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Abstract

This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that
improves on ad hoc classical approaches. Our framework relies on dedicated factor models and
simultaneously determines the number of factors, the allocation of each measurement to a unique
factor, and the corresponding factor loadings. Classical identification criteria are applied and
integrated into our Bayesian procedure to generate models that are stable and clearly interpretable.
A Monte Carlo study confirms the validity of the approach. The method is used to produce
interpretable low dimensional aggregates from a high dimensional set of psychological
measurements.
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1 Introduction

As the production of social statistics proliferates, aggregation and condensation of data have
become increasingly important. William Barnett has made and continues to make numerous
important contributions to constructing economically meaningful monetary aggregates (see,
e.g., Barnett and Chauvet, 2011). In the spirit of Barnett’s pioneering research, this paper
addresses the problem of constructing reliable and interpretable aggregates from myriad
measures. It is the first paper in the literature on Bayesian factor analysis to make inference
on a model where all measurements load onto at most one factor, and factors are correlated.
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The model allows for the dimension of the latent structure to be unknown a priori, and the
allocation of measurements to factors is part of the inference procedure. Classical
identification criteria are invoked and applied to the analysis to generate interpretable
posterior distributions.

The abundance of measures is both an opportunity and a challenge in many empirical
applications. The main question—both from a methodological and an applied standpoint—is
how to condense the available information into interpretable aggregates. Thurstone (1934)
postulated criteria and developed analytical methods for estimating and identifying factor
models with perfect simple structure, where each measurement is related to at most one
latent factor. In his view, models with simple structure were transparent and easily
interpreted. He developed the method of “oblique” factor analysis by arguing that correlated
factors were a more plausible representation of reality (Thurstone, 1947). Cattell (1952,
1966); Carroll (1953); Saunders (1953); Ferguson (1954) and Hofmann (1978) are major
exponents of the concept of parsimony in the Thurstone tradition. We call Thurstone’s
simple structure a dedicated structure in this paper. It dedicates all measures to at most one
factor. This representation is widely used in economics (Heckman et al., 2006; Cunha et al.,
2010; Conti et al., 2010; Baron and Cobb-Clark, 2010).

Exploratory Factor Analysis is a well developed classical procedure for doing dedicated
factor analysis (Gorsuch, 1983, 2003). The various steps required in executing classical
Exploratory Factor Analyses (EFA) are all subject to a certain degree of arbitrariness and
entail ad hoc judgments. Classical EFA proceeds in four separate steps: (i) selecting the
dimension of the factor model; (ii) allocating measurements to factors; (iii) estimating factor
loadings; and (iv) discarding measurements that load on multiple factors. A variety of
methods are available to select the dimension of the latent structure, to extract and rotate
factors (Gorsuch, 2003; Costello and Osborne, 2005; Jennrich, 2001, 2002, 2004, 2006,
2007). Our empirical analysis shows that each of the choices made by analysts at the various
stages of a classical EFA has substantial consequences on the estimated factor structure.

This paper develops an integrated Bayesian approach to EFA that simultaneously selects the
dimension of the factor model, the allocation of measurements to factors, and the factor
loadings. Our method uses all of the available information by not discarding measurements
besides those that do not load on any factors. The procedure is justified by the usual appeal
to the optimality of Bayes procedures (see Berger, 1985). Different from the classical
literature in EFA, in our approach the number of factors is not determined in a first step, but
inferred along with other parameters. Our work advances the Bayesian approach to factor
analysis, because of the attention paid to the identification of the model. One of our main
contributions is to incorporate classical identification criteria into a Bayesian inference
procedure. In so doing, we are able to generate posterior distributions that are stable and
models that are clearly interpretable. The identifiability of the model is a key feature of the
algorithm. In this respect, our paper bridges a gap between the classical and the Bayesian
literatures.

Most articles on Bayesian factor analysis rely on a lower-triangular specification for the
factor loading matrix to achieve identification (West, 2003; Lopes and West, 2004; Lucas et
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al., 2006; Carvalho et al., 2008). This approach, first suggested by Anderson and Rubin
(1956), has been widely applied (see, for example, Geweke and Zhou, 1996; Aguilar and
West, 2000; Carneiro et al., 2003). It achieves identification in the general case, but at the
price of ad hoc decisions that result in a loss of flexibility—e.g., the choice and the ordering
of the measurements at the top of the factor loading matrix is not innocuous. In the
framework of sparse factor modelling, the problem becomes more complex, as the structure
of the factor loading matrix—in terms of position of the zero elements—is part of the
inference problem. Besides the upper triangle of the loading matrix that is fixed to zero a
priori, the remaining elements in the lower part of the matrix are also allowed to become
equal to zero. This introduces new challenges for identification, and additional identifying
restrictions are required. Our paper discusses this issue that has, to the best of our
knowledge, been overlooked in the literature so far. To tackle this problem, we take a
different avenue and incorporate identifying criteria into the prior distribution of model
parameters instead of imposing zero restrictions on the factor loading matrix a priori
(Fruhwirth-Schnatter and Lopes, 2012, adopt a related approach).

In the field of Bayesian nonparametrics and machine learning, a strand of literature is
dedicated to the inference of factor models with a sparse structure of unknown dimension
(Knowles and Ghahramani, 2007; Paisley and Carin, 2009; Bhattacharya and Dunson,
2011), and in a dynamic context with an unknown number of time-dependent factors (Chen
etal., 2011). These methods, however, focus on covariance structures, variable selection, or
prediction, and identification is not strictly required to achieve these goals from a Bayesian
perspective. No paper in the Bayesian nonparametric literature imposes identifying
restrictions on models in its inference algorithm.

Most existing approaches assume uncorrelated factors. Our method is the first in the
Bayesian literature to allow for correlated factors in the framework of a model where
identification is secured. The specification of correlated factors, combined with the need to
produce identified models in a dimension-varying framework, raises challenges for the
design of a practical and efficient algorithm that are addressed in this paper.

The paper is organized in the following way. Section 2 presents our framework, which
allows for both continuous and binary measurements. We discuss the identification
challenges at stake, provide conditions for identification, and explain the constraints they
impose on the model. We also introduce the prior specification we adopt to conduct
Bayesian inference. Section 3 derives a new Bayesian computational procedure for
identifying the latent structure of the model and selecting factors. Section 4 presents a Monte
Carlo study that supports the validity of the method. An empirical analysis demonstrates
how our method can be applied, and how it uses the information available in the data in
comparison with classical EFA. Section 5 concludes.

