model where all measurements load onto at most one factor, and factors are correlated. 
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The model allows for the dimension of the latent structure to be unknown a priori, and the 

allocation of measurements to factors is part of the inference procedure. Classical 

identification criteria are invoked and applied to the analysis to generate interpretable 

posterior distributions.

The abundance of measures is both an opportunity and a challenge in many empirical 

applications. The main question—both from a methodological and an applied standpoint—is 

how to condense the available information into interpretable aggregates. Thurstone (1934) 

postulated criteria and developed analytical methods for estimating and identifying factor 

models with perfect simple structure, where each measurement is related to at most one 

latent factor. In his view, models with simple structure were transparent and easily 

interpreted. He developed the method of “oblique” factor analysis by arguing that correlated 

factors were a more plausible representation of reality (Thurstone, 1947). Cattell (1952, 

1966); Carroll (1953); Saunders (1953); Ferguson (1954) and Hofmann (1978) are major 

exponents of the concept of parsimony in the Thurstone tradition. We call Thurstone’s 

simple structure a dedicated structure in this paper. It dedicates all measures to at most one 

factor. This representation is widely used in economics (Heckman et al., 2006; Cunha et al., 

2010; Conti et al., 2010; Baron and Cobb-Clark, 2010).

Exploratory Factor Analysis is a well developed classical procedure for doing dedicated 

factor analysis (Gorsuch, 1983, 2003). The various steps required in executing classical 

Exploratory Factor Analyses (EFA) are all subject to a certain degree of arbitrariness and 

entail ad hoc judgments. Classical EFA proceeds in four separate steps: (i) selecting the 

dimension of the factor model; (ii) allocating measurements to factors; (iii) estimating factor 

loadings; and (iv) discarding measurements that load on multiple factors. A variety of 

methods are available to select the dimension of the latent structure, to extract and rotate 

factors (Gorsuch, 2003; Costello and Osborne, 2005; Jennrich, 2001, 2002, 2004, 2006, 

2007). Our empirical analysis shows that each of the choices made by analysts at the various 

stages of a classical EFA has substantial consequences on the estimated factor structure.

This paper develops an integrated Bayesian approach to EFA that simultaneously selects the 

dimension of the factor model, the allocation of measurements to factors, and the factor 

loadings. Our method uses all of the available information by not discarding measurements 

besides those that do not load on any factors. The procedure is justified by the usual appeal 

to the optimality of Bayes procedures (see Berger, 1985). Different from the classical 

literature in EFA, in our approach the number of factors is not determined in a first step, but 

inferred along with other parameters. Our work advances the Bayesian approach to factor 

analysis, because of the attention paid to the identification of the model. One of our main 

contributions is to incorporate classical identification criteria into a Bayesian inference 

procedure. In so doing, we are able to generate posterior distributions that are stable and 

models that are clearly interpretable. The identifiability of the model is a key feature of the 

algorithm. In this respect, our paper bridges a gap between the classical and the Bayesian 

literatures.

Most articles on Bayesian factor analysis rely on a lower-triangular specification for the 

factor loading matrix to achieve identification (West, 2003; Lopes and West, 2004; Lucas et 
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al., 2006; Carvalho et al., 2008). This approach, first suggested by Anderson and Rubin 

(1956), has been widely applied (see, for example, Geweke and Zhou, 1996; Aguilar and 

West, 2000; Carneiro et al., 2003). It achieves identification in the general case, but at the 

price of ad hoc decisions that result in a loss of flexibility—e.g., the choice and the ordering 

of the measurements at the top of the factor loading matrix is not innocuous. In the 

framework of sparse factor modelling, the problem becomes more complex, as the structure 

of the factor loading matrix—in terms of position of the zero elements—is part of the 

inference problem. Besides the upper triangle of the loading matrix that is fixed to zero a 

priori, the remaining elements in the lower part of the matrix are also allowed to become 

equal to zero. This introduces new challenges for identification, and additional identifying 

restrictions are required. Our paper discusses this issue that has, to the best of our 

knowledge, been overlooked in the literature so far. To tackle this problem, we take a 

different avenue and incorporate identifying criteria into the prior distribution of model 

parameters instead of imposing zero restrictions on the factor loading matrix a priori 

(Frühwirth-Schnatter and Lopes, 2012, adopt a related approach).

In the field of Bayesian nonparametrics and machine learning, a strand of literature is 

dedicated to the inference of factor models with a sparse structure of unknown dimension 

(Knowles and Ghahramani, 2007; Paisley and Carin, 2009; Bhattacharya and Dunson, 

2011), and in a dynamic context with an unknown number of time-dependent factors (Chen 

et al., 2011). These methods, however, focus on covariance structures, variable selection, or 

prediction, and identification is not strictly required to achieve these goals from a Bayesian 

perspective. No paper in the Bayesian nonparametric literature imposes identifying 

restrictions on models in its inference algorithm.

Most existing approaches assume uncorrelated factors. Our method is the first in the 

Bayesian literature to allow for correlated factors in the framework of a model where 

identification is secured. The specification of correlated factors, combined with the need to 

produce identified models in a dimension-varying framework, raises challenges for the 

design of a practical and efficient algorithm that are addressed in this paper.

The paper is organized in the following way. Section 2 presents our framework, which 

allows for both continuous and binary measurements. We discuss the identification 

challenges at stake, provide conditions for identification, and explain the constraints they 

impose on the model. We also introduce the prior specification we adopt to conduct 

Bayesian inference. Section 3 derives a new Bayesian computational procedure for 

identifying the latent structure of the model and selecting factors. Section 4 presents a Monte 

Carlo study that supports the validity of the method. An empirical analysis demonstrates 

how our method can be applied, and how it uses the information available in the data in 

comparison with classical EFA. Section 5 concludes.

2 The Model

This section introduces our model, the identification conditions for the model and the prior 

specification. We develop classical identification conditions for a dedicated factor model. 

Under standard regularity conditions, satisfaction of classical identification conditions 
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guarantees convergence of the model parameters to asymptotically normal distributions and 

thus has a large sample justification in addition to a Bayesian justification (Le Cam, 1986). 

Thus we bridge the two approaches.

2.1 A Dedicated Factor Model with Continuous and Binary Measurements

Consider a set of M continuous and binary measurements arrayed in vector Yi = (Yi1, …, 

YiM)′ for individual i, i = 1, …, N, and matrix Y = (Y1, …, YN)′ for the whole sample. To 

accommodate both types of variables, each measurement is assumed to be determined by an 

underlying continuous latent variable :

for m = 1, …, M.1 The resulting vector of latent variables  is specified as 

a function of a set of Q observed variables Xi and K latent factors θi = (θi1, …, θiK)′:

(1)

where the matrix of regression coefficients β captures the effect of the covariates on the 

latent variables, denoted X = (X1, …, XN)′ and  respectively. The 

correlation between the measurements conditional on Xi arises from the factors with 

loadings α. The residual idiosyncratic terms (“uniquenesses”) are denoted εi = (εi1, …, εiM)′. 

In compact notation, the unobserved components of the model are denoted θ = (θ1, …, θN)′ 

and ε = (ε1, …, εN)′, respectively.

In classical EFA, the dimension of the factor covariance matrix is estimated using a variety 

of criteria. Various ad hoc rules for allocating meaurements to factors are used (Gorsuch, 

2003). As in classical EFA we assume that the measurements are dedicated, i.e., that each 

measurement loads on at most a single factor. If a measurement does not load on any factor 

the measurement is discarded from the model. In classical EFA, measurements that load on 

multiple factors are also discarded. Our analysis improves on this procedure. The position of 

the non-zero elements in the factor loading matrix is not fixed a priori, but is determined 

during estimation along with the number of factors, which is not imposed but estimated. In 

addition, we use all measurements.

To indicate how measurements are uniquely allocated to the factors in θ, we use a matrix of 

binary indicators Δ with the same dimensions as the factor loading matrix α. Each row of Δ 
indicates on which latent factor the corresponding measurement loads. For example, if the 

mth measurement is associated with factor k, then the mth row Δm is the indicator vector ek:

1We only consider continuous and binary measurements in this paper, because of our empirical application where such measurements 
are available. The methodology can be extended to any other types of discrete measurements with an underlying continuous latent 
variable.
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(2)

When a measurement does not load on any factor, the corresponding row of Δ only contains 

zeros (denoted vector e0). Under our assumptions, no measurements may load on more than 

one factor, though any measurement may load on no factors, i.e., ∑k Δmk ≤ 1.

Since neither the number of factors nor the structure of the factor loading matrix are 

specified a priori, the indicator matrix Δ is one of the unknowns of the model to be 

estimated from the data. This matrix representation is convenient for the implementation of 

the factor search procedure introduced in Section 3. The values assumed by Δ determine 

how measurements are allocated to the different dedicated factors, which factors are shut 

down (zero columns of Δ), and the number of factors underlying the data (the number of 

non-zero columns). Indicator matrix Δ has been widely used in variable selection models 

(Geweke, 1996; George and McCulloch, 1997). In the framework of factor analysis, it is 

used by Carvalho et al. (2008); Frühwirth-Schnatter and Lopes (2012); Chen et al. (2011). 

Our approach departs from these papers because we use a dedicated structure for the factor 

loading matrix and correlated factors.

2.2 Classical Identification

This section presents and discusses classical identification strategies used in factor analysis. 

We introduce a theorem for the identification of dedicated factor models of varying 

dimensions, explain how to apply classical identification criteria to Bayesian inference and 

outline the benefits of this approach.

General Identification Strategy—We center the unobserved components of the model, 

θi and εi, at:

(3)

The components of εi are mutually uncorrelated. Conditional on Xi, the latent factors are the 

only source of correlation among the measurements.2 The latent factors are assumed to be 

independent of the error terms and of the covariates, i.e., θi ⫫ εi and θi ⫫ Xi. In addition, we 

assume that for all measurements, the variances of the idiosyncratic errors are positive, i.e., 

. In the equations corresponding to the latent variables generating the binary 

measurements, these variances are set to 1, i.e., . Without further information, the 

scales of the corresponding latent variables  are not identified.

We follow traditions in factor analysis and only consider identification based on population 

means and covariance matrices.3 Our assumptions imply the following covariance structure 

for the latent variables :

2Cunha and Heckman (2008), Appendix A, show how the measurements can be interpreted as derived demand functions for 
producing factors θ.
3Bonhomme and Robin (2010) consider identification of factor models based on higher order moments.
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(4)

where the diagonal elements of Σ corresponding to the latent variables underlying discrete 

measurements are restricted to be 1. Identification of the parameters α ,Ω, and Σ from 

 requires further restrictions.

To secure classical identification, conditions are required that guarantee the existence of a 

unique solution for the idiosyncratic variances Σ (the uniqueness problem). This problem is 

sometimes addressed by verifying that the number of latent factors does not exceed the 

Ledermann bound, i.e.,  (Ledermann, 1937; Bekker and 

ten Berge, 1997).4 Anderson and Rubin (1956, Theorem 5.6) establish that at least three 

non-zero elements are required in each column of the factor loading matrix to achieve 

uniqueness.

Given identifiability of Σ, further conditions are needed to guarantee the existence of a 

unique solution for the factor loading matrix α and the covariance matrix of the factors Ω. 

The “rotation problem” stems from the fact that the covariance in equation (4) remains 

unchanged after assigning α̃ = αP and θ̃
i = P−1θi, for any arbitrary nonsingular matrix P of 

dimension (K × K).

To solve this problem, various restrictions and normalizations are used in the literature. First 

of all, it is necessary to deal with the scaling issue. In the framework of our dedicated model, 

we assume that the covariance matrix of the factors, Ω, is of full rank. We fix the variances 

of the factors to 1 to set the scales of the loadings:

(5)

where ιK = (1, …, 1)′ is a vector of ones of length K. We denote by R the correlation matrix 

of the factors to distinguish it from the covariance matrix Ω. These restrictions leave the 

factor loading matrix completely free, compared to alternative and more conventional 

identifying restrictions that fix one loading to 1 in each column of α (e.g., Carneiro et al., 

2003; Heckman et al., 2006). Such identifying strategies, however, cannot be implemented 

with our algorithm, as we do not know a priori the number of factors, nor how the 

measurements are allocated to the factors. As a consequence, it is impossible to fix any 

loadings a priori.

Additional assumptions are required to identify the model and rule out remaining rotation 

problems. Anderson and Rubin (1956) postulate, among other specifications, lower 

triangularity for the upper square submatrix of α, and versions of this specification have 

been widely used in econometrics (see, e.g., Geweke and Zhou, 1996; Aguilar and West, 

2000; Carneiro et al., 2003). In the context of sparse factor modeling, however, the 

configuration of the zero elements in the factor loading matrix plays a crucial role for the 

identifiability of the model, as a minimum number of non-zero loadings is required in each 

4The Ledermann bound simply requires that the number of equations be greater than or equal to the number of model unknowns.
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column of the factor loading matrix (Anderson and Rubin, 1956). As a consequence, 

imposing zero elements only on the upper triangular part of α may not be sufficient for 

identification. Given that any loading in the lower triangular part of the matrix may become 

equal to zero, too many zeros may jeopardize identification. Most applications in sparse 

factor modeling rely on a lower triangular structure of α and do not address these potential 

identifiability issues (West, 2003; Lopes and West, 2004; Lucas et al., 2006; Carvalho et al., 

2008).5 Exceptions are Carneiro et al. (2003) and Frühwirth-Schnatter and Lopes (2012), 

who use classical identification criteria as an integral part of Bayesian inference schemes.

The present paper addresses these problems and achieves more flexibility in this respect. At 

the same time, it solves both the uniqueness and rotation problems, apart from trivial 

rotations to be discussed below. We assume a dedicated structure and that factors are either 

loaded on at least three measurements or not loaded on any measurements, in which case 

they are discarded from the model.6 Since measurements appear in blocks of dedicated 

measurements, it is unlikely that the first K measurements are actually dedicated to the K 

different factors, as suggested by a lower triangular loading matrix with non-zero entries on 

the main diagonal.

In the framework of a dimension-varying model where the structure of the factor loading 

matrix in terms of zero elements is not known a priori, more general identification 

conditions are required and are now presented.

Identification of a Dimension-Varying Model—The following theorem introduces 

sufficient conditions for identifiability of a dedicated factor model when the allocation of 

measurements to factors is unknown.

Theorem 1. Consider a dedicated factor model with K factors satisfying condition (5). 

Furthermore, assume that the number of non-zero elements in the kth column of Δ, 

, is either equal to 0 or at least equal to 3 for all k = 1, …, K:

(6)

Then the factor model is identified up to trivial rotations. More specifically, the indicator 

matrix Δ is identifiable up to an arbitrary permutation of the columns, whereas the factor 

loading matrix α and the submatrix of the correlation matrix Ω corresponding to the non-

zero columns of Δ are identifiable up to the same permutation of the columns and up to a 

sign switch for each column.

Proof. First, we prove identifiability of Σ. Anderson and Rubin (1956, Theorem 5.1) present 

a sufficient condition for identifiability of Σ: the “row deletion” property which states that if 

any row of α is deleted, there remain two disjoint matrices that are of the same rank as α. 

5Most of these papers deal with high-dimensional factor models, where factors are usually loaded by a myriad of measurements. In 
such cases, these identification problems are not a concern in practice. However, in smaller models where these problems may arise, it 
is important to address them appropriately.
6In our framework with correlated factors, only two measurements are required for each factor, as long as the correlation between the 
corresponding factors and the other factors is not zero (Cunha et al., 2010). We do not use these conditions though, because we allow 
for zero correlations across factors.
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For a dedicated factor model, rank(α) is equal to the number K1 of non-zero columns of α. It 

is easy to verify that condition (6) implies the row deletion property, because regardless of 

whether a zero or a non-zero row is deleted, it is guaranteed that in each of the K1 non-zero 

columns at least two non-zero factor loadings are still present. Hence, both the diagonal sub-

matrix α1 constructed from the top non-zero elements in each non-zero column as well as 

the remaining sub-matrix α2 still has K1 non-zero columns, and consequently the rank is 

equal to K1.

Next, consider any alternative representation (α*, Ω*, Σ*) of , defined in (4), 

where α* and Ω* obey conditions (5) and (6). Identifiability of Σ implies Σ* = Σ, hence, 

identifiability of αΩα′, i.e.:

(7)

Due to the dedicated nature of the factor loading matrix, in both representations at most one 

element αm and  is different from 0 in each row m. From the restrictions on the diagonal 

elements of the covariance matrix of the factors, we obtain the following relationship 

between αm and  from the diagonal elements of the covariance matrices appearing in (7):

(8)

Thus αm is zero if and only if  is equal to zero. Hence, the subset of measurements that do 

not load on any factors is the same for both solutions. Thus, further investigations may be 

limited to dedicated measurements, where both αm and  are different from 0. It follows 

immediately from equation (8) that the factor loadings of any dedicated measurement are the 

same for both solutions, apart from sign switching. However, this does not necessarily imply 

that the measurement is dedicated to the same factor, i.e., δm might be different from , 

where δm and  indicate the position of the non-zero elements of the indicator vectors Δm 

and , respectively.

For further investigation, consider the off-diagonal elements of the covariance matrices 

appearing in (7), defining the covariance between any pair (m, l) of dedicated measurements:

(9)

It follows immediately from (8) and (9) that

(10)

Now consider any pair (m, l) of measurements that are dedicated to the same factor j in the 

representation corresponding to α, i.e., δm = δl = j, and Ωδm,δl = Ωjj = 1 because of the 

restriction defined in equation (5). Assume that these measurements are not dedicated to the 

same factor in the representation corresponding to α*, i.e., . Equation (10) implies 

that , and as a consequence the two factors corresponding to the 

columns  and  of Δ have to be perfectly correlated in the alternative representation, 
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which contradicts the full rank condition for Ω* given by equation (5). Hence, it follows that 

 whenever δm = δl, meaning that the same subset of measurements is dedicated to a 

particular factor in both representations.

This implies that (Δ, α) and (Δ*, α*) have the same number K1 of non-zero columns. 

However, the position of the non-zero columns is not unique and Δ is identifiable up to 

column switching, i.e.:

(11)

where the (orthonormal) rotation matrix Pρ corresponds to a permutation matrix of the 

columns. Furthermore, α is identified up to the same permutation of the columns as well as a 

possible sign switching, see (8):

(12)

where P± = diag(±1, …, ±1).

Finally, let Ω1 and α1 be, respectively, the submatrix of the correlation matrix Ω and the 

factor loading matrix α corresponding to the non-zero columns of Δ. From (7) and (12) it 

follow that7

and, hence:

This implies identifiability of Ω1 up to column switching and sign switching. □

Theorem 1 only achieves identification of the submatrix of Ω corresponding to the non-zero 

columns of Δ. Indeed, the covariances between the unidentified factors—those that are not 

loaded by any factors—as well as the covariances between the unidentified factors and the 

dedicated factors, are not identifiable in the overall model. However, only the latent factors 

actually underlying the measurements are of interest, so that this lack of identification is not 

a concern.

Application of Classical Identification Criteria to Bayesian Inference—
Identifiability condition (6) is easy to check and very convenient from a computational point 

of view, as it only applies to the indicator matrix Δ, and is therefore easily incorporated in 

the algorithm introduced in the next section. To do so, we design a prior distribution for Δ 
that restricts the sampler to explore regions of the parameter space corresponding to 

7Similarly, (P±)1 and (Pρ)1 are, respectively, the submatrices of P± and Pρ corresponding to the non-zero columns of Δ.
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identified models only (i.e., only indicator matrices satisfying the identification conditions 

are sampled).

No further restrictions need to be enforced a priori to resolve the remaining trivial rotation 

problems, outlined in the proof of Theorem 1 in equations (11) and (12), namely 

identifiability up to sign switching and column switching. The former appears when the 

signs of the factor loadings in a given column of α and the sign of the corresponding factor 

θi are switched simultaneously. The latter arises from the fact that there is no natural 

ordering of the columns of α—they can be permuted, along with the corresponding latent 

factors θi, without altering the covariance structure of the measurements. These two trivial 

identifiability problems, however, can be addressed a posteriori by reordering the columns 

of the loadings matrix and switching the signs of the loadings appropriately (see Subsection 

3.4).

Concerning the maximum number of factors, equation (6) implies the following upper 

bound on the number of factors that can be extracted from M measurements:8

Hence, for a dedicated factor model with M ≥ 4 the requirement of at least three 

measurements loading on each dedicated factor becomes stronger than the Ledermann 

bound.9

For the Bayesian inference pursued in this paper, a complete distributional specification of 

model equation (1) is required, which goes beyond specifying first- and second order 

moments of θi and εi as in equation (3). Cunha et al. (2010) establish nonparametric 

identifiability of the distributions of θ and ε. To adapt their results to our model, we would 

have to use a Bayesian nonparametric approach (Ghahramani et al., 2007; Paisley and Carin, 

2009; Bhattacharya and Dunson, 2011). To avoid the substantial computational challenge 

associated with such a Bayesian nonparametric approach, we invoke the following normality 

assumptions on the latent factors and on the error terms:

for i = 1, …, N.

Practical Bayesian inference would not necessarily impose the strict identifying restrictions 

presented in this section, as they are not required to conduct inference. Learning about 

model parameters can indeed take place, even if the model is not identified in a classical 

sense (Poirier, 1998). However, a lack of identification can impair interpretation, if for 

instance spurious factors are generated. This contradicts the goal of Bayesian exploratory 

factor analysis that seeks to uncover a structure of the model that can be easily interpreted. 

8This upper bound is not strictly required in a panel context, see Cunha et al. (2010).
9See Frühwirth-Schnatter and Lopes (2012).
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Nevertheless, this goal can be restored by constraining the sampler to stay in regions of the 

parameter space where only (classically) identified models are generated. The next section 

introduces our prior specification, and explains how these classical identification conditions 

are integrated into our Bayesian inference procedure.

2.3 Elements of Prior Specification

2.3.1 The Prior on the Indicators—The allocation of the measurements to groups of 

dedicated measurements can be interpreted as a mixture problem with unknown, but finite, 

number of components. Let τk denote the probability that a measurement loads on factor k. It 

does not load on any factor if k = 0. For each row Δm of Δ,10 for m = 1, …, M, we assume:

(13)

where ek is the indicator vector of length K as defined in equation (2), and .

The allocation of each measurement to one of the dedicated groups of measurements can be 

seen as a two-step decision, in which we incorporate a hierarchical prior on the indicators 

Δ. First, with probability τ0 we assume that a measurement does not load on any factor. In 

this case, it is uncorrelated with the other measurements and does not contribute to the 

extraction of the factors. It is thus implicitly discarded from the model. In the opposite case, 

this measurement loads on a latent factor with probability 1 − τ0. Conditional on this event, 

it is then allocated to one of the K groups of dedicated measurements according to a set of 

probabilities , with . The probabilities of the different events 

can thus be written as

(14)

To conduct Bayesian inference, we have to place prior distributions on these parameters. We 

assume the following:

(15)

where the Beta distribution for τ0 is defined on the support [0; 1] and has mean κ0/(κ0 + ξ0). 

It can be specified so as to obtain more or less mass toward 0 or 1, depending on our prior 

knowledge about the number of measurements that should be discarded from the analysis. 

The Dirichlet distribution on the weights τ* is quite standard in mixture modeling (see e.g. 

Frühwirth-Schnatter, 2006).

Unfortunately, the indicator probabilities specified in equation (13), equipped with the prior 

distributions defined in equation (15), result in a prior distribution p(Δ) = ∫ p(Δ | τ)p(τ)dτ 

that does not guarantee identification of the model. To secure identification, as discussed in 

Subsection 2.2, the prior needs to incorporate the restriction that at least three dedicated 

10Δ is the matrix of binary indicators with the same dimensions as the factor loading matrix α.
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measurements have to load on each latent factor. This can be achieved by restricting the 

distribution of Δ to the subset  of matrices that correspond to an identified model:11

(16)

where  is the number of elements in the set of measurements dedicated 

to factor k, for k = 1, …, K, n0(Δ) is the number of measurements that do not load on any 

factors, and δ (Δ) is the Dirac measure that is equal to 1 if Δ belongs to , to 0 otherwise. 

The subset of indicator matrices  can be formally expressed as:

More flexible hierarchical prior specification: As an alternative, it is possible to specify 

individual parameters τ0m for the measurements, to make the probability of inclusion into 

the model measurement-specific and independent of the other measurements. The remaining 

indicator probabilities τ* are specified to be common to all measurements as before, i.e., τ* 

~ ir(κ1, …, κK).12 This minor modification implies that for each measurement m = 1, …, 

M, we specify:

and assume that τ0m ~ ℬeta(κ0; ξ0).

Our Monte Carlo studies show that this simple modification of the prior considerably 

improves the ability of our algorithm to find the measurements that do not load on any 

factors (see Subsection 4.1). This result also becomes clear when we derive our MCMC 

sampler. When the same τ0 is specified across measurements, its posterior distribution 

decreases with the number of correlated measurements. This makes it difficult to retrieve the 

number of uncorrelated measurements, as their posterior probability is forced to be the same 

for all measurements and can become very small in large models.13

2.3.2 The Prior on the Idiosyncratic Variances—For all continuous measurements 

Yim, we specify an inverse-Gamma prior distribution on the variances of the idiosyncratic 

error terms:

11The normalizing constant of this distribution can be derived in closed-form solution, but is not required in our analysis.
12The parameters τ* could also be specified as measurement-specific, but our tests indicated that this specification led to model 
overfitting.
13More precisely, the posterior mean of τ0 decreases if the number of measurements M increases while the number of uncorrelated 
measurements remains fixed, see equation (A6).
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where ℐcont ⊂ (1, …, M) is the set of indices corresponding to the continuous measurements, 

and c0 and  are scalar parameters denoting the shape and the scale of the distribution. The 

inverse-Gamma distribution is defined on the positive support and therefore guarantees that 

the variances cannot be negative, preventing some idiosyncratic variances from lying 

outside of the admissible parameter range, a phenomenon known as a Heywood case (after 

Heywood, 1931), in the likelihood analysis of factor models. To specify the 

hyperparameters, we follow Frühwirth-Schnatter and Lopes (2012) who develop a data-

driven prior that makes use of the observed covariance matrix SYcont of the measurements 

and specify the scale parameter such that:

(17)

where  is the mth diagonal element of the inverse of the empirical covariance 

matrix of the continuous measurements Ycont.14

2.3.3 The Prior on the Factor Loadings—The indicator matrix Δ determines the 

factors to which the different measurements are dedicated. A direct consequence is that a 

given factor loading αmk, in row m and column k of α, will either be equal to zero (if Δmk = 

0), or follow a prior distribution that needs to be specified (if Δmk = 1). Following the usual 

assumptions in Bayesian factor analysis, we assume that the factor loadings are independent 

across measurements and adopt the usual normal-inverse-Gamma family as prior 

distribution, meaning that conditional on knowing  and Δm, the only non-zero factor 

loading  in the mth row of the factor loading matrix α is conditionally normal:

(18)

where  and  are scalar parameters denoting the prior mean and the scale of the 

variance, respectively.

The normal-inverse Gamma family has several advantages in the present context. First, it 

allows us to integrate the joint posterior distribution p(Δ, α, Σ | Y*, θ, β, τ) over α and Σ, 

making sampling from p(Δ | Y*, θ, β, τ) possible, see Subsection 3.1.1. Second, the prior 

defined in (18) induces a more diffuse prior on the factor loadings when measurement error 

is larger and implies the following prior distribution for the amount of variance explained by 

the corresponding dedicated factor,

14Note that if N < Mcont, where Mcont is the number of continuous measurements, the empirical covariance matrix is not positive-

definite and therefore this approach cannot be applied. A prior distribution with prespecified scale parameter  has to be used in this 
case. See Frühwirth-Schnatter and Lopes (2012) for details.
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where . This ratio has the same prior distribution for any two dedicated 

measurements m and l, where  and .