2 The Model

This section introduces our model, the identification conditions for the model and the prior
specification. We develop classical identification conditions for a dedicated factor model.
Under standard regularity conditions, satisfaction of classical identification conditions
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guarantees convergence of the model parameters to asymptotically normal distributions and
thus has a large sample justification in addition to a Bayesian justification (Le Cam, 1986).
Thus we bridge the two approaches.

2.1 A Dedicated Factor Model with Continuous and Binary Measurements

Consider a set of M continuous and binary measurements arrayed in vector Y; = (Yig, ...,
Yim) forindividual i, i =1, ..., N, and matrix Y = (Y1, ..., Yy)’ for the whole sample. To
accommodate both types of variables, each measurement is assumed to be determined by an
underlying continuous latent variable y;*

v _ Y, if Y;,, is continuous,
) 1Y, >0], if Y, is binary,

form=1, ..., M.1 The resulting vector of latent variables Y;*=(Y;, ..., Y ) is specified as
a function of a set of Q observed variables X; and K latent factors 6; = (0;4, ..., Ojk)’":

v o= Xi+ a 0 + &
(Mx1) (MxQ)(@x1) (MxK)(kx1) (mx1) @)

where the matrix of regression coefficients p captures the effect of the covariates on the

latent variables, denoted X = (X, ..., Xn)’ and Y*=(Y7, ... ,Y;)’ respectively. The
correlation between the measurements conditional on X; arises from the factors with
loadings a.. The residual idiosyncratic terms (“uniquenesses”) are denoted &; = (gj1, .-, €im)’-
In compact notation, the unobserved components of the model are denoted 6 = (64, ..., On)’
and € = (gq, ..., &N)’, respectively.

In classical EFA, the dimension of the factor covariance matrix is estimated using a variety
of criteria. Various ad hoc rules for allocating meaurements to factors are used (Gorsuch,
2003). As in classical EFA we assume that the measurements are dedicated, i.e., that each
measurement loads on at most a single factor. If a measurement does not load on any factor
the measurement is discarded from the model. In classical EFA, measurements that load on
multiple factors are also discarded. Our analysis improves on this procedure. The position of
the non-zero elements in the factor loading matrix is not fixed a priori, but is determined
during estimation along with the number of factors, which is not imposed but estimated. In
addition, we use all measurements.

To indicate how measurements are uniquely allocated to the factors in 0, we use a matrix of
binary indicators A with the same dimensions as the factor loading matrix a. Each row of A
indicates on which latent factor the corresponding measurement loads. For example, if the
mih measurement is associated with factor k, then the mf row A, is the indicator vector ey:

Iwe only consider continuous and binary measurements in this paper, because of our empirical application where such measurements
are available. The methodology can be extended to any other types of discrete measurements with an underlying continuous latent
variable.
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Ap=(0,...,0, 1 ,0,...,0)= e

kthelement

@

When a measurement does not load on any factor, the corresponding row of A only contains
zeros (denoted vector ep). Under our assumptions, no measurements may load on more than
one factor, though any measurement may load on no factors, i.e., Yk Ak < 1.

Since neither the number of factors nor the structure of the factor loading matrix are
specified a priori, the indicator matrix A is one of the unknowns of the model to be
estimated from the data. This matrix representation is convenient for the implementation of
the factor search procedure introduced in Section 3. The values assumed by A determine
how measurements are allocated to the different dedicated factors, which factors are shut
down (zero columns of A), and the number of factors underlying the data (the number of
non-zero columns). Indicator matrix A has been widely used in variable selection models
(Geweke, 1996; George and McCulloch, 1997). In the framework of factor analysis, it is
used by Carvalho et al. (2008); Friihwirth-Schnatter and Lopes (2012); Chen et al. (2011).
Our approach departs from these papers because we use a dedicated structure for the factor
loading matrix and correlated factors.

2.2 Classical Identification

This section presents and discusses classical identification strategies used in factor analysis.
We introduce a theorem for the identification of dedicated factor models of varying
dimensions, explain how to apply classical identification criteria to Bayesian inference and
outline the benefits of this approach.

General Identification Strategy—We center the unobserved components of the model,
0; and ¢, at:

E(@l):O, COV(@i):Q,
E(g;)=0, Cov(e;)=%, X=diag(o?,...,0> ©

O

The components of ¢; are mutually uncorrelated. Conditional on X;, the latent factors are the
only source of correlation among the measurements.2 The latent factors are assumed to be
independent of the error terms and of the covariates, i.e., 6; 1L g and ©; 1L X;. In addition, we
assume that for all measurements, the variances of the idiosyncratic errors are positive, i.e.,
o2 >0. In the equations corresponding to the latent variables generating the binary
measurements, these variances are set to 1, i.e., 2 =1. Without further information, the
scales of the corresponding latent variables y;* are not identified.

We follow traditions in factor analysis and only consider identification based on population
means and covariance matrices.3 Our assumptions imply the following covariance structure

for the latent variables y;*:

2Cunha and Heckman (2008), Appendix A, show how the measurements can be interpreted as derived demand functions for
groducing factors 0.
Bonhomme and Robin (2010) consider identification of factor models based on higher order moments.
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Cov(Y*| X))=aR2a'+ X, ()

where the diagonal elements of 3 corresponding to the latent variables underlying discrete
measurements are restricted to be 1. Identification of the parameters a ,Q2, and X from

Cov(Y;*| X;) requires further restrictions.

To secure classical identification, conditions are required that guarantee the existence of a
unique solution for the idiosyncratic variances X (the uniqueness problem). This problem is
sometimes addressed by verifying that the number of latent factors does not exceed the

Ledermann bound, i.e., & < ¢(M)=(2M+1 — v8M+1)/2 (Ledermann, 1937; Bekker and
ten Berge, 1997).4 Anderson and Rubin (1956, Theorem 5.6) establish that at least three
non-zero elements are required in each column of the factor loading matrix to achieve
uniqueness.

Given identifiability of X, further conditions are needed to guarantee the existence of a
unique solution for the factor loading matrix a and the covariance matrix of the factors Q.
The “rotation problem” stems from the fact that the covariance in equation (4) remains
unchanged after assigning a=aPand 6i~: P~10;, for any arbitrary nonsingular matrix P of
dimension (K x K).