By integrating out the indicators, the marginal prior distribution of αmk turns out to be a 

mixture of a point mass at zero and a normal distribution with a fixed-scale variance. Such 

prior distributions have previously been used in the framework of sparse factor modeling, as 

they allow model shrinkage (West, 2003; Lucas et al., 2006; Carvalho et al., 2008; 

Frühwirth-Schnatter and Lopes, 2012). The exact form of the mixture is more difficult to 

derive analytically in our case, because of the identifying restrictions on Δ. Nevertheless, we 

only need the conditional prior distribution specified in equation (18) for Bayesian 

inference, as only the non-zero factor loadings need to be sampled.

2.3.4 The Prior on the Regression Coefficients—Let β = (β1 … βM)′, where 

corresponds to the mth row of the matrix of regression coefficients β. Each of these vectors is 

assumed to be a priori normally distributed:

where  is a vector of prior mean parameters of length Q, and  is a (Q × Q)–

dimensional prior covariance matrix.

2.3.5 The Prior on the Correlation Matrix of the Factors—The correlation matrix of 

the factors is sampled through marginal data augmentation. Before turning to the details of 

this procedure in Subsection 3.2.1, it is important to understand how the distribution of the 

covariance matrix Ω of the latent factors is related to the distribution of their variances and 

to the distribution of the corresponding correlation matrix R.

Given the decomposition , where Λ = diag(Λ1, …, ΛK) contains the variances of 

the factors, Zhang et al. (2006) show that if it is assumed that , an inverse-

Wishart distribution with ν degrees of freedom, where ν − K + 1 > 0, and scale matrix S, the 

joint distribution of Λ and R can be obtained through the transformation from Ω to (Λ, R) 

using the corresponding Jacobian :15

15The inverse-Wishart distribution is parameterized as follows:

with normalizing constant

where ΓK (·) is the generalized Gamma function.
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(19)

The hyper parameter S in the inverted-Wishart prior chosen for Ω can either be assumed to 

be fixed or a hyper prior p(S) may be assumed for S. Following Huang and Wand (2013), S 
= diag(s1, …, sK) is assumed to be a nonsingular diagonal matrix where the individual 

variances follow a Gamma distribution,

(20)

with ν* = ν − K + 1.16 For the special case where the scale matrix S = diag(s1, …, sK) is a 

nonsingular diagonal matrix, being either fixed or random, the marginal distribution of R 
can be derived in closed-form solution by integrating out Λ of equation (19) (Zhang et al., 

2006, see also Barnard et al., 2000, Section 2.2):

(21)

where rkk is the kth diagonal element of the inverse of R.

It should be noted that the marginal density p(R) of the correlation matrix R given by (21) 

does not depend on S, leaving the degrees of freedom parameter ν as the only hyper-

parameter of this prior. Barnard et al. (2000) discuss how to specify the hyper-parameter ν, 

and show that taking ν = K + 1 (i.e., ν* = 2) results in a uniform marginal distribution of the 

individual correlations. Increasing the hyper-parameter ν induces bell-shaped distributions 

by assigning a prior probability to neighborhoods of ±1 that goes to 0 as ν increases, 

bounding the correlations away from ±1.

The degrees of freedom ν of the inverse-Wishart distribution plays an important role in the 

tuning of our algorithm. Intuitively, the stronger the correlation among the latent factors a 

priori, the more likely a larger number of latent factors will be favored. Some factors might 

indeed be split into several highly-correlated factors when the prior allows for high 

correlations. This “factor splitting” problem is at odds with our goal of generating a sparse 

and interpretable structure, as it can result in an overfitting of the number of factors, where 

some of them appear to be redundant in explaining the data.

In addition, according to Theorem 1, the full rank condition for the correlation matrix R also 

plays an important role for the identification of the indicator matrix Δ. If only a few 

measurements load on a particular factor, then the information contained in the 

measurements might not be sufficient to bound the posterior distribution away from regions 

where R is rank deficient. The prior on R secures the identifiability of Δ.

16The Gamma distribution in equation (20) is parameterized such that the expectation of sk is equal to ν* .
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To address these issues, the degrees of freedom ν of the prior on the correlation matrix can 

be tuned to bound the posterior away from regions of unidentifiability. For further 

illustration, Figure 1 shows the marginal prior distribution p(maxj≠k |Rjk|) of the largest 

correlation coefficient appearing in R, as well as the prior distribution p(min[eigen(R)]) of 

the minimum eigenvalue of R for the case with K = 20 corresponding to the value chosen in 

our empirical study in Subsection 4.2. By varying ν from 21 to 30, we observe a 

considerable effect of ν. Choosing ν = 25, as we will do in Subsection 4.2, bounds the prior 

sufficiently away from regions where R is rank deficient and hence violates the 

identifiability conditions provided by Theorem 1.

It should be emphasized once more, that whether S is random as in the prior suggested by 

Huang andWand (2013), or fixed, does not change the prior p(R), leaving Bayesian 

inference invariant to this prior. However, it turns out that the prior of S influences the 

efficiency of the marginal data augmentation algorithm we use for inference, see Subsection 

3.2.1, and mixing improves when S is random rather than fixed.

Finally, the marginal data augmentation algorithm will require sampling Λ from the 

conditional distribution p(Λ | R) for a given value of R. Under the random prior for S, we 

sample from the joint prior p(Λ, S | R) = p(Λ | S, R) p(S | R) = p(Λ | S, R) p(S), where p(S | 

R) = p(S) is equal to the prior of S, and the conditional distribution of Λ | S, R can be 

deduced from equation (19) using p(Λ | R, S) = p(Λ, R | S)/p(R | S) = p(Λ, R | S)/p(R). It can 

be shown that each single variance Λk | sk, R follows an inverse-Gamma distribution with sk 

being drawn from the prior, i.e.:

(22)

If the scale matrix S is fixed, then Λk | R, sk is sampled conditional on that value.

3 Bayesian Inference

Our inference approach is fully Bayesian and combines the likelihood function derived from 

model specification (1) under the assumptions on the latent factors θi and on the error terms 

εi specified in Subsection 2.2 with the prior distributions formulated in Subsection 2.3.

Our model contains a particular combination of ingredients (dedicated and correlated 

factors, dimension-varying structure, identification constraints) that requires a new 

procedure for Bayesian inference, based on Markov chain Monte Carlo (MCMC) methods.

For the fully specified model we consider in the present paper, the identification conditions 

formulated in Theorem 1 guarantee identifiability of Φ = {Δ, α, β, Σ, R}17 in the classical 

sense that any two solutions Φ and Φ′ yielding the same likelihood for all possible 

realizations Y, i.e., p(Y | Φ) = (Y | Φ′), are identical up to column and sign switching.

17Δ is the matrix of binary indicators with the same dimensions as the factor loading matrix α, β is the matrix of regression 
coefficients capturing the effects of the covariates on the latent variables (see equation (1)), Σ are the idiosyncratic variances (see 
equation (3)), and R is the correlation matrix of the factors.
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Within a Bayesian framework, the issue of identifiability is, in general, much less relevant. 

Any proper prior p(Φ) will turn a well-specified likelihood function p(Y | Φ) into a proper 

posterior distribution p(Φ | Y) by means of Bayes’ theorem, p(Φ | Y) ∝ p(Y | Φ) p(Φ), even if 

positive prior probability is assigned to subspaces of the parameter space containing 

solutions that are not identified in the classical sense defined above. However, when it 

comes to practical Bayesian inference, such a posterior distribution does not necessarily lead 

to sensible estimates of the unknown parameters, if inference is based on averages of 

MCMC draws from the posterior distribution. To avoid the ambiguity inherent in a posterior 

distribution derived from the likelihood of an unidentified model, we pursue a more rigorous 

approach in the present paper and constrain the posterior p(Φ | Y), by assigning positive 

prior probability p(Φ) only to parameters Φ that are identified in the classical sense defined 

above.

Several computational challenges have to be overcome in implementing this approach. First, 

we develop a new search procedure to select the dimension and the structure of the latent 

part of the model, without jeopardizing the identification condition (Subsection 3.1). 

Second, allowing for correlated factors calls for a new sampling scheme of the correlation 

matrix in a dimension-varying model (Subsection 3.2).

3.1 MCMC Sampling Scheme to Produce Identified Models

Implementing the classical identifying conditions regarding the minimum number of 

measurements dedicated to each factor in equation (6) introduce nonstandard difficulties in a 

MCMC sampling scheme. To address this problem, we develop a new algorithm that 

produces classically identified models.

To extract meaningful factors and factor loadings from model (1), a value has to be assigned 

to the indicator matrix Δ. Different approaches have been proposed in the literature to 

estimate dimension-varying models. The most popular is the reversible jump Markov chain 

Monte Carlo (RJMCMC) algorithm of Green (1995), which can be designed to visit models 

of different dimensions during sampling. However, this sampler has some limitations. First, 

it requires that the analyst specifies alternative models to be compared in the algorithm. 

When there is no a priori knowledge about the structure of the factor loading matrix, nor 

about the number of factors, the number of potential models underlying the data is 

prohibitively large. Our Bayesian search procedure operates on the set of all possible 

matrices Δ, among the (M × K)–dimensional indicator matrices belonging to the identified 

set , and allows us to choose its value from the data. Second, RJMCMC requires running 

preliminary analyses for each of the alternative models to generate sensible proposal 

distributions (Lopes and West, 2004), which can be computationally very demanding and 

therefore impractical for application to large models.

To remedy these problems, alternative approaches relying on the Metropolis-Hastings 

algorithm (henceforth M-H, see Hastings, 1970; Chib and Greenberg, 1995) have been 

proposed. Borrowing from the literature on mixture modeling, the M-H sampler can, for 

instance, be tailored to implement dimension-changing moves that, at each MCMC iteration, 

attempt to merge some existing factors to shrink the dimension of the model, or, on the 

contrary, to split some existing factors to expand the model (“split & merge moves,” see 
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Richardson and Green, 1997). Alternatively, the sampler can attempt to introduce new 

factors sampled from their prior distribution, or to delete existing factors at each MCMC 

step (“birth & death moves,” see Stephens, 2000). Again, the major difficulty with these 

approaches in large models is finding appropriate proposal distributions that will generate 

candidates for the split/merge or birth/death moves that are likely to be accepted as 

identified models.

The identifying requirements of our model (more specifically, the need to have at least three 

measurements dedicated to each factor), along with the specification of correlated factors, 

create nonstandard difficulties and prevent most MCMC algorithms from moving quickly 

enough through the parameter space to reach the stationary distribution of the parameters. 

This is a well-known issue in MCMC sampling. Recently, new approaches based on 

marginal data augmentation have been developed to handle these problems. These methods 

will be introduced in Subsection 3.2.1 for the sampling of the correlation matrix of the 

factors, but it is worth pointing out the analogy between our sampling scheme for the factor 

selection and marginal data augmentation methods. Both rely on intermediate steps in 

nonidentified models to boost the sampler, and both make sure that the algorithm always 

comes back to an identified model after these intermediate steps. But our approach differs in 

the sense that it does not introduce additional parameters into the model for this purpose, but 

rather relaxes restrictions on some existing parameters. More precisely, MCMC sweeps are 

carried out in the unrestricted version of the model (Subsection 3.1.1) to generate 

appropriate proposals for the M-H algorithm that will in the end only generate identified 

models (Subsection 3.1.2).

3.1.1 MCMC Sweeps in the Unrestricted Model—The MCMC sampler we implement 

to generate proposals draws model parameters and latent variables sequentially from their 

posterior distributions, conditioning at each step on the most recently drawn values of the 

other parameters and latent variables:

Algorithm 1 (Unrestricted MCMC Sampler). The following steps are performed on the 

unrestricted model, i.e., where the constraint of at least three measurements dedicated to 

each factor is not enforced. The conditioning on the covariates X is implicitly assumed at 

each step:

A. Sample the indicators Δ, the idiosyncratic variances Σ and the factor loadings α 

simultaneously. Since p(α, Σ, Δ | Y*, θ, β, τ) = p(α | Y*, θ, β, Σ, Δ)p(Σ | Y*, θ, β, Δ) 

p(Δ | Y*, θ, β, τ), this step can be broken down as follows:

(A-1) Marginalize the distribution of Δ with respect to Σ and α and sample Δ 
from p(Δ | Y*, θ, β, τ). Set the factor loadings corresponding to the zero 

indicators of Δ to 0, and denote the remaining non-zero loadings as αΔ.

(A-2) Marginalize the distribution of Σ with respect to αΔ and sample Σ from 

p(Σ | Y*, θ, β, Δ).

(A-3) Sample the non-zero factor loadings αΔ from p(αΔ | Y*, θ, β, Σ, Δ).

B. Sample the regression coefficients β from p(β | Y*, θ, α, Σ).
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C. For each binary measurement Yim, sample the corresponding latent variable 

from , for i = 1, …, N.

D. Sample the factors θ and their correlation matrix R jointly from p(θ, R | Y*, β, α, 

Σ).

E. Sample the indicator probabilities τ from p(τ | Δ), or skip this step if τ is integrated 

out of the likelihood when the indicators are updated at step (A-1).

Full details about the conditional distributions are provided in the subsequent sections and in 

Appendix A. Running this MCMC sampler on our factor model, where the indicators are 

sampled sequentially from their full conditional distributions, exhibits a good mixing of the 

Markov chain. There is, however, a major problem with this procedure, as it is not possible 

to force the algorithm to produce at least three measurements dedicated to each factor. As a 

consequence, this MCMC sampling scheme cannot be implemented to sample models that 

meet our identifiability requirements. We can nevertheless exploit these good properties to 

generate relevant proposals, and embed these unrestricted MCMC sweeps into a M-H 

algorithm to construct a valid MCMC sampling scheme that produces identified models.