To solve this problem, various restrictions and normalizations are used in the literature. First
of all, it is necessary to deal with the scaling issue. In the framework of our dedicated model,
we assume that the covariance matrix of the factors, €, is of full rank. We fix the variances
of the factors to 1 to set the scales of the loadings:

rank(£2)=K,diag(2)=t,, (5)

where 1k = (1, ..., 1)’ is a vector of ones of length K. We denote by R the correlation matrix
of the factors to distinguish it from the covariance matrix Q. These restrictions leave the
factor loading matrix completely free, compared to alternative and more conventional
identifying restrictions that fix one loading to 1 in each column of a (e.g., Carneiro et al.,
2003; Heckman et al., 2006). Such identifying strategies, however, cannot be implemented
with our algorithm, as we do not know a priori the number of factors, nor how the
measurements are allocated to the factors. As a consequence, it is impossible to fix any
loadings a priori.

Additional assumptions are required to identify the model and rule out remaining rotation
problems. Anderson and Rubin (1956) postulate, among other specifications, lower
triangularity for the upper square submatrix of a, and versions of this specification have
been widely used in econometrics (see, e.g., Geweke and Zhou, 1996; Aguilar and West,
2000; Carneiro et al., 2003). In the context of sparse factor modeling, however, the
configuration of the zero elements in the factor loading matrix plays a crucial role for the
identifiability of the model, as a minimum number of non-zero loadings is required in each

4The Ledermann bound simply requires that the number of equations be greater than or equal to the number of model unknowns.
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column of the factor loading matrix (Anderson and Rubin, 1956). As a consequence,
imposing zero elements only on the upper triangular part of a may not be sufficient for
identification. Given that any loading in the lower triangular part of the matrix may become
equal to zero, too many zeros may jeopardize identification. Most applications in sparse
factor modeling rely on a lower triangular structure of a and do not address these potential
identifiability issues (West, 2003; Lopes and West, 2004; Lucas et al., 2006; Carvalho et al.,
2008).5 Exceptions are Carneiro et al. (2003) and Frihwirth-Schnatter and Lopes (2012),
who use classical identification criteria as an integral part of Bayesian inference schemes.

The present paper addresses these problems and achieves more flexibility in this respect. At
the same time, it solves both the uniqueness and rotation problems, apart from trivial
rotations to be discussed below. We assume a dedicated structure and that factors are either
loaded on at least three measurements or not loaded on any measurements, in which case
they are discarded from the model.6 Since measurements appear in blocks of dedicated
measurements, it is unlikely that the first K measurements are actually dedicated to the K
different factors, as suggested by a lower triangular loading matrix with non-zero entries on
the main diagonal.

In the framework of a dimension-varying model where the structure of the factor loading
matrix in terms of zero elements is not known a priori, more general identification
conditions are required and are now presented.

Identification of a Dimension-Varying Model—The following theorem introduces
sufficient conditions for identifiability of a dedicated factor model when the allocation of
measurements to factors is unknown.

Theorem 1. Consider a dedicated factor model with K factors satisfying condition (5).
Furthermore, assume that the number of non-zero elements in the ki column of A,

M
ng(A)=)_ " A, iseither equal to 0 or at least equal to 3for all k=1, ..., K:

ni(A) >3 or ni(A)=0, Vk=1,...,K. (6)

Then the factor model isidentified up to trivial rotations. More specifically, the indicator

matrix A is identifiable up to an arbitrary permutation of the columns, whereas the factor
loading matrix a and the submatrix of the correlation matrix € corresponding to the non-
zero columns of A are identifiable up to the same permutation of the columns and up to a

sign switch for each column.

Proof. First, we prove identifiability of . Anderson and Rubin (1956, Theorem 5.1) present
a sufficient condition for identifiability of X: the “row deletion” property which states that if
any row of a is deleted, there remain two disjoint matrices that are of the same rank as a.

SMost of these papers deal with high-dimensional factor models, where factors are usually loaded by a myriad of measurements. In
such cases, these identification problems are not a concern in practice. However, in smaller models where these problems may arise, it
is important to address them appropriately.

In our framework with correlated factors, only two measurements are required for each factor, as long as the correlation between the
corresponding factors and the other factors is not zero (Cunha et al., 2010). We do not use these conditions though, because we allow
for zero correlations across factors.

J Econom. Author manuscript; available in PMC 2015 November 01.
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For a dedicated factor model, rank(a) is equal to the number K4 of non-zero columns of a. It
is easy to verify that condition (6) implies the row deletion property, because regardless of
whether a zero or a non-zero row is deleted, it is guaranteed that in each of the K; non-zero
columns at least two non-zero factor loadings are still present. Hence, both the diagonal sub-
matrix as constructed from the top non-zero elements in each non-zero column as well as
the remaining sub-matrix a still has K1 non-zero columns, and consequently the rank is
equal to Kj.

Next, consider any alternative representation (a.", 2, =) of Cov(Y;*| X;), defined in (4),
where o™ and Q" obey conditions (5) and (6). Identifiability of X implies =" = %, hence,
identifiability of aQa’, i.e.:

a2 =a* 2 (a*). @)

Due to the dedicated nature of the factor loading matrix, in both representations at most one

element am and o, is different from 0 in each row m. From the restrictions on the diagonal
elements of the covariance matrix of the factors, we obtain the following relationship

between ap, and o, from the diagonal elements of the covariance matrices appearing in (7):

a?=(al)? m=1,...,M. (8

m

Thus am is zero if and only if o * is equal to zero. Hence, the subset of measurements that do
not load on any factors is the same for both solutions. Thus, further investigations may be

limited to dedicated measurements, where both am and o, are different from 0. It follows
immediately from equation (8) that the factor loadings of any dedicated measurement are the
same for both solutions, apart from sign switching. However, this does not necessarily imply

that the measurement is dedicated to the same factor, i.e., 5y might be different from 5% ,
where 6y and 5% indicate the position of the non-zero elements of the indicator vectors Ap,
and A* , respectively.

For further investigation, consider the off-diagonal elements of the covariance matrices
appearing in (7), defining the covariance between any pair (m, I) of dedicated measurements:

am{s,,, 5 0=00 05 507 (9)
It follows immediately from (8) and (9) that
0, 6= 6)%  (10)

Now consider any pair (m, 1) of measurements that are dedicated to the same factor j in the
representation corresponding to a, i.e., 8m = 8 = j, and Qg5 = j; = 1 because of the
restriction defined in equation (5). Assume that these measurements are not dedicated to the
same factor in the representation corresponding to ", i.e., 8% # 6. Equation (10) implies

that QE;,@*: + [©25;/= % 1, and as a consequence the two factors corresponding to the
columns §* and §; of A have to be perfectly correlated in the alternative representation,
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which contradicts the full rank condition for Q" given by equation (5). Hence, it follows that
5 =5 whenever 8, = &), meaning that the same subset of measurements is dedicated to a
particular factor in both representations.

This implies that (A, a) and (A", a™) have the same number Ky of non-zero columns.
However, the position of the non-zero columns is not unique and A is identifiable up to
column switching, i.e.:

A*=AP,, (11)

where the (orthonormal) rotation matrix P, corresponds to a permutation matrix of the
columns. Furthermore, a is identified up to the same permutation of the columns as well as a
possible sign switching, see (8):

a*:aPpPi, (12)

where P, = diag(£1, ..., £1).

Finally, let Q1 and a; be, respectively, the submatrix of the correlation matrix Q and the
factor loading matrix a, corresponding to the non-zero columns of A. From (7) and (12) it
follow that’

a1 10, =i 2 () =1 (P,), (Py), 2(P) (P,) ay,

and, hence:

2=(Py),(P,), 2:(P,),(Ps);.

This implies identifiability of ©, up to column switching and sign switching. O

Theorem 1 only achieves identification of the submatrix of Q corresponding to the non-zero
columns of A. Indeed, the covariances between the unidentified factors—those that are not
loaded by any factors—as well as the covariances between the unidentified factors and the
dedicated factors, are not identifiable in the overall model. However, only the latent factors
actually underlying the measurements are of interest, so that this lack of identification is not
a concern.

Application of Classical Identification Criteria to Bayesian Inference—
Identifiability condition (6) is easy to check and very convenient from a computational point
of view, as it only applies to the indicator matrix A, and is therefore easily incorporated in
the algorithm introduced in the next section. To do so, we design a prior distribution for A
that restricts the sampler to explore regions of the parameter space corresponding to

7Simi|ar|y, (P+)1 and (Pp)1 are, respectively, the submatrices of P+ and Py, corresponding to the non-zero columns of A.
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identified models only (i.e., only indicator matrices satisfying the identification conditions
are sampled).

No further restrictions need to be enforced a priori to resolve the remaining trivial rotation
problems, outlined in the proof of Theorem 1 in equations (11) and (12), namely
identifiability up to sign switching and column switching. The former appears when the
signs of the factor loadings in a given column of a and the sign of the corresponding factor
0; are switched simultaneously. The latter arises from the fact that there is no natural
ordering of the columns of a—they can be permuted, along with the corresponding latent
factors 0;, without altering the covariance structure of the measurements. These two trivial
identifiability problems, however, can be addressed a posteriori by reordering the columns
of the loadings matrix and switching the signs of the loadings appropriately (see Subsection
3.4).

Concerning the maximum number of factors, equation (6) implies the following upper
bound on the number of factors that can be extracted from M measurements:8

M
K< Kma.x:mjn{?,gb(]\f)} .

Hence, for a dedicated factor model with M = 4 the requirement of at least three
measurements loading on each dedicated factor becomes stronger than the Ledermann
bound.®

For the Bayesian inference pursued in this paper, a complete distributional specification of
model equation (1) is required, which goes beyond specifying first- and second order
moments of 6; and ¢; as in equation (3). Cunha et al. (2010) establish nonparametric
identifiability of the distributions of 6 and €. To adapt their results to our model, we would
have to use a Bayesian nonparametric approach (Ghahramani et al., 2007; Paisley and Carin,
2009; Bhattacharya and Dunson, 2011). To avoid the substantial computational challenge
associated with such a Bayesian nonparametric approach, we invoke the following normality
assumptions on the latent factors and on the error terms:

QZNL/V(O,R), EiNJV(O;S),

fori=1,...,N.

Practical Bayesian inference would not necessarily impose the strict identifying restrictions
presented in this section, as they are not required to conduct inference. Learning about
model parameters can indeed take place, even if the model is not identified in a classical
sense (Poirier, 1998). However, a lack of identification can impair interpretation, if for
instance spurious factors are generated. This contradicts the goal of Bayesian exploratory
factor analysis that seeks to uncover a structure of the model that can be easily interpreted.

8This upper bound is not strictly required in a panel context, see Cunha et al. (2010).
9see Frithwirth-Schnatter and Lopes (2012).
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Nevertheless, this goal can be restored by constraining the sampler to stay in regions of the
parameter space where only (classically) identified models are generated. The next section
introduces our prior specification, and explains how these classical identification conditions
are integrated into our Bayesian inference procedure.

2.3 Elements of Prior Specification

2.3.1 The Prior on the Indicators—The allocation of the measurements to groups of
dedicated measurements can be interpreted as a mixture problem with unknown, but finite,
number of components. Let 1, denote the probability that a measurement loads on factor k. It
does not load on any factor if k = 0. For each row A, of A0 form=1, ..., M, we assume:

Pr(Apm=eg|m)=m1,k=0,1,..., K, (13)

K
where e is the indicator vector of length K as defined in equation (2), and ZkZOTk:L

The allocation of each measurement to one of the dedicated groups of measurements can be
seen as a two-step decision, in which we incorporate a hierarchical prior on the indicators
A. First, with probability tg we assume that a measurement does not load on any factor. In
this case, it is uncorrelated with the other measurements and does not contribute to the
extraction of the factors. It is thus implicitly discarded from the model. In the opposite case,
this measurement loads on a latent factor with probability 1 — tg. Conditional on this event,
it is then allocated to one of the K groups of dedicated measurements according to a set of

K * g .
probabilities 7*=(7y,..., 77 ), with Zk:fk =1, The probabilities of the different events
can thus be written as

T=(T0, T1, - - - 7’rK)/:(TO, (1 —=mo)ry,y. ., (1 — TU)TI*{),‘ (14)

To conduct Bayesian inference, we have to place prior distributions on these parameters. We
assume the following:

To~Beta(rko;&o), 77 =(17, . .. ,T;)/N_@ir(nl, By, (15)

where the Beta distribution for g is defined on the support [0; 1] and has mean kg/(kg + &g).
It can be specified so as to obtain more or less mass toward 0 or 1, depending on our prior
knowledge about the number of measurements that should be discarded from the analysis.
The Dirichlet distribution on the weights t* is quite standard in mixture modeling (see e.g.
Frihwirth-Schnatter, 2006).