3.1.2 Metropolis-Hastings Moves to Produce Identified Models—The mechanics 

of our algorithm can be described as follows: at each MCMC iteration, a few unrestricted 

MCMC sweeps are performed to sample models where the number of measurements 

dedicated to each factor is not restricted. These intermediate steps can generate models that 

are nonidentified. The nonidentified samples, however, are not saved for posterior inference 

and only serve the purpose of visiting models of different dimensions to generate relevant 

proposals for the M-H moves. When navigating through (possibly) nonidentified models, 

not only the indicators Δ are updated, but so are all of the parameters and latent variables of 

the system, in order to adjust all the components of the model. In so doing, the algorithm is 

more likely to reach an alternative state, where the factor loading matrix has a different 

structure (e.g., a different number of factors). New factors can, for instance, be introduced 

progressively into the model, one measurement at a time. The flexibility of the algorithm is 

the key to exploring models of different dimensions and finding the latent structure that is 

the most representative of the data.

The procedure can be summarized by the following algorithm:

Algorithm 2 (M-H moves with intermediate steps in nonidentified models). Let ϑ = {Y*, 

θ, Δ, α, β, Σ, R, τ} denote the set of model parameters and latent variables to be sampled. At 

each MCMC iteration, allow the Markov chain to temporarily visit nonidentified states of 

the model with unrestricted MCMC sweeps to generate a candidate that will be accepted (or 

rejected) by a M-H step. If the algorithm is currently in state , a candidate  is generated 

as follows by running 2S intermediate MCMC sweeps based on Algorithm 1:

(M1) Starting from , run S sweeps of the unrestricted MCMC sampler, by applying 

steps (A) to (E) iteratively, to produce a sequence .
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(M2) Starting from , run S sweeps of the unrestricted MCMC sampler in 

reverse order to produce a sequence . Reverse moves are simply 

performed by drawing the parameters and latent variables in reverse order, i.e., 

from step (E) to step (A).18

(M3) Accept the candidate  as the new state if the resulting model is identified (i.e., 

if the corresponding ), otherwise reject it and recycle the old state  as 

the new state of the Markov chain.

The number 2S of intermediate steps is a tuning parameter that can be fixed a priori, or 

specified as stochastic (see Subsection 3.3 for more details). At this point, it remains to 

justify that the resulting Markov chain is valid, in the sense that it meets the minimum 

requirements ensuring that it converges to its stationary distribution. We now explain the 

intuition behind the theoretical foundations of our approach, and show that our algorithm 

satisfies the detailed balance condition.

Transition kernel and detailed balance condition: Let pu(ϑ) denote the stationary 

distribution of ϑ in the unrestricted model. For a transition kernel Tu(·, ·) associated with pu 

(·), the detailed balance condition is verified if:

(23)

This condition is not necessary but is sufficient to show that pu(·) is a stationary measure 

associated with the transition kernel Tu. It implies that the chain is reversible, i.e., that the 

probability of being in ϑ̂ and moving to  is the same as the probability of being in  and 

moving back to ϑ̂ (Casella and Robert, 2004, definition 6.45).

In the case where the transition is made of several sub-transitions applied sequentially, like 

in our unrestricted MCMC sampler, the transition kernel from a state ϑ̂ to a new state 

through steps (A) to (E) is the product of the corresponding sub-transition kernels:

Similarly, the transition kernel from  to ϑ̂ in reverse order, from step (E) to step (A), is:

The detailed balance condition implies that both  and the reverse move 

have pu(·) as stationary distribution. Nevertheless, pu(ϑ) is not our targeted distribution, as it 

can generate nonidentified models. Rather, we are looking for a stationary distribution p(ϑ) 

18Note that steps (A-1) to (A-3) are still performed in this order in the reverse move. Since they rely on the marginalization of some 
parameters, they cannot be performed in reverse order (van Dyk and Park, 2008). This is, however, not in contradiction with our 
approach, because only step (A) as a whole is relevant here, the sub-steps being only used to break it down into several pieces that are 
easier to perform separately. The complete MCMC sequence in reverse order therefore is: (E), (D), (C), (B), (A-1), (A-2), (A-3).
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on the set of identified models that also verifies the detailed balance condition in equation 

(23), i.e.,

(24)

where Δ ∈ , and δ (Δ) is the Dirac measure that is equal to 1 if Δ ∈ , to 0 otherwise.

A parallel can be drawn between our method relying on intermediate steps in unrestricted 

models and Neal (1996)’s tempered transitions, which are designed as a very general 

approach to sample from multimodal distributions.19 Nevertheless, it should be emphasized 

that our approach departs from Neal (1996), as we relax the identifying restrictions during 

the intermediate steps, while the tempered transitions always operate on identified models. 

This is a major difference between the two approaches. The proof of the detailed balance 

condition, however, looks very similar. We present it in Appendix A.1 for the sake of 

completeness.

The symmetry of the intermediate moves aids in simplifying computations, as it bypasses 

the need to calculate the normalizing constant in equation (16). This results in a very simple 

form for the acceptance rate: proposed  are automatically accepted as a new state of the 

model if their corresponding indicator matrix  belongs to the identified set, otherwise they 

are rejected.

The MCMC sweeps performed to sample the parameters and the latent variables of the 

model are straightforward to implement, except for the correlation matrix of the latent 

factors, which requires some elaboration. We now discuss this specific stage, and explain 

the technical improvements of our sampling scheme over previous algorithms.

3.2 Sampling the Latent Factors and their Correlation Matrix in a Dimension-
Varying Model—Ours is the first paper in the Bayesian factor analysis literature to 

consider correlated factors in a dimension-varying model where identification of the model 

is secured explicitly. This feature of the model is challenging for the sampling procedure in 

two respects. First, drawing a correlation matrix is not trivial, because of the combination of 

fixed diagonal elements and positive-definiteness. Since no natural conjugate distribution 

exists for this matrix, the usual Gibbs sampler cannot be implemented. Subsection 3.2.1 

discusses this issue and presents the approach we adopt that relies on marginal data 

augmentation. Second, the dimension of the latent part of our model is not fixed and varies 

during sampling. This implies that correlation matrices of different sizes, dependent on the 

number of latent factors, have to be sampled through MCMC iterations. Subsection 3.2.2 

introduces the block sampling we develop to cope with this problem.

3.2.1 Sampling the Correlation Matrix through Marginal Data Augmentation: We 

borrow from the literature on marginal data augmentation to sample the correlation matrix of 

the factors and to boost the MCMC sampling of the factor loadings and of the factors at the 

19The tempered transitions are performed through the use of a sequence of intermediate distributions that are “heated” by different 
temperature parameters to flatten the likelihood function, thus allowing bigger moves.
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same time. To the best of our knowledge, this simple idea has not been applied to factor 

models with correlated factors in the literature.

Marginal data augmentation (henceforth MDA, see Meng and van Dyk, 1999; van Dyk and 

Meng, 2001; Imai and van Dyk, 2005), also referred to as parameter-expanded data 

augmentation (Liu and Wu, 1999), has recently been proposed as a very general and simple 

way to improve the convergence and the mixing of Markov chains in MCMC sampling. We 

apply this approach to achieve this primary goal of boosting convergence and mixing, but 

also, and maybe more importantly, to develop a new sampling scheme for the correlation 

matrix that turns out to be easier to implement than existing methods based on the M-H 

algorithm (Zhang et al., 2006; Liu and Daniels, 2006; Liu, 2008).

MDA consists of expanding the parameter space, at each MCMC iteration, by introducing a 

set of parameters that do not belong to the original model, and that usually cannot be 

identified from the data. Once the model has been transformed appropriately with these so-

called “working parameters,” a Gibbs sweep is performed in the expanded model (which is 

usually easier to perform than in the original model), and the model is finally transformed 

back to its original form. It is important to note that this expansion of the model is temporary 

and is only used as a computational device. The draws produced in the expanded model are 

not saved for posterior inference. Only the values of the parameters resulting from the final 

transformation are saved.

In our factor model, the variances of the factors are restricted to 1 for purposes of 

identification. This restriction can easily be relaxed to expand the model, using these 

variances as working parameters. Assume for now that the dimension of the model is fixed 

at K factors, and that we are therefore sampling a correlation matrix R of dimension (K × K) 

in the original model, and a covariance matrix , where Λ = diag(Λ1, …, ΛK), of 

same dimensions in the expanded model. At a given MCMC iteration (t), MDA proceeds as 

follows when it comes to the update of R:

• Model Augmentation. Expand the model with the variances of the factors Λ used 

as working parameters. Since no information is available about these parameters 

conditional on R(t−1), they are sampled from the prior distribution p(Λ | R(t−1)) 

according to equation (22), where the current value rkk(t−1) is used to sample each 

Λk, k = 1, …, K conditional on a scale matrix  drawn from the prior p(S). Call 

this draw , and transform the model as follows, for i = 1, …, N:20

so that in the expanded model  with

20Here it is assumed that α and θ have already been updated in the current MCMC iteration, hence their superscript (t); α is the factor 
loading matrix, see equation (1).

Conti et al. Page 22

J Econom. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



• Update the covariance matrix in the expanded model using a Gibbs step:

to obtain the updated working parameters  from the diagonal of Ω(t).

Concerning the scale matrix S applied in this step, it could be set equal to the scale 

matrix sampled from the prior, i.e., . Alternatively, S could be updated 

prior to sampling Ω(t) by sampling S(t) from p(S | Ω) conditional on Ω = Ω̃(t). The 

corresponding posterior p(S | Ω) is easily derived,

and yields

• Transform back to the identified model:

where the left arrows (←) indicate that the current values of the factor loadings and 

of the latent factors at iteration (t) are replaced by the corresponding transformed 

values. Note that this backward transformation is deterministic, given the updated 

variances .

These transformations are the mechanism of the marginal data augmentation that allows the 

sampling of the correlation matrix, improving the mixing of the Markov chain at the same 

time.
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3.2.2 Block Sampling of the Correlation Matrix Jointly with the Factors: We specify a 

maximum number K of factors a priori, but not all of them will ultimately be loaded by 

measurements.21 We make a distinction between the factors that have an impact on the 

measurements and belong to the identifiable set (those loaded by at least three 

measurements, called “active” factors) and those that do not (the “inactive” factors, which 

are not loaded by any measurements). The former correspond to the non-zero columns of the 

factor loading matrix α, and the latter to the zero columns. The inactive factors can be 

regarded as potential new factors, as it can happen, at any time during sampling, that some 

measurements start loading on them. Conversely, existing (active) factors can be shut down 

and become inactive if their dedicated measurements no longer load on them at a given 

MCMC iteration.

Assume that at a particular stage there are K1 active factors and K2 inactive factors, with K1 

+ K2 = K. The latent factors are reordered such that the K1 active factors (θ1) appear first and 

the K2 inactive factors (θ2) appear in the last positions of θ. The rows and/or columns of the 

different parameters and latent variables are thus reordered and partitioned as follows:

(25)

where R is the correlation matrix of the factors, and Ω is the corresponding covariance 

matrix (see equation (3)). A naive approach would be to sample the latent factors (active and 

inactive) and their correlation matrix sequentially through Gibbs sampling. However, 

mixing can be very poor in latent variable models. In our case, the draws of the correlations 

of the inactive factors would be highly autocorrelated across MCMC iterations if we 

sampled in this fashion. This would, in turn, affect the search procedure, as the sampled 

inactive factors—the potential new factors—would be very similar across MCMC iterations, 

making it difficult for the algorithm to pick new factors to better fit the data.

To remedy the slow mixing problem, the inactive factors and the covariance matrix Ω are 

sampled simultaneously in the augmented model of the marginal data augmentation 

procedure. This blocking strategy has been shown to substantially improve mixing and 

convergence (Liu et al., 1994). The sampling procedure is carried out in two steps. First, 

since the likelihood does not depend on the inactive factors (since α2 = 0), these factors θ2 

can be integrated out and the active factors can be updated marginally (van Dyk and Park, 

2008). The marginal conditional prior distribution of θ1i is (0; Ω11), and the updated 

conditional posterior is derived as follows, for all i = 1, …, N:22

with:

21If the sampler actually reaches the maximum number of factors K, the model should be reestimated with a larger value of K ≤ 
Kmax, as more factors may be underlying the data.
22To make the notation lighter, in this section we drop the tildes characterizing the transformed parameters of the MDA, although all 
these steps are carried out in the augmented model described in Subsection 3.2.1.
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Once θ1 has been updated, the inactive factors and the whole covariance matrix can be 

sampled simultaneously. Their joint distribution, in the expanded model, is proportional to:

revealing that the covariance matrix Ω can be sampled by blocks. For this purpose, we 

develop a sampling procedure that relies on well-known properties of the inverse-Wishart 

distribution.23 More precisely, we exploit the fact that the matrix Ω11 is independent of the 

block matrices (  Ω12 and Ω22·1), where  is the Schur 

complement of either close to 0 or to 1 Ω11 in Ω, both a priori as well as a posteriori. Hence, 

we split the scale matrix S appearing in the inverse Wishart prior and, respectively, posterior 

distribution of Ω in a similar way as in equation (25):

Using the prior , in a first step we sample the block matrix Ω11 

conditional on θ1 from the posterior

Given the independence of the blocks stated above, in a second step, we sample the Schur 

complement Ω22·1 and the product  Ω12 jointly:

Once these different blocks of the covariance matrix have been sampled, the inactive factors 

are sampled in a final step from the conditional distribution p(θ2 | Ω, θ1) independently for 

all i = 1, …, N:

This block strategy of sampling the latent factors and their correlation matrix simultaneously 

dramatically improves the mixing of the algorithm and, in turn, facilitates factor selection.