Unfortunately, the indicator probabilities specified in equation (13), equipped with the prior
distributions defined in equation (15), result in a prior distribution p(a) = [ p(A | ©)p(t)dv
that does not guarantee identification of the model. To secure identification, as discussed in
Subsection 2.2, the prior needs to incorporate the restriction that at least three dedicated

10 s the matrix of binary indicators with the same dimensions as the factor loading matrix a.
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measurements have to load on each latent factor. This can be achieved by restricting the
distribution of A to the subset Z of matrices that correspond to an identified model:11

K
p(A|7, D) (HTZ?’“(“)) 57(A), ()
k=0

where nk(A):Zi\:zlAmk is the number of elements in the set of measurements dedicated
to factor k, for k=1, ..., K, ng(4A) is the number of measurements that do not load on any
factors, and 6gy(4) is the Dirac measure that is equal to 1 if A belongs to &, to 0 otherwise.
The subset of indicator matrices & can be formally expressed as:

@:{A

More flexible hierarchical prior specification: As an alternative, it is possible to specify
individual parameters ton, for the measurements, to make the probability of inclusion into
the model measurement-specific and independent of the other measurements. The remaining
indicator probabilities t" are specified to be common to all measurements as before, i.e., T°
~ 9ir(xy, ..., KK).12 This minor modification implies that for each measurementm=1, ...,
M, we specify:

K
> Api <1Vm=1,...,M,nx(A) > 3 or=0Vk=1,... ,K} )
k=1

Tm:(TOmv (1 - TOm)Tika ceey (1 - TOm)T:;)/a

and assume that T, ~ PBeta(io; £g).

Our Monte Carlo studies show that this simple modification of the prior considerably
improves the ability of our algorithm to find the measurements that do not load on any
factors (see Subsection 4.1). This result also becomes clear when we derive our MCMC
sampler. When the same v is specified across measurements, its posterior distribution
decreases with the number of correlated measurements. This makes it difficult to retrieve the
number of uncorrelated measurements, as their posterior probability is forced to be the same
for all measurements and can become very small in large models.13

2.3.2 The Prior on the ldiosyncratic Variances—For all continuous measurements
Yim, We specify an inverse-Gamma prior distribution on the variances of the idiosyncratic
error terms:

2 —1 0
UmNﬂ (CO;Cm>1m € Leont,

1lThe normalizing constant of this distribution can be derived in closed-form solution, but is not required in our analysis.
The parameters © could also be specified as measurement-specific, but our tests indicated that this specification led to model

overfitting.

More precisely, the posterior mean of tg decreases if the number of measurements M increases while the number of uncorrelated
measurements remains fixed, see equation (A6).
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where Feont C (1, ..., M) is the set of indices corresponding to the continuous measurements,

and cp and ¢V are scalar parameters denoting the shape and the scale of the distribution. The
inverse-Gamma distribution is defined on the positive support and therefore guarantees that
the variances cannot be negative, preventing some idiosyncratic variances from lying
outside of the admissible parameter range, a phenomenon known as a Heywood case (after
Heywood, 1931), in the likelihood analysis of factor models. To specify the
hyperparameters, we follow Friihwirth-Schnatter and Lopes (2012) who develop a data-
driven prior that makes use of the observed covariance matrix Sy, of the measurements
and specify the scale parameter such that:

-1
ol ~g 1 <00;607> , @7
(5;1 ) (17)

cont " mm

f)mm is the m" diagonal element of the inverse of the empirical covariance
matrix of the continuous measurements Ygont. 14

where (5; '

2.3.3 The Prior on the Factor Loadings—The indicator matrix A determines the
factors to which the different measurements are dedicated. A direct consequence is that a
given factor loading an, in row mand column k of a, will either be equal to zero (if Ak =
0), or follow a prior distribution that needs to be specified (if Aqk = 1). Following the usual
assumptions in Bayesian factor analysis, we assume that the factor loadings are independent
across measurements and adopt the usual normal-inverse-Gamma family as prior

distribution, meaning that conditional on knowing o2, and A, the only non-zero factor

loading o4 in the m" row of the factor loading matrix a. is conditionally normal:

A2 0 0 2
aTTL|O—TTLNL/1/(G/TTL;ATIL0-TIL)7 (18)

where o0 and A° are scalar parameters denoting the prior mean and the scale of the

variance, respectively.

The normal-inverse Gamma family has several advantages in the present context. First, it
allows us to integrate the joint posterior distribution p(A, a, | Y*, 8, B, ©) over a and Z,
making sampling from p(A | Y, 8, B, ) possible, see Subsection 3.1.1. Second, the prior
defined in (18) induces a more diffuse prior on the factor loadings when measurement error
is larger and implies the following prior distribution for the amount of variance explained by
the corresponding dedicated factor,

(@) _ (@h)’

(0d)’+02, (ad)’+1°

14Note that if N < Mcont, Where Mcont is the number of continuous measurements, the empirical covariance matrix is not positive-

definite and therefore this approach cannot be applied. A prior distribution with prespecified scale parameter Y2 has to be used in this
case. See Friihwirth-Schnatter and Lopes (2012) for details.

m
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where dflwf/i/(agl;Agl). This ratio has the same prior distribution for any two dedicated
measurements mand |, where ¥ =q! and A% = A?.

m

By integrating out the indicators, the marginal prior distribution of o turns out to be a
mixture of a point mass at zero and a normal distribution with a fixed-scale variance. Such
prior distributions have previously been used in the framework of sparse factor modeling, as
they allow model shrinkage (West, 2003; Lucas et al., 2006; Carvalho et al., 2008;
Frihwirth-Schnatter and Lopes, 2012). The exact form of the mixture is more difficult to
derive analytically in our case, because of the identifying restrictions on A. Nevertheless, we
only need the conditional prior distribution specified in equation (18) for Bayesian
inference, as only the non-zero factor loadings need to be sampled.