23See Theorem A1 in Web Appendix.
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3.3 Prior Specification and MCMC Tuning: Some Guidelines—The prior 

parameters should be carefully specified for the factor selection to work appropriately. 

Those discussed below, especially, play a crucial role and require particular attention.

The prior variance of the non-zero factor loadings defined in (18) is proportional to the 

idiosyncratic variance of each measurement, with a scale parameter  that determines how 

diffuse the distribution is. Subsequently, we make use of a fixed scale prior, where . 

Although it is usually not recommended to specify vague priors in latent variable models 

(e.g., ), as the near impropriety of the resulting posterior distribution can lead to a 

slow mixing of the sampler (Natarajan and McCulloch, 1998), being too informative should 

also be avoided. Too small a scale parameter would shrink the distribution of the loadings 

toward 0, especially in cases where measurement error is small. This could in turn induce an 

overfitting of the number of latent factors, where many factor loadings would have a low 

magnitude.

The degrees of freedom ν in the prior of the covariance matrix of the factors in the expanded 

model defined in (19) determines the marginal prior distribution of the factor correlations. 

Taking ν = K + 1 such that the single correlations are uniformly distributed on [−1; 1] (see 

Barnard et al., 2000) can be problematic in high-dimensional models. It may indeed result in 

an overestimation of the number of latent factors, where many factors would appear to be 

extremely highly correlated and therefore redundant to explain the data. To cope with this 

factor splitting problem, it might be helpful to increase ν to prevent duplicate factors from 

emerging. As outlined previously in Subsection 2.3.5 and at the beginning of this section, 

increasing ν is also important with respect to ensuring prior identification in cases where the 

likelihood function yields considerable support for unidentifiable regions of the parameter 

space.

The prior on the indicators’ probabilities τ (see equation (13)) needs to be tailored 

appropriately for the factor selection process. Due to the identifying constraints on the 

indicator matrix Δ, the implied prior distribution on the number of factors appears to be very 

tedious to derive analytically. It can however easily be simulated. Table 2 shows the prior 

probabilities of the numbers of factors for some models studied in the Monte Carlo 

experiment.

When τ0 is specified individually for each measurement (see Subsection 2.3.1), the impact 

of its prior specification vanishes if the Beta distribution is specified as symmetric (i.e., with 

equal shape parameters). This might appear counterintuitive at first sight, as one could 

expect a crucial role of the prior distributions of τ0 in the Bayesian updating process when 

only one observation of Δm is available at each MCMC iteration. However, with a single 

observation at hand, only the mean of the prior distribution counts, and this one is not 

affected by a change of scale of the prior parameters.24 This explains why there is no 

difference between using a uniform prior for τ0 (i.e., ℬeta(1; 1)) and a very informative 

24The prior mean of τ0 is κ0/(κ0+ξ0), and this ratio is not affected by a change of scale of the parameters, as long as these parameters 
remain proportional. This can also be seen from the ratio of the marginal likelihoods of Δ in equation (A9), which remains the same 
after such a change of scale.
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prior such as a U-shaped distribution reflecting the belief that τ0 is either close to 0 or to 1 

(e.g., ℬeta(0.1; 0. 1)).

The number 2S of intermediate steps determines how long the algorithm navigates through 

expanded models to generate proposals for the M-H moves, and turns out to play an 

important role in the convergence of the algorithm. It can be specified as fixed or stochastic 

(e.g., sampled from a Poisson distribution at each MCMC iteration) to introduce more 

flexibility in the M-H algorithm. In some situations, for instance when the sampler is stuck 

in one region of the parameter space and does not move, additional intermediate steps can be 

performed to allow the algorithm to reach another state.

Convergence of the M-H algorithm can be slow in large models, due to the huge dimension 

of the parameter space. The choice of the initial value for the indicator matrix Δ therefore 

plays an important role. Instead of choosing this matrix at random, we suggest to run a 

preliminary MCMC analysis based on the unrestricted sampler (Algorithm 1) to generate an 

appropriate starting value. This sampler can be implemented to explore the parameter space 

more quickly, but it will generate a factor loading matrix that is only partially identified, in 

the sense that it contains columns with at least three non-zero factor loadings, but possibly 

also columns with less than three non-zero values. Such a partially identified matrix can 

however be used to generate a starting value for Δ that corresponds to an identified model, 

by keeping only the columns with at least three non-zero values. The measurements 

dedicated to unidentified factors (with less than two dedicated measurements) can then be 

allocated either at random or according to our allocation rule to the identified factors. This 

approach based on the partial identification of the factor loading matrix can be theoretically 

justified (see, for instance, Sato, 1992, Theorem 3.9), and it can considerably reduce the 

need for a long burn-in period in practice.

3.4 Posterior Inference—The use of indicators makes it very easy to summarize the 

structure of the factor loading matrix. For example, the number Dk of measurements that are 

dedicated to a given factor k, for k = 1, …, K, the number of discarded measurements D0, the 

number of active factors K1, or the number of included measurements M̃ (those actually 

loading on a latent factor), can be computed as:

These quantities can all be estimated using the corresponding posterior modes or posterior 

means over the MCMC draws, and are not affected by the column switching problem, nor 

by the sign switching problem. These two problems should, however, be dealt with (i.e., 

identification of the model should be restored a posteriori) to be able to interpret the latent 

structure of the factor loading matrix.

Since there is no natural ordering of the columns of the factor loading matrix, different 

approaches can be adopted to solve the column switching problem. We suggest a reordering 

based on the top elements of the columns, i.e., the first row lk in each active column k 
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containing a non-zero factor loading, starting from the top of the matrix. Because of the 

dedicated structure of the factor loading matrix, each of these top elements corresponds to a 

different measurement. At each MCMC iteration, the non-zero columns of α are reordered 

such that the top elements appear in increasing order, i.e., l1 < l2 < … < lK. Finally, the rows 

and columns of the correlation matrix R of the factors should also be switched accordingly.

Regarding the sign switching issue, a simple sign switch can be carried out on the MCMC 

draws to reestablish the consistency of the signs across iterations. To do so, one factor 

loading is used as a benchmark in each column (e.g., the factor loading with the highest 

posterior probability of being different from zero in each column25). The analyst determines 

which sign each benchmark loading should have, and the MCMC draws are then post-

processed. Whenever the benchmark has the wrong sign in a certain column, sign switching 

has occurred at the corresponding MCMC iteration and is reversed by switching the signs of 

all the loadings that are in the same column (including the benchmark), of the latent factors 

corresponding to this column, as well as of the corresponding elements in the correlation 

matrix R of the factors.26

The decision on defining the signs of the loadings used as benchmarks should be guided by 

the meaning of the latent traits measured by the factors. If a factor captures a positive trait, 

like self-esteem, and the corresponding measurements are increasing in this trait, then it is 

straightforward to assume that the sign of the benchmark is positive, because a negative 

loading would capture the reverse of the trait of interest. The analyst should therefore always 

have the underlying literature in mind when carrying out this step, so as not to produce 

results that are counterintuitive and hard to interpret.

4 Applications to Simulated and Real Data

4.1 Monte Carlo Study

Data Generation—To investigate the performance of our algorithm, we run a Monte 

Carlo experiment using synthetic data simulated from a simplified version of equation (1). 

Since the focus of the experiment is on the factor selection process, no covariates are 

specified and the measurements are all assumed to be continuous (i.e., ), so as to 

keep the specification as simple as possible.

We generate models of different dimensions and denote them by ℳ(M, K0, D, D0), where 

M is the total number of measurements, K0 the true number of factors, D the number of 

measurements dedicated to each factor, and D0 the number of extra measurements that are 

uncorrelated with the other measurements.

Each model is made of M = K0D + D0 measurements that are dedicated to the latent factors 

through the following indicator matrix:

25If several factor loadings have the same highest posterior probability (e.g., 1.0), we simply take the first of them from the top of the 
matrix.
26Frühwirth-Schnatter and Lopes (2012) use a similar approach to address the sign and column switching problems.
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where ιD = (1, …, 1)′ is the vector of ones of length D. The uncorrelated measurements (if 

any) are placed at the bottom of the vector of measurements, hence the last D0 zero rows of 

Δ. For the correlated measurements, each single non-zero factor loading  and each 

idiosyncratic variance  are simulated independently from the following distributions:

for m = 1, …, K0D, where non-zero factor loadings  are assigned a sign at random with 

probability 0.5. The remaining D0 uncorrelated measurements are simulated independently 

from a standard normal distribution, i.e., , for m = K0D + 1, …, M, and the 

corresponding last rows of α contain only zero elements. The correlation matrix R of the 

factors is sampled as

where Ω is the factor covariance matrix (see equation (3)), and the distribution of R is 

truncated to the subspace where all off-diagonal elements are smaller than 0.85 to avoid 

extreme cases.27

Model parameters are sampled independently across Monte Carlo replications. Drawing the 

factor loadings and the idiosyncratic variances from these uniform distributions results in 

measurements with a proportion of noise  that ranges from 24% to 95% 

for the correlated measurements. The signal-to-noise ratio is comparable to what we observe 

in our real data application. It is worth emphasizing that factor extraction is very challenging 

in this context of noisy data.28

We simulate the following eight models, where the number of measurements ranges from 15 

to 125, and the number of factors from 3 to 12:

Each of these model configurations is used to generate data sets with N = 500 and 1, 000 

observations. For each of these data sets, 100 Monte Carlo replications are used.29

27Thus, any simulated R with at least one correlation large than 0.85 is discarded and a new R is simulated. The operation is repeated 
until a correlation matrix satisfying this restriction is sampled.
28See Web Appendix for additional Monte Carlo experiments with less noisy data.
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Prior Specification and MCMC Tuning—Table 1 displays the values of the prior 

parameters specified for this Monte Carlo study. For the correlation matrix of the factors, we 

implement the Huang-Wand prior by specifying a stochastic scale matrix S for the inverse-

Wishart of Ω that is updated at each MCMC iteration in the expanded model (see Subsection 

3.2). The tuning parameter ν* = ν − K + 1 is chosen to induce a uniform prior distribution on 

[−1; 1] on the individual correlations of the factors. The prior on the indicator matrix is 

specified to allow uncorrelated measurements to be easily discarded from the model. 

Following Subsection 2.3.1, the probability of a zero row in the factor loading matrix is 

specified as measurement-specific. Conditional on the inclusion of the measurements into 

the model, the Dirichlet distribution on τ* is then specified differently for each model size, 

so as to generate plausible prior probabilities for the number of factors. Table 2 shows these 

prior probabilities for the first four models under investigation. These probabilities were 

simulated using a simple accept-reject sampling scheme and the low acceptance rates in the 

last column reflect the difficulty in sampling models that meet the identifying restrictions 

when drawing only from unrestricted models.

For each Monte Carlo replication, the MCMC sampler is run for a total of 40, 000 iterations, 

where only the last 20, 000 iterations are saved for posterior inference. The factor search is 

carried out with a number of 2S intermediate steps, where S is drawn randomly at each 

MCMC iteration as S = 1 + ϕ, with ϕ ~ oisson (4).30 The starting values of the parameters 

are selected at random, except for the indicator matrix Δ, which is specified after a pre-

MCMC analysis. This preliminary analysis is performed by running the unrestricted sampler 

(Algorithm 1) for 50,000 iterations, starting with the maximum number of potential factors 

and a random structure. The value of Δ from the last iteration is then saved and used as a 

starting value, where only the identified factors (those with at least three dedicated 

measurements) are kept as active factors. The remaining measurements—those dedicated to 

unidentified factors—are assumed to be initially allocated to none of the identified factors.

Baseline Comparison to Classical EFA—We also perform classical exploratory factor 

analysis on the simulated data sets and compare the results to those obtained with BEFA. In 

a first step, we apply various criteria to select the number of factors. As explained in the next 

paragraph describing the results, no clear picture emerges and these criteria do not manage 

to uncover the dimension of the latent structure in a consistent way. Therefore, in a second 

step we run the factor analysis conditional on the true number of factors. Maximum 

likelihood factor analysis is implemented, as this classical factorization method is closest to 

our Bayesian approach.31 The results are finally rotated using a Promax rotation, which 

generates a sparse factor loading matrix and is thus in line with our approach. Similarly to 

BEFA, a reordering of the columns has to be done to allow a comparison of the estimated 

factor loading matrix to the true one. This is done by first setting to zero all factor loadings 

lower than 0.2 in magnitude, and then reordering the columns to match the true structure of 

the factor loading matrix as close as possible.

29Therefore, this Monte Carlo experiment relies on 8 (model sizes) × 2 (sample sizes) × 100 (Monte Carlo replications) = 1, 600 
independent data sets.
30Which results in an average number of 10 steps in expanded models.
31Classical estimation was carried out with the R Statistical Package (R Core Team, 2013).
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This comparison helps us assess the benefits of our approach over classical factor analytic 

methods. Nevertheless, the comparison should be done carefully, due to some differences in 

the implementation of the two approaches. Since classical criteria provide no conclusive 

answers to the selection of the number of factors (see Table 5), the maximum likelihood 

estimation presented in Table 3 is conducted conditional on the true number of factors. 

BEFA, on the contrary, estimates the number of factors using little prior information—the 

only prior information is conveyed by the prior distribution of the indicators, so as to 

generate plausible values for the number of factors (see Table 2).32 The maximum 

likelihood approach does not explicitly use the information that the measurements are 

dedicated, contrary to BEFA. However, the cutoff value used to set the factor loadings to 

zero (0.2) in the classical approach is based on the minimum value the factor loadings can 

take in our data generating process. In real-data applications, practitioners do not have this 

information and would typically fix this cutoff at a higher value (e.g., 0.5), thus changing 

dramatically the final structure of the factor loading matrix. BEFA does not rely on such 

cutoff values and therefore does not make use of this information.

Monte Carlo Results—The results of the Monte Carlo experiments on our eight artificial 

models are summarized in Table 3. To grasp the performance of our MCMC sampler, we 

compute different statistics based on posterior modes and on the highest probability model 

(HPM), which corresponds to the indicator matrix most often visited by the sampler across 

MCMC iterations.

The BEFA algorithm manages to recover the true structure of the factor loading matrix in 

virtually all cases, as indicated by the hit rates that are all very high. The larger the model, 

the more difficult the factor search, especially in this context of very noisy data. More data 

available enables the sampler to better recover the full 0/1 pattern of the indicator matrix, as 

indicated by the larger hit rates for N = 1000 compared to N = 500 in the column ΔH for all 

models. Measurements that actually belong to the model are almost never wrongly discarded 

(first four models), and extra measurements—those that are uncorrelated with the other 

measurements—are retrieved very accurately (last four models). This last result is obtained 

thanks to the hierarchical prior on the indicator matrix with measurement-specific 

parameters τ0m, which introduces more flexibility in the estimation of the number of zero 

rows of the indicators matrix, especially in large models (see Subsection 2.3.1).33

Table 4 display some information assessing the numerical efficiency of our sampler. In most 

cases, Metropolis-Hastings acceptance rates are very high. Low acceptance rates indicate ill-

convergence, as the sampler keeps proposing nonidentified models that never get accepted. 

In such cases, it is recommended to restart the sampling with different starting values. To 

gauge the numerical accuracy of our sampler, we compute inefficiency factors for the 

correlations of the factors, the top elements of the factor loading matrix, as well as the 

idiosyncratic variances corresponding to the highest posterior probability models (HPM). 

Each of these inefficiency factors is computed as the inverse of the relative numerical 

32Nonetheless, we show in the Web Appendix that the impact of this prior distribution is negligible.
33We ran the same simulations with the initial prior specification on τ assuming a common parameter τ0 across measurements, and as 
expected, the number of uncorrelated measurements D0 was always underestimated, especially in large models. See Web Appendix 
for more details.
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efficiency (Geweke, 1989), and measures the number of draws required to achieve the same 

numerical precision as an independent sample from the target distribution.34 These factors 

are close to 1 in all cases, revealing a very good mixing of our sampler.35 These good 

properties are obtained thanks to the marginal data augmentation sampling scheme used for 

the correlation matrix, and also to the intermediate steps in augmented models that are not 

saved for posterior inference and therefore induce a thinning of the Markov chain. Inference 

was conducted with a code written in Fortran for improved speed, and computational time 

was assessed on 2.66GHz Intel Xeon CPUs. Running times are displayed in minutes, and 

correspond to the total number of 40,000 MCMC iterations, each iteration being made of 2S 

intermediate steps in augmented models (10 intermediate steps on average).

The last columns of Table 3 show the results obtained from Maximum Likelihood 

estimation of the factor models with Promax rotation run on the same data sets. This 

approach is clearly outperformed by our BEFA method. It turns out to perform reasonably 

well on small models, but exhibits difficulties in recovering the true pattern of the indicator 

matrix when model size increases—although it is run conditional on the true number of 

latent factors and the true value of the minimum factor loading is used as threshold. The 

larger the model, the worse the performance: Too many correlated measurements turn out to 

be discarded (cf. columns for D0) and some factor loadings equal to zero in the true model 

are estimated as different from zero (cf. column for n̅Δ). The comparison between the two 

approaches is thus striking, especially given the fact that although BEFA is run without 

knowing the true number of factors a priori, contrary to classical EFA, it still manages to 

perform better in recovering the true latent structure.

Finally, Table 5 shows the results obtained by applying to the same simulated data methods 

routinely used in psychometrics and econometrics to select the number of components/

factors.36 While, as seen in Table 3, the BEFA algorithm displays remarkably high hit rates, 

the different classical criteria are not able to recover the dimensionality of the true latent 

structure in a consistent way. In particular, while most of the methods succeed in recovering 

it for the simplest models with three factors, their performance varies between under-(in the 

case of the Velicer and of the Onatski method, and of the Bayesian Information Criterion) 

and over-extraction (in the case of the Kaiser criterion) for the higher-dimensional models. 

In general, doubling the number of observations from 500 to 1,000 allows a more accurate 

selection of the number of factors, while including in the data extra measurements 

uncorrelated with the others (as in the last four models) leads to an even greater degree of 

over-extraction.

We now apply our methodology to real data for the estimation of a high-dimensional factor 

model.

34For example 100, 000 draws from a sampler with an inefficiency factor of 10 will have the same numerical accuracy as 10, 000 
draws from an independent sample. Inefficiency factors computed as explained in Kastner and Frühwirth-Schnatter (2014).
35Larger inefficiency factors would be obtained if they were not calculated for HPM—i.e., if they took into account model uncertainty 
due to the unknown structure of the factor loading matrix α. However, researchers are usually interested in the final structure of α 
(HPM in this case), hence the results reported.
36A brief description of the various classical methods used in this section for selecting the number of components/factors and for 
performing rotation is provided in the Web Appendix. The scree plots displaying the average eigenvalues across the 100 Monte Carlo 
replications for each model are also shown there.
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4.2 Empirical Analysis of the BCS Data

This section of the paper applies our method to data on cognitive, psychological and health 

measurements. Classical Exploratory Factor Analysis is widely used to boil down high 

dimensional data on psychological traits to interpretable scales. This is the method used to 

obtain the Big Five37 (see Goldberg, 1990). We estimate the structure of cognitive, 

psychological and physical traits in childhood using the BEFA approach. We then show 

which alternative structures are obtained by the methods traditionally used.

Data—We apply our method to data from the British Cohort Study (BCS), which has been 

widely used in an interdisciplinary literature on the effects of early life conditions on adult 

outcomes. The BCS is a longitudinal survey following all babies born in a particular week of 

April 1970 in the United Kingdom. A wealth of information has been collected at multiple 

ages on the cohort members’ cognitive, behavioral and physical development, their family 

and school environment, and their labor market and life outcomes. For this application, we 

use information on family background characteristics from the birth sweep, and on 131 

cognitive, behavioral and health measurements—28 binary and 103 continuous—at age 10, 

to estimate the structure of childhood traits for the male cohort members.38

Prior Specification and MCMC Tuning—We run our algorithm on this data set and 

assume that the number of underlying factors does not exceed 20, (so K = 20).39 We adopt a 

prior specification that is similar to the one used in the Monte Carlo study, assuming 

and A0 = 3, and for the continuous measurements c0 = 2.5 and  specified as in equation 

(17). The only differences worth pointing out are for the regression coefficients, the 

correlation matrix of the factors, and the indicator probabilities. We introduce covariates in 

our factor model to control for observed heterogeneity, and assume that the corresponding 

regression coefficients are a priori centered  with prior variance .40 To 

hinder factor splitting, which happens to be a problem in our application when assuming a 

uniform prior on the individual factor correlations, we increase the number of degrees of 

freedom to ν = K + 5. As shown in Figure 1, this value of ν shifts the prior distribution of 

the maximum correlation away from 1. The scale matrix S is specified as stochastic to 

implement the Huang and Wand (2013) prior, and its diagonal elements are allowed to take 

relatively large values to enhance mixing by fixing Ak = 100. Finally, the prior on the 

indicator weights is specified with measurement-specific parameters τ0m assumed to have a 

symmetric prior Beta distribution (κ0 = ξ0 = 0.1), and for the included measurements the 

Dirichlet prior is specified with concentration parameter κ = 0.5, a prior similar to the one 

used for the largest model with 125 measurements in our Monte Carlo study (see Table 2). 

We start the algorithm with a single factor and run the sampler for 100, 000 iterations, where 

only the last 40, 000 ones are used for posterior inference.41 For the factor selection, 2S 

37In psychology, the Big Five personality traits are five broad domains or dimensions that are used to describe human personality, and 
that are based on the Five Factor Model (FFM)(Costa and McCrae, 1992). The Big Five are Openness, Conscientiousness, 
Extraversion, Agreeableness, and Neuroticism (OCEAN).
38Full details on the data and the measures we use are in Appendix B.
39Since we find 13 factors, there is no need to rerun with a larger maximum number of factors.
40See Appendix B for scaling of the covariates.
41We resort to a long burn-in period for the empirical application, as the pre-MCMC stage based on the unrestricted algorithm turned 
out to produce too many nonidentified factors that could not be used to generate a sensible starting value for Δ.
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intermediate steps are performed at each MCMC iteration, with S = 1 + ϕ and ϕ ~ oisson 

(4). We run the MCMC sampler several times with different starting values to check it 

converges to the same solution. After sampling, the MCMC draws are post-processed 

following the strategy described in Subsection 3.4 to solve the sign and column switching 

problems and make interpretation possible.

Empirical Results—The main results are presented in Figure 2, which displays the 

posterior means of the factor loadings in the highest probability model (HPM)—the model 

that corresponds to the indicator matrix Δ that is visited most often by the algorithm. In our 

application, the posterior probability of the HPM is 0.42. These results show that the method 

succeeds in condensing the information contained in the data in a concise and interpretable 

way. BEFA uncovers 13 factors (out of an admissible set of K = 20) from the 131 

measurements recorded from multiple sources on the development of the child at age 10. 

The factor loading matrix should be interpreted jointly with Figure 3 that shows the 

posterior correlations among the estimated factors and gives more insights into the 

interrelations between the latent constructs.

First of all, the measurements are clearly allocated to one of three broad categories—

cognitive, noncognitive and health. All intelligence test scores load on a single factor, which 

we term cognitive ability (θ1);42 likewise, all physical measurements load on a separate 

factor, hence named Body Build (θ13). Most importantly, the numerous measures belonging 

to the five noncognitive scales (the Rutter, Conners, Child Developmental, Self-Esteem and 

Locus of Control scales) are allocated to 11 different factors in such a way that items 

describing the same trait consistently load on the same factor. In this way, each factor 

beyond the first one can be clearly named as a child mental health problem or facet of 

temperament, as shown in the columns of Figure 2 (θ2–θ12). For example, the factor we call 

“Attention Problems [T]” (θ5) is loaded by all teacher-reported items denoting inability to 

pay attention in class. Second, measurements collected from different subjects (mothers, 

teachers, and the children themselves) load on separate factors, although some of them use 

exactly the same wording.43 Third, Figure 3 shows that the estimated correlations among 

the factors are informative:44 in addition to the two main clusters of inter-correlated mother-

(θ2– θ4) and teacher-(θ5– θ11) reported traits, BEFA also succeeds in uncovering meaningful 

42Items from the locus of control scale also load on this factor. While this might seem prima facie unusual, it is not actually 
uncommon in the literature. Costa and McCrae noticed “Many lexical studies show that some aspects of rated or self-reported 
intelligence (e.g., logical, foresighted vs thoughtless, imperceptive) also load on a Conscientiousness factor; we view these as 
reflections of Competence. We would also hypothesize that locus of control would be related to this facet.” (Costa et al., 1991). 
Additionally, also Van Lieshout and Haselager (1994) and Mervielde et al. (1995) obtain childhood factors loading on both 
intellectual capacity/intelligence and Conscientiousness. Finally, von Stumm et al. (2009), analysing these same data, also notice a 
substantial overlap of locus of control and intelligence. They hypothesize this may be partially due to the shared cognitive-based 
setting of assessment (i.e., in school under teacher’s supervision). Alternatively, like Costa et al. (1991), they speculate that these 
scales may tap into the same dimension of individual differences. Intelligence enables learning and understanding, which facilitate 
pupils’ school performance and academic achievement. This encourages a sense of personal competency and, thus, students are likely 
to attribute school achievements to their own ability and effort rather than external circumstances. In our results, all the locus of 
control items which load on factor 1 specifically refer to academic performance, attesting that the measurement of locus of control in 
the BCS 1970 is closely linked to school experiences.
43This occurs in the case of the Child Developmental Scale, which was specifically developed for inclusion in the BCS by selecting 
appropriate items from the Rutter and Conners instruments, and adding a few additional ones—such as motor coordination problems
—to make the scale a more comprehensive measure of child development. The list of items with the same wording and the different 
factors they load on is shown in the Web Appendix. The detailed description of each item by which each factor is loaded is also 
reported there.
44Posterior standard errors for the estimated correlations are displayed in Table A3.4 in the Web Appendix.
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correlations across traits derived from reports by different informants. For example, the 

correlation between cognitive ability (θ1), as measured by intelligence test scores 

administered to the child, and attention problems (θ5), as measured by teacher-reported 

items, is −0.504. And the low correlation between mother- and teacher-reported traits is also 

consistent with a consolidated literature in child psychology, starting from the seminal study 

of Achenbach et al. (1987), who report that correlations of ratings are low between 

informants who play different roles with children.

Comparison with Estimates from Classical Methods—We now compare the 

performance of our procedure with that of approaches traditionally used in the applied 

literature.45 Given the lack of a commonly accepted method of aggregation, different studies 

summarize the available information in many different ways, and often arrive at different 

conclusions, even when analyzing the same data. First and foremost, all studies make a 

priori judgments on which sets of scales to aggregate: no previous study has analyzed all the 

information available in the data as we do here. At the initial stage, researchers usually 

define broad categories—such as cognition, personality and health—then eventually define 

sub-categories (e.g., verbal and mathematical intelligence, conduct or attention problems). 

This approach may be appropriate when a priori information is available to the researcher. 

Then, analysts use their method of choice to condense the information available within each 

of these pre-defined categories. The two most commonly used approaches are: (1) 

construction of simple sums or averages; (2) Exploratory Factor Analysis (EFA), with the 

extraction of principal components or factors.

A first common approach to aggregation is to take sums or unweighted averages, either of 

different scales belonging to a broad category (e.g., all cognitive scales), or of different 

items belonging to the same scale (e.g., all items belonging to the self-esteem scale), as done 

in Murasko (2007), Gale et al. (2008) and Kaestner (2009), among others. This simple 

procedure makes two strong assumptions: equal weighting of items (i.e., all measures are 

assumed to incorporate the same share of information about the latent factors), and absence 

of measurement error. Both of these assumptions are at odds with the data.46 On the one 

hand, different measurements associated with the same factor clearly have different factor 

loadings (Figure 2). On the other hand, we find substantial measurement error in the 

measurements (Figure 4). This provides evidence that, at least when using the BCS data, 

unweighted aggregates are not an adequate representation of the latent structure of 

childhood traits.