2.3.4 The Prior on the Regression Coefficients—Let = (1 ... Bm)’, where ﬂ;n
corresponds to the mt" row of the matrix of regression coefficients p. Each of these vectors is
assumed to be a priori normally distributed:

B~V (00:BY),m=1,..., M,

0 H 0
where ) is a vector of prior mean parameters of length Q, and B? is a (Q x Q)-
dimensional prior covariance matrix.

2.3.5 The Prior on the Correlation Matrix of the Factors—The correlation matrix of
the factors is sampled through marginal data augmentation. Before turning to the details of
this procedure in Subsection 3.2.1, it is important to understand how the distribution of the
covariance matrix Q of the latent factors is related to the distribution of their variances and
to the distribution of the corresponding correlation matrix R.

Given the decomposition where A = diag(Ay, ..., Ak) contains the variances of

2=A2RA?
the factors, Zhang et al. (2006) show that if it is assumed that QNWK‘l(u;S), an inverse-
Wishart distribution with v degrees of freedom, where v — K + 1 > 0, and scale matrix S, the

joint distribution of A and R can be obtained through the transformation from Q to (A, R)

using the corresponding Jacobian # . . —|4| 515

15The inverse-Wishart distribution is parameterized as follows:

(v+E+1)

p()=c|s|%| 0]~ eXp{—%tr(Sfrl)},

with normalizing constant

e=1/(2"T  (v/2)),

where T’k (+) is the generalized Gamma function.
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(v+K+1)

v _r_ — 1 — —
DA RIS)= F (). =c|SIEA] 5 R 5  exp { S5 R} g

The hyper parameter Sin the inverted-Wishart prior chosen for Q can either be assumed to
be fixed or a hyper prior p(S) may be assumed for S. Following Huang and Wand (2013), S
=diag(sy, ..., Sk) is assumed to be a nonsingular diagonal matrix where the individual
variances follow a Gamma distribution,

1 1

Q,m), for kzl,...7K, (20)

Sk'\/g(

with v* = v = K + 1.16 For the special case where the scale matrix S = diag(sy, ..., S) is a
nonsingular diagonal matrix, being either fixed or random, the marginal distribution of R
can be derived in closed-form solution by integrating out A of equation (19) (Zhang et al.,
20086, see also Barnard et al., 2000, Section 2.2):

(NN

_ (K41 B
P(RIS)= [ p(A RIS)AA=2RT (v)2)| R~ (H) —n(R), @

where rKk is the Kt diagonal element of the inverse of R.

It should be noted that the marginal density p(R) of the correlation matrix R given by (21)
does not depend on S, leaving the degrees of freedom parameter v as the only hyper-
parameter of this prior. Barnard et al. (2000) discuss how to specify the hyper-parameter v,
and show that taking v = K + 1 (i.e., v* = 2) results in a uniform marginal distribution of the
individual correlations. Increasing the hyper-parameter v induces bell-shaped distributions
by assigning a prior probability to neighborhoods of +1 that goes to 0 as v increases,
bounding the correlations away from £1.

The degrees of freedom v of the inverse-Wishart distribution plays an important role in the
tuning of our algorithm. Intuitively, the stronger the correlation among the latent factors a
priori, the more likely a larger number of latent factors will be favored. Some factors might
indeed be split into several highly-correlated factors when the prior allows for high
correlations. This “factor splitting” problem is at odds with our goal of generating a sparse
and interpretable structure, as it can result in an overfitting of the number of factors, where
some of them appear to be redundant in explaining the data.

In addition, according to Theorem 1, the full rank condition for the correlation matrix R also
plays an important role for the identification of the indicator matrix A. If only a few
measurements load on a particular factor, then the information contained in the
measurements might not be sufficient to bound the posterior distribution away from regions
where R is rank deficient. The prior on R secures the identifiability of A.

16The Gamma distribution in equation (20) is parameterized such that the expectation of sk is equal to v A%.
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To address these issues, the degrees of freedom v of the prior on the correlation matrix can
be tuned to bound the posterior away from regions of unidentifiability. For further
illustration, Figure 1 shows the marginal prior distribution p(maxjz [Rj|) of the largest
correlation coefficient appearing in R, as well as the prior distribution p(min[eigen(R)]) of
the minimum eigenvalue of R for the case with K = 20 corresponding to the value chosen in
our empirical study in Subsection 4.2. By varying v from 21 to 30, we observe a
considerable effect of v. Choosing v = 25, as we will do in Subsection 4.2, bounds the prior
sufficiently away from regions where R is rank deficient and hence violates the
identifiability conditions provided by Theorem 1.

It should be emphasized once more, that whether Sis random as in the prior suggested by
Huang andWand (2013), or fixed, does not change the prior p(R), leaving Bayesian
inference invariant to this prior. However, it turns out that the prior of Sinfluences the
efficiency of the marginal data augmentation algorithm we use for inference, see Subsection
3.2.1, and mixing improves when S is random rather than fixed.

Finally, the marginal data augmentation algorithm will require sampling A from the
conditional distribution p(A | R) for a given value of R. Under the random prior for S, we
sample from the joint prior p(A, S|R) =p(A | S, R) p(S|R) = p(A | S, R) p(S), where p(S|
R) = p(S) is equal to the prior of S, and the conditional distribution of A | S, R can be
deduced from equation (19) using p(A | R, S) = p(A, R| 9/p(R| S) = p(A, R| S)/p(R). It can
be shown that each single variance Ay | s¢, R follows an inverse-Gamma distribution with s,
being drawn from the prior, i.e.:

skrkk
2

11
2’21/*Az

14
s~ ), M| R, 569755 ) @2)

If the scale matrix Sis fixed, then Ay | R, ¢ is sampled conditional on that value.

3 Bayesian Inference

Our inference approach is fully Bayesian and combines the likelihood function derived from
model specification (1) under the assumptions on the latent factors 6; and on the error terms
&j specified in Subsection 2.2 with the prior distributions formulated in Subsection 2.3.

Our model contains a particular combination of ingredients (dedicated and correlated
factors, dimension-varying structure, identification constraints) that requires a new
procedure for Bayesian inference, based on Markov chain Monte Carlo (MCMC) methods.

For the fully specified model we consider in the present paper, the identification conditions
formulated in Theorem 1 guarantee identifiability of ® = {A, a, B, X, R}17 in the classical
sense that any two solutions ® and @’ yielding the same likelihood for all possible
realizations Y, i.e., p(Y | ®) = (Y | @), are identical up to column and sign switching.

177 is the matrix of binary indicators with the same dimensions as the factor loading matrix a, B is the matrix of regression
coefficients capturing the effects of the covariates on the latent variables (see equation (1)), X are the idiosyncratic variances (see
equation (3)), and R is the correlation matrix of the factors.
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Within a Bayesian framework, the issue of identifiability is, in general, much less relevant.
Any proper prior p(®) will turn a well-specified likelihood function p(Y | ®) into a proper
posterior distribution p(® | Y) by means of Bayes’ theorem, p(® | Y) « p(Y | ®) p(®), even if
positive prior probability is assigned to subspaces of the parameter space containing
solutions that are not identified in the classical sense defined above. However, when it
comes to practical Bayesian inference, such a posterior distribution does not necessarily lead
to sensible estimates of the unknown parameters, if inference is based on averages of
MCMC draws from the posterior distribution. To avoid the ambiguity inherent in a posterior
distribution derived from the likelihood of an unidentified model, we pursue a more rigorous
approach in the present paper and constrain the posterior p(® | Y), by assigning positive
prior probability p(®) only to parameters @ that are identified in the classical sense defined
above.

Several computational challenges have to be overcome in implementing this approach. First,
we develop a new search procedure to select the dimension and the structure of the latent
part of the model, without jeopardizing the identification condition (Subsection 3.1).
Second, allowing for correlated factors calls for a new sampling scheme of the correlation
matrix in a dimension-varying model (Subsection 3.2).

3.1 MCMC Sampling Scheme to Produce Identified Models

Implementing the classical identifying conditions regarding the minimum number of
measurements dedicated to each factor in equation (6) introduce nonstandard difficulties in a
MCMC sampling scheme. To address this problem, we develop a new algorithm that
produces classically identified models.

To extract meaningful factors and factor loadings from model (1), a value has to be assigned
to the indicator matrix A. Different approaches have been proposed in the literature to
estimate dimension-varying models. The most popular is the reversible jump Markov chain
Monte Carlo (RIMCMOC) algorithm of Green (1995), which can be designed to visit models
of different dimensions during sampling. However, this sampler has some limitations. First,
it requires that the analyst specifies alternative models to be compared in the algorithm.
When there is no a priori knowledge about the structure of the factor loading matrix, nor
about the number of factors, the number of potential models underlying the data is
prohibitively large. Our Bayesian search procedure operates on the set of all possible
matrices A, among the (M x K)-dimensional indicator matrices belonging to the identified
set 9, and allows us to choose its value from the data. Second, RIMCMC requires running
preliminary analyses for each of the alternative models to generate sensible proposal
distributions (Lopes and West, 2004), which can be computationally very demanding and
therefore impractical for application to large models.

To remedy these problems, alternative approaches relying on the Metropolis-Hastings
algorithm (henceforth M-H, see Hastings, 1970; Chib and Greenberg, 1995) have been
proposed. Borrowing from the literature on mixture modeling, the M-H sampler can, for
instance, be tailored to implement dimension-changing moves that, at each MCMC iteration,
attempt to merge some existing factors to shrink the dimension of the model, or, on the
contrary, to split some existing factors to expand the model (“split & merge moves,” see
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Richardson and Green, 1997). Alternatively, the sampler can attempt to introduce new
factors sampled from their prior distribution, or to delete existing factors at each MCMC
step (“birth & death moves,” see Stephens, 2000). Again, the major difficulty with these
approaches in large models is finding appropriate proposal distributions that will generate
candidates for the split/merge or birth/death moves that are likely to be accepted as
identified models.

The identifying requirements of our model (more specifically, the need to have at least three
measurements dedicated to each factor), along with the specification of correlated factors,
create nonstandard difficulties and prevent most MCMC algorithms from moving quickly
enough through the parameter space to reach the stationary distribution of the parameters.
This is a well-known issue in MCMC sampling. Recently, new approaches based on
marginal data augmentation have been developed to handle these problems. These methods
will be introduced in Subsection 3.2.1 for the sampling of the correlation matrix of the
factors, but it is worth pointing out the analogy between our sampling scheme for the factor
selection and marginal data augmentation methods. Both rely on intermediate steps in
nonidentified models to boost the sampler, and both make sure that the algorithm always
comes back to an identified model after these intermediate steps. But our approach differs in
the sense that it does not introduce additional parameters into the model for this purpose, but
rather relaxes restrictions on some existing parameters. More precisely, MCMC sweeps are
carried out in the unrestricted version of the model (Subsection 3.1.1) to generate
appropriate proposals for the M-H algorithm that will in the end only generate identified
models (Subsection 3.1.2).

3.1.1 MCMC Sweeps in the Unrestricted Model—The MCMC sampler we implement
to generate proposals draws model parameters and latent variables sequentially from their
posterior distributions, conditioning at each step on the most recently drawn values of the
other parameters and latent variables:

Algorithm 1 (Unrestricted MCMC Sampler). The following steps are performed on the
unrestricted model, i.e., where the constraint of at least three measurements dedicated to

each factor is not enforced. The conditioning on the covariates X isimplicitly assumed at
each step:

A. Sampletheindicators A, theidiosyncratic variances © and the factor loadings a
simultaneously. Sincep(a, =, A| Y*, 0, B, 7) =p(a | Y", 6, B, =, A)p(= | Y, 0,8, A)
p(A| Y™, 8, B, 1), this step can be broken down as follows:

(A-1) Marginalize the distribution of A with respect to © and a and sample A
fromp(A | Y", 6, B, 7). Set the factor loadings corresponding to the zero
indicators of A to 0, and denote the remaining non-zero loadings as a®.

(A-2) Marginalize the distribution of £ with respect to o and sample £ from
p(Z|Y" 0,8, A).

(A-3) Sample the non-zero factor loadings a2 fromp(a? | Y*, 8, B, Z, A).

B. Sampletheregression coefficientsp frompB | Y", 0, a, X).
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C. For each binary measurement Y;,,, sample the corresponding latent variabley;
from p(Y;?, |Yim, 0, Bm, a ), fOri=1, ..., N.