Another approach commonly adopted is to extract principal components or factors. 

Although the two methods are conceptually different, they are often used interchangeably in 

the applied literature, when there is need for dimensionality reduction. For example, 

Feinstein (2000), Blanden et al. (2007), Gale et al. (2009), Jones et al. (2011) and Dohmen 

et al. (2012) all extract principal components, while von Stumm et al. (2009), Baron and 

Cobb-Clark (2010), Antecol and Cobb-Clark (2010), Helmers and Patnam (2011) and 

45A brief description of the various classical methods used in this section for selecting the number of components/factors and for 
performing rotation is provided in the Web Appendix.
46See Cunha and Heckman (2008) for an exploration of these issues.
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Fiorini and Keane (2012) extract factors, although they deal with similar applications and 

sometimes even use the same data.

When components are extracted, error in the measurements is not accounted for. When 

extracting factors, instead, the analyst only analyzes the variability in the observed 

measurements which can be explained by the common factors not affected by measurement 

error. Stated differently, components extraction is based on an eigenvalue decomposition of 

the raw correlation matrix (Jolliffe, 1986), while factor extraction is applied on the 

“reduced” correlation matrix with measurement error variance removed (the one based on 

the factor covariance).47

It is instructive to compare the steps involved across the various methods. While BEFA is a 

unified single step procedure, traditional approaches involve multiple stages: a first step in 

which the number of components/factors is selected, a second step in which components/

factors are extracted (conditional on the number selected in the first step), and a third step in 

which rotation is performed to search for a simple structure.48 Arbitrary decision rules are 

involved at each step. Several criteria are available to select the dimensionality of the latent 

structure, to extract the factors (Gorsuch, 1983), and to rotate the resulting loading matrices 

(Jennrich, 2001, 2002). If a simple structure does not emerge in a first round, classical 

Exploratory Factor Analysis procedures also involve further steps, in which measurements 

weakly loading on factors are iteratively eliminated on the basis of arbitrary threshold rules, 

until a stable solution with only single loaders is achieved. The elimination criterion is also 

usually based on the magnitude of the loadings, without accounting for their statistical 

significance.

BEFA performs all of these steps in one coherent Bayesian procedure, where the dimension 

of the latent structure is estimated jointly with the allocation of the measurements to the 

factors. This is in contrast with traditional approaches in which the various steps are 

performed sequentially, and each of them requires ad hoc judgments, which affect the final 

outcome, as shown in Table 7.49

First, as already seen in the previous section with the application to the simulated data, the 

choice of the method used to select the dimensionality of the latent structure is not 

innocuous. Table 6 shows that the number of components/factors estimated from the raw 

measurements ranges from a minimum of 6 when using the Scree plot and the Onatski 

(2009) method, to a maximum of 72 when applying the Akaike Information Criterion.50 It 

also shows that each method selects a number of components bigger than the number of 

factors. Because component extraction does not discriminate between common and unique 

variance, spurious components/factors are likely to be extracted. Additionally, using raw or 

47In practice, the two methods will yield similar results when the values of the communalities are relatively high (Fabrigar et al., 
1999).
48The procedure of rotation identifies blocks of measures that within blocks are strongly correlated with one component/factor (i.e., 
satisfy convergent validity) but are weakly correlated with other components/factors across blocks (i.e., satisfy discriminant validity).
49Discarding measurements is an intuitively unsatisfactory procedure but it is an essential part of Exploratory Factor Analysis. (See, 
e.g., Gorsuch, 2003). At the same time, the procedure used in this paper can be faulted by assuming that each measurement loads on at 
most one factor. In future work, we plan to relax this requirement.
50Scree plots of the eigenvalues from both the raw and the reduced polyserial correlation matrix are shown in the Web Appendix. It is 
evident that, in both cases, no clear separation or “elbow” emerges.
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residualized measurements51 also makes a difference, since in the latter case a smaller 

number of components/factors is usually selected. This might suggest that, when using raw 

measurements, spurious components are likely to be extracted.

Second, in the classical approach, not only the criterion to detect the number of components/

factors plays a role, but also the extraction and rotation methods have a non-negligible 

influence on the final structure. This is clearly visible in Table 7. Here we show the final 

number of components/factors and measurements which result by applying to the initial set 

of 131 measurements (both raw and residualized) different dimensionality selection criteria, 

extraction and rotation methods, and use the same set of rules to discard items, as suggested 

in Costello and Osborne (2005), and applied in Heckman et al. (2013).52 The extraction 

methods applied are those of principal components (routinely used to construct ability 

measures),53 principal factors (Gorsuch, 1983, 2003), applied among others in Antecol and 

Cobb-Clark (2010) and von Stumm et al. (2009), and maximum likelihood factor analysis 

(the method closer to BEFA). We then use two commonly applied methods of oblique 

rotation—promax and quartimin—that penalize departures from Thurstone’s simple 

structure, and allow for correlated factors which are also accommodated in BEFA. Hence, 

for each set of measurements (raw or residualized), initial number of components/factors, 

extraction and rotation method, we apply the following rules. First, we exclude items with 

loadings smaller than 0.5 in absolute value (to avoid the weak-loading problem), and also 

items with a loading of 0.32 or higher in absolute value (as suggested in Tabachnick and 

Fidell, 2001) on two or more factors (to avoid the crossloading problem). Second, we also 

exclude measurements in cases where only two of them load on a single factor (to avoid 

weakly-identified constructs). This restriction serves the same purpose as our identifiability 

condition (that at least three measurements must be dedicated to each factor). In the classical 

setup this condition is applied ex-post and in a sequence of steps subject to arbitrary choices, 

while in BEFA it is explicitly incorporated into the MCMC sampling scheme. This iterative 

procedure of components/factors selection, extraction, rotation, and elimination of 

measurements is repeated until no further items are dropped.

It is clear from Table 7 that both the choice of the initial number of components/factors to 

extract and the extraction/rotation method adopted have a substantial impact on the final 

structure achieved, when performing this iterative sequential elimination procedure.54 The 

final structure achieved depends on both the chosen initial number of components/factors, 

and on the choices made at the various steps. It ranges between a minimum of 4 final factors 

and 34 measurements, to a maximum of 11 final factors and 76 measurements. Starting by 

selecting a smaller number of factors in general leads to retaining a smaller number of 

measurements. The choice itself among the different final configurations is not innocuous. 

51We define residualized measurements as the residuals of a linear regression of the measurements on the seven covariates (X) which 
are included in the BEFA measurement system. We use a linear probability model for the binary measurements. The covariates 
included are mother’s age at birth, mother’s education at birth, father’s high social class at birth, total gross family income at age 10, 
an indicator for broken family, the number of previous livebirths, and the number of children in the family at age 10. More details are 
provided in Appendix B.2.
52Similar threshold rules to discard weakly-loading items and to interpret the resulting structure are applied by von Stumm et al. 
(2009) and Fiorini and Keane (2012).
53We use the component loadings, i.e., the eigenvectors scaled by the square root of the eigenvalues.
54Browne (2001) was the first to show how different rotation criteria can influence factor pattern matrices.
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While more parsimonious, a lower-dimensional structure would not display the richness of 

the childhood traits as uncovered by the BEFA approach. In almost all final configurations 

obtained with this procedure, the health factor has been discarded (with the exception of the 

structure obtained when extracting principal components with an initial number of 12); 

additionally, when using maximum likelihood factor analysis with 6 initial factors, the 

cognitive factor is discarded.

In sum, alternative classical approaches to aggregating high-dimensional data often make 

assumptions that are not supported by the data (equal weighting of items and absence of 

measurement error), or that lead analysts to discard many measurements loading on multiple 

factors. The multistage procedure of classical EFA is based on separate stage-wise choices 

of significance levels, criteria for selection of the dimension of the model, criteria for 

allocation of measurements to factors and criteria for estimating factor loadings made by the 

analysts at various steps of the process. Although the BEFA method requires some a priori 

judgments, it is a unified procedure that simultaneously chooses the dimension of the model, 

the allocation of measurements to factors and factor loadings using the same algorithm and 

tuning parameters.

5 Conclusion

This paper develops and applies a new method—Bayesian Exploratory Factor Analysis 

(BEFA)—to constructing maximum posterior probability indices that summarize high-

dimensional data by a low dimensional set of interpretable aggregates. We develop an 

integrated Bayesian framework to factor selection that simultaneously tackles several steps 

in building a factor model that are usually done sequentially: the choice of the dimension of 

the latent structure, the allocation of the measurements to the factors, as well as the 

estimation of the corresponding factor loadings.

Our method advances the traditional literature on Exploratory Factor Analysis. BEFA 

constitutes a significant departure from traditional factor-analytic methods by overcoming 

the intrinsic arbitrariness of the choices made by analysts in the various steps—from the 

choice of dimension to the extraction and rotation method. Ours is a coherent estimation 

framework. It is the first paper in the Bayesian literature to estimate a dedicated factor 

model with correlated factors, where the dimension of the factor structure is a priori 

unknown. Importantly, it links the two literatures, by invoking classical criteria to achieve 

identification, and by imposing identifying restrictions as an integral feature of the 

estimation algorithm.

We make several contributions in implementing our algorithm. To explore the parameter 

space, our sampler is allowed to navigate through expanded models where the identifying 

restrictions are relaxed. However, these intermediate steps are not used for posterior 

inference. They only serve as a computational tool. Eventually the algorithm only samples 

identified models. To draw the factors and their correlation matrix, marginal data 

augmentation methods as well as block sampling of the active and inactive factors have been 

adapted to our problem, to make it possible to sample these parameters and latent variables 

in a dimension-varying model.
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We check the performance of our approach by a Monte Carlo experiment, and we show that 

it outperforms classical methods both for dimensionality selection, and identification of the 

true latent structure. Its applicability is demonstrated with an empirical study. We estimate 

the structure of the childhood mental and physical traits, and show that the method succeeds 

in producing interpretable aggregates. We compare its performance with that of several 

existing classical Exploratory Factor Analysis approaches. We show that application of 

classical Exploratory Factor Analysis can lead to different conclusions, depending on the 

choices made by the analysts at various steps of the process and the sequential item 

elimination rules used to achieve interpretability of the structure. Our method is a coherent, 

theoretically-based alternative.

Classical EFA discards data that load on multiple factors. Our version of BEFA does not 

discard data, except for measurements that do not load on any factor. However, the analysis 

of this paper assigns measurements to at most one factor. In research underway, we extend 

our approach to allow measurements to be allocated to multiple factors. This changes the 

identification and computation algorithm substantially and warrants a separate analysis.
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Appendix

A Details on MCMC Sampling

A.1 Proof of the Detailed Balance Condition for the MH Sampler with Intermediate Steps

To prove that the Markov chain resulting from the sampling scheme introduced in Section 

3.1.2 leaves the distribution of ϑ invariant, it is enough to show that the detailed balance 

condition holds for accepted moves. The probability of starting from a set of parameters 

belonging to the identified set (i.e., ), going through the sequence of intermediate 

states , and finally accepting the final state  (i.e., if 

), can be shown to be the same as the probability of starting from the same state 

(assuming it belongs to the identified set), moving to  through the same sequence of 

transitions, but in reverse order, and accepting  as the new identified state:

(A1)
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(A2)

(A3)

where equation (A2) follows from the mutual reversibility condition of equation (23). 

Furthermore, both equation (A2) and equation (A3) use the fact that p(ϑ) ∝ pu(ϑ) δ (Δ), see 

equation (24).

The detailed balance condition of the unrestricted MCMC move through the intermediate 

steps follows by integrating out the intermediate states  on 

both sides of equation (A1), to provide the kernel of the transition from :

A.2 Posterior Distributions

A.2.1 Indicator Matrix—The indicator matrix Δ can be sampled row-wise using Gibbs 

updates. The posterior probability that the mth measurement is dedicated to the kth factor (or 

not dedicated to any factor if k = 0) is a function of the marginal likelihood of its 

corresponding latent utility, for k = 0, 1, …, K:

(A4)

where  denotes the marginal likelihood of the vector 

, conditioning on the remaining rows Δ−m of the indicator matrix.

From a computational point of view, these posterior probabilities can be calculated using the 

posterior log odds, which are more stable numerically than computing equation (A4) 

directly:

where m,(k→l) denotes the posterior log odds for a move from a model where measurement 

m is dedicated to factor k to a model where it is dedicated to factor l. More details on the 

posterior log odds are presented in Appendix A.3.
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A.2.2 Idiosyncratic Variances and Factor Loadings—The idiosyncratic variances Σ 

corresponding to the continuous variables,55 and the factor loadings α are sampled 

simultaneously for each measurement m. Let  denote the only non-zero element in row m 

of the factor loading matrix, where the corresponding measurement m implicitly loads on 

factor k.

In the case of a continuous measurement that does not load on any factor (“null model” 

where Δm = e0), the idiosyncratic variance is sampled as follows:

where .

In the general case of a dedicated measurement, the posterior distributions of the 

idiosyncratic variance and of the non-zero factor loading are:

(A5)

where, under the fixed-scale normal prior:

In the binary measurement case, non-zero factor loadings are sampled from equation (A5), 

where . No parameters need to be sampled in the “null model” case for binary 

measurements.

A.2.3 Regression Coefficients—The regression coefficients β are sampled row-wise 

from the following conditional distribution, for m = 1, …, M:

where αm is the column vector representing the mth row of α.

A.2.4 Latent Variables for the Binary Measurements—If measurement m is 

dichotomous, its corresponding latent variable  is sampled from the following truncated 

normal distribution, for each individual i = 1, …, N:

55Recall that for the binary measurements, we set .
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A.2.5 Indicator Probabilities—The indicator probabilities τ are sampled by first drawing 

the components τ0 and τ*:

(A6)

where  is the number of measurements dedicated to factor k (or 

not dedicated at all if k = 0). Then, compute the resulting probabilities τ using equation (14). 

In the case of the alternative hierarchical prior described in Subsection 2.3.1, each τ0m is 

sampled from ℬeta(κ0 + 1[Δm = e0] ; ξ0 + M − 1[Δm = e0]). However, since only one 

observation is available for the update, it is recommended to integrate the τ parameters to 

obtain faster convergence and better mixing of the sampler (see Appendix A.3.2).

A.3 Posterior Log Odds

A.3.1 Deriving the Log Odds Conditional on the Indicator Probabilities τ—The 

posterior log odds that a measurement m currently dedicated to factor k becomes dedicated 

to factor k′ (“null model” if k or k′ = 0) can be expressed as:

(A7)

where the last term is equal to log(τk′/τk) when sampling is done conditional on the 

parameters τ (see Appendix A.3.2 for the case where τ is integrated out).

The marginal likelihoods of the latent variables of the measurements are required to 

compute the posterior log odds. These marginal likelihoods differ for continuous and binary 

measurements, and for the case of the “null model” and the general case of a dedicated 

measurement. In the continuous case, they can be expressed as, using the posterior moments 

derived in A.2.2:
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while in the binary case:

With these marginal likelihoods in hand, it is straightforward to compute the posterior log 

odds. In the continuous measurement case, they are equal to:56

and in the binary case:

for all k ≠ 0 and k′ ≠ 0, where:

A.3.2 Integrating out the Indicator Probabilities τ—Integrating out the vector of 

indicator probabilities τ from the likelihood function does not affect the ratio of the marginal 

likelihoods of  in equation (A7), but only the last term that is equal to log(τk′/τk) when 

sampling is done conditional on τ. For a move from a model where measurement m is 

dedicated to factor k to a model where it is dedicated to factor k′, this second term should be 

replaced by the ratio of the marginal likelihoods of Δ in the two models. This ratio is 

expressed as log(p(Δmk′)/p(Δmk)), where the two indicator matrices Δmk and Δmk′ are 

identical up to row m, where in the first case this row is the indicator vector ek, while in the 

second it is ek′.

The marginal distribution of the indicator matrix Δ is equal to:

(A8)

56For the computation of the posterior log odds, the factor loadings are assumed to be a priori centered (i.e., ) to simplify the 
calculations. This assumption is usually adopted in factor analysis.
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where , for k = 0, …, K. Given that the numbers of measurements 

in the different groups are equal to:

for all k ≠ k′ and l ∉ {k, k′}, it follows from equation (A8) that the ratio of the marginal 

likelihoods, for all k ≠ k′, simplifies to:

In the case of the alternative hierarchical prior specification on τ, with individual τ0m 

parameters but common τ* for the measurements, the marginal distribution of the indicator 

matrix Δ is:

and the ratio of marginal likelihoods, for a move from k to k′ in row m, for k ≠ k′, simplifies 

to:

(A9)

B Data: The British Cohort Study

We use data from the British Cohort Study (BCS), a survey of all babies born (alive or dead) 

after the 24th week of gestation from 00.01 hours on Sunday, 5th April to 24.00 hours on 

Saturday, April 11th, 1970 in England, Scotland, Wales and Northern Ireland. There have 

been seven follow-ups on the members of the birth cohort: in 1975, 1980, 1986, 1996, 2000, 

2004 and 2008. We draw information on background characteristics from the birth survey, 

and on cognitive, mental and physical health measurements from the second sweep (age 10). 

We exclude children born with congenital abnormalities, non-whites, and respondents with 

missing information on the background characteristics. Individuals with missing 

observations on some of the cognitive, mental and physical health measurements are 

discarded from the sample, so we are left with a sample of 2,080 men.
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B.1 The Measurement System

The measurement system includes one hundred and thirty one indicators of child cognitive, 

mental and physical health traits, all collected at age ten. Notice we use both binary and 

continuous measurements, which have been standardized to have zero mean and standard 

deviation equal to one for use in our empirical application.

Cognitive Ability Scales—As indicators of cognitive ability, we use the following seven 

tests:

• The Picture Language Comprehension Test [PLCT]: this is a new test specifically 

developed for the BCS on the basis of the American Peabody Picture Vocabulary 

Test and the English Picture Vocabulary Test; it covers vocabulary, sequence and 

sentence comprehension.

• The Friendly Math Test [FMT]: this is a new test specifically designed for the 

BCS; it covers arithmetic, fractions, algebra, geometry and statistics.

• The Shortened Edinburgh Reading Test [SERT]: this is a shortened version of the 

Edinburgh Reading Test, which is a test of word recognition particularly designed 

to capture poor readers; it covers vocabulary, syntax, sequencing, comprehension, 

and retention.

• The four British Ability Scales [BAS]: these measure a construct similar to IQ, and 

include two non-verbal scales (Matrices [BASTM] and Recall Digits [BASTRD]) 
and two verbal scales (Similarities [WS] and Word Definition [BASTWD]).

Mental Health Scales—As indicators of psychological and behavioral problems, we use 

the items from the following five tests:

1. The Rutter Parental ‘A’ Scale of Behavioral Disorder (Rutter et al., 1970): it was 

administered to the mother, and designed to capture the presence of problem 

behaviors. It contains 19 items which are descriptions of behavior, and the mother 

was asked to indicate whether each description ‘does not apply’, ‘applies 

somewhat’ or ‘definitely applies’ to the child, on a scale from 0 to 100. A visual 

analogue scale was used: the mother had to draw a vertical line through the printed 

horizontal line to show how much a behavior applied (or not) to the child.

2. The Conners Hyperactivity Scale (Conners, 1969): it was also administered to the 

mother, and developed to assess attention deficit/hyperactivity disorder and 

evaluate problem behavior in children and adolescents. It includes 19 items, and the 

mother was asked to indicate whether each description applied to the child on a 

scale from 0 to 100, using a visual analogue like for the Rutter Scale.

3. The Child Developmental Scale: it was administered to a teacher with knowledge 

of the child, to assess the child neurodevelopmental behavior against the ‘average’ 

behavior of most children of a similar age. It includes 53 items, and the teachers 

were asked to indicate their level of agreement with each statement by bisecting a 

line, which was coded into a 47-point scale ranging from “Not at all” to “A great 

deal”. The items for this scale were taken mainly from the Conners Teachers 
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Hyperactivity Rating Scale (Conners, 1969) and the Rutter Teacher Behavioral 

Scale ‘B’ (Rutter, 1967), and questions from the Swansea Assessment Battery (with 

permission of Professor Maurice Chazan; see Butler et al., 1997).

4. The Self-Esteem (Lawseq) Scale: it was administered by the teacher and completed 

by the child to measure his self-esteem with reference to teachers, peers and 

parents. It includes 12 items (The total number of questions included is 16, but four 

of them are distractors) and was created by former Chief Educational Psychologist 

of Somerset LEA (Local Education Authority) Lawrence (Lawrence, 1973, 1978). 

The child was asked to answer ‘yes’, ‘no’ or ‘don’t know’, where the answer ‘no’ 

represents a higher level of self-esteem (only one question is reverse-scored, and 

we have recoded it accordingly). For use in our empirical application, we have 

recoded all the answers into binary measurements, by giving a value of 1 to all the 

‘no’ answers, and a value of 0 to all the ‘yes’ and ‘don’t know’ answers.

5. The Locus of Control (Caraloc) Scale: it was administered by the teacher and 

completed by the child to measure his perceived achievement control. It includes 

16 items (the total number of questions included is 20, but four of them are 

distractors) and was constructed from several well known tests of locus of control 

(Gammage, 1975). The child was asked to answer ‘yes’, ‘no’ or ‘don’t know’, 

where the answer ‘no’ represents a more internal locus of control (only one 

question is reverse-scored, and we have recoded it accordingly), which is desirable 

and also referred to as “self-agency”, “personal control”, “self-determination”, etc. 

For use in our empirical application, we have recoded all the answers into binary 

measurements, by giving a value of 1 to all the ‘no’ answers, and a value of 0 to all 

the ‘yes’ and ‘don’t know’ answers (a similar scoring scheme has been used in 

Ternouth et al., 2009).

Physical Health—As indicators of physical health, we use the following five measures, all 

recorded during medical examinations: height, head circumference, weight, systolic and 

diastolic blood pressure.57

B.2 Control Variables

The following seven control variables — denoted X in our model — are included in the 

measurement system. The variables have been standardized to have zero mean and standard 

deviation equal to one. i) mother’s age at birth, ii) mother’s education at birth (a dummy 

variable for whether the mother continued education beyond the minimum school-leaving 

age58), iii) father’s high social class at birth,59 iv) total gross family income at age 10,60 v) 

57While the availability of information on height and weight is not a unique feature of our data, differently from our case most of the 
measures recorded in public-use data are self-reported: as such, they are subject to substantial measurement error, which is usually not 
dealt with by researchers with the use of suitable methods such as factor-analytic techniques as we instead do here.
58The compulsory minimum school leaving age was increased from fourteen to fifteen in 1947, following the 1944 Education Act.
59The BCS uses the Registrar General’s classification for measuring social class (SC). High Social Class comprises SCI, SCII and 
SCIIINM (Non-Manual). Social class I includes professionals, such as lawyers, architects and doctors; Social Class II includes 
intermediate workers, such as shopkeepers, farmers and teachers; Social Class III Non Manual includes skilled non-manual workers, 
such as shop assistants and clerical workers in offices.
60This is a categorical indicator taking the following values: 1=under £35 pw; 2=£35–49 pw; 3=£50–99 pw; 4=£100–149 pw; 5=
£150–199 pw; 6=£200–249 pw; 7=£250 or more per week.
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an indicator for broken family (a dummy variable for whether the child lived with both 

parents since birth until age 10), vi) the number of previous livebirths, and vii) the number 

of children in the family at age 10.
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Figure 1. 
Marginal prior distributions of the maximum correlation in absolute value (p(maxj≠k |Rjk|), 

left panel) and of the smallest eigenvalue (min[eigen(R)], right panel) of the correlation 

matrix R in a model with K = 20, for different degrees of freedom for R.

Notes. Kernel density estimation based on 105 draws from the prior distribution of R.
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Figure 2. 
BEFA, Posterior Factor Loading Matrix in the BCS.

The factors capture the following traits (interpretation done a posteriori):

θ1 Cognitive Ability, θ2 Behavioral Problems [M], θ3 Anxiety [M],

θ4 Hyperactivity [M], θ5 Attention Problems [T], θ6 Anxiety [T],

Conti et al. Page 53

J Econom. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



θ7 School Phobia [T], θ8 Conduct Problems [T], θ9 Motor Coordination Prob. [T],

θ10 Depression [T], θ11 Concentration Prob. [T], θ12 Positive Sense of Self [C],

θ13 Body Build.

Notes. The 131 measurements (tick marks on the vertical axis) are in the order specified in 

Appendix B. [M] refers to traits extracted from items evaluated by the mother, [T] by the 

teacher, [C] by the child. Active factors only are displayed, out of a maximum of 20 

potential factors.
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Figure 3. 
BEFA: Posterior Correlation Matrix of the Factors in the BCS Application.

Notes. Each pie represents the correlation between the corresponding factors, clockwise for 

positive values and counterclockwise for negative values. [M] refers to traits extracted from 

items evaluated by the mother, [T] by the teacher, [C] by the child. Active factors only are 

displayed, out of a maximum of 20 potential factors. For standard errors and credible 

intervals, see Web Appendix.
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Figure 4. 
BEFA, Proportion of total variance of measurements due to noise.

Notes. Segments on top of bars represent the corresponding 95% highest posterior density 

intervals. Measurements are ordered as follows, from top to bottom: Cognitive items (PLCT, 

FMT, SERT, BASTM, BASTRD, BASTS, BASTWD), Rutter1 to Rutter 19, Conners1 to 

Conners19, Child development scale (CDEV1 to CDEV53), Self-esteem (Lawseq1 to 
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Lawseq12), Locus of Control (Locus1 to Locus16) and Health (Height, Head, Weight, 

Bpsys, Bpdias). See Appendix B for details.
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Table 1

Baseline Prior Specification for the Monte Carlo Study

Parameters Values

Indicator matrix κ0 = ξ0 = 0.1 and κ = 1.0 / 0.8 / 0.5 for K0 = 3, 6 / 9 / 12

Idiosyncratic variances

c0 = 2.5 and  specified to avoid a Heywood problem

Factor loadings

 and 

Factor correlation matrix

ν* = 2 and  (Huang-Wand prior)
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Table 6

Classical Methods to Select the Number of Components/Factors

Method Number of components Number of factors

Raw
Measurements

Residualized
Measurements

Raw
Measurements

Residualized
Measurements

Cattell’s Scree Plot 6 4 6 4

Onatski n/a n/a 6 5

Velicer’s Rule 12 11 n/a n/a

Optimal Coordinates 15 11 13 11

Kaiser’s Rule 28 29 25 25

Akaike IC n/a n/a 72 47

Bayesian IC n/a n/a 21 18

Notes. IC = Information Criterion. We use the eigenvalues of the raw correlation matrix to find the number of components (when applying the 
Scree, Velicer, Optimal Coordinates and Kaiser methods), and the eigenvalues of the reduced correlation matrix to find the number of factors 
(when applying the Scree, Optimal Coordinates and Kaiser methods). To construct the reduced correlation matrix, we use the squared multiple 
correlations as estimates of the communalities. The Akaike and Bayesian Information Criteria are computed after having performed maximum 
likelihood factor analysis. For the Onatski method, we specify k0 = 3 and k1 = 10. We define residualized measurements as the residuals of a linear 

regression of the measurements on the covariates (X) which are included in the BEFA measurement system (see Appendix B.2). We use a linear 
probability model for the binary measurements.
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