D. Samplethe factors @ and their correlation matrix R jointly fromp(0, R| Y*, B, a,
).

E. Sampletheindicator probabilities t fromp(t | A), or skip this step if t isintegrated
out of the likelihood when the indicators are updated at step (A-1).

Full details about the conditional distributions are provided in the subsequent sections and in
Appendix A. Running this MCMC sampler on our factor model, where the indicators are
sampled sequentially from their full conditional distributions, exhibits a good mixing of the
Markov chain. There is, however, a major problem with this procedure, as it is not possible
to force the algorithm to produce at least three measurements dedicated to each factor. As a
consequence, this MCMC sampling scheme cannot be implemented to sample models that
meet our identifiability requirements. We can nevertheless exploit these good properties to
generate relevant proposals, and embed these unrestricted MCMC sweeps into a M-H
algorithm to construct a valid MCMC sampling scheme that produces identified models.

3.1.2 Metropolis-Hastings Moves to Produce Identified Models—The mechanics
of our algorithm can be described as follows: at each MCMC iteration, a few unrestricted
MCMC sweeps are performed to sample models where the number of measurements
dedicated to each factor is not restricted. These intermediate steps can generate models that
are nonidentified. The nonidentified samples, however, are not saved for posterior inference
and only serve the purpose of visiting models of different dimensions to generate relevant
proposals for the M-H moves. When navigating through (possibly) nonidentified models,
not only the indicators A are updated, but so are all of the parameters and latent variables of
the system, in order to adjust all the components of the model. In so doing, the algorithm is
more likely to reach an alternative state, where the factor loading matrix has a different
structure (e.g., a different number of factors). New factors can, for instance, be introduced
progressively into the model, one measurement at a time. The flexibility of the algorithm is
the key to exploring models of different dimensions and finding the latent structure that is
the most representative of the data.

The procedure can be summarized by the following algorithm:

Algorithm 2 (M-H moves with intermediate steps in nonidentified models). Let 3§ = {Y,
0, A a, B, 3, R, t} denote the set of model parameters and latent variables to be sampled. At
each MCMC iteration, allow the Markov chain to temporarily visit nonidentified states of

the model with unrestricted MCMC sweeps to generate a candidate that will be accepted (or

rejected) by a M-H step. If the algorithmis currently in state 5, a candidate 4, is generated
as follows by running 2Sintermediate MCMC sweeps based on Algorithm 1.

(M1) Sarting from j,,, run Ssweeps of the unrestricted MCMC sampler, by applying

steps (A) to (E) iteratively, to produce a sequence by, d,, ..., 9, _,,J, =: U,

J Econom. Author manuscript; available in PMC 2015 November 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Conti et al. Page 20

(M2) Sarting from és := 9, run Ssweeps of the unrestricted MCMC sampler in

reverse order to produce a sequence ..., 9y, J,. Reverse moves are simply
performed by drawing the parameters and latent variablesin reverse order, i.e.,
from step (E) to step (A).18

(M3)  Accept the candidate j,, as the new state if the resulting model isidentified (i.e.,

if the corresponding A, ¢ 9), otherwise reject it and recycle the old state j,, as
the new state of the Markov chain.

The number 2S of intermediate steps is a tuning parameter that can be fixed a priori, or
specified as stochastic (see Subsection 3.3 for more details). At this point, it remains to
justify that the resulting Markov chain is valid, in the sense that it meets the minimum
requirements ensuring that it converges to its stationary distribution. We now explain the
intuition behind the theoretical foundations of our approach, and show that our algorithm
satisfies the detailed balance condition.

Transition kernel and detailed balance condition: Let p,(J) denote the stationary
distribution of & in the unrestricted model. For a transition kernel Ty(:, -) associated with py
(1), the detailed balance condition is verified if:

Pu(9) T (D, 9)=pu (9T, (D,9).  (23)

This condition is not necessary but is sufficient to show that py() is a stationary measure

associated with the transition kernel Ty, It implies that the chain is reversible, i.e., that the
probability of being in 9'and moving to g is the same as the probability of being in j and
moving back to m‘f(CaseIIa and Robert, 2004, definition 6.45).

In the case where the transition is made of several sub-transitions applied sequentially, like

in our unrestricted MCMC sampler, the transition kernel from a state «J to a new state 3

through steps (A) to (E) is the product of the corresponding sub-transition kernels:
Tu(9,9)=pu(&, S, A|Y",0,3,#)p(B|Y 0,6, S)xp(Y'|Y,0,53,&)p(0, R| Y, 3,d,2)p(7| A).

Similarly, the transition kernel from 5 to 9'in reverse order, from step (E) to step (A), is:

v A A

v oA % A AL~ kY Ak Ay ANk A R Ak A A
Tu(ﬂ,ﬂ)=p<T|A)p(0,R|Y ,ﬂ,a,Z)p(Y |Ya ,ﬁ,a)xp(ﬂ|Y >0aaa )pu(a,E,A\Y 707577)'

The detailed balance condition implies that both T, (9, ) and the reverse move T, (33, )
have py(-) as stationary distribution. Nevertheless, py(«3) is not our targeted distribution, as it
can generate nonidentified models. Rather, we are looking for a stationary distribution p(:J)

18Note that steps (A-1) to (A-3) are still performed in this order in the reverse move. Since they rely on the marginalization of some
parameters, they cannot be performed in reverse order (van Dyk and Park, 2008). This is, however, not in contradiction with our
approach, because only step (A) as a whole is relevant here, the sub-steps being only used to break it down into several pieces that are
easier to perform separately. The complete MCMC sequence in reverse order therefore is: (E), (D), (C), (B), (A-1), (A-2), (A-3).
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on the set of identified models that also verifies the detailed balance condition in equation
(23), i.e.,

p(9) < pu(9)62(A), (29)
where A € 9, and 8g(A) is the Dirac measure that is equal to 1 if A € 9, to 0 otherwise.

A parallel can be drawn between our method relying on intermediate steps in unrestricted
models and Neal (1996)’s tempered transitions, which are designed as a very general
approach to sample from multimodal distributions.19 Nevertheless, it should be emphasized
that our approach departs from Neal (1996), as we relax the identifying restrictions during
the intermediate steps, while the tempered transitions always operate on identified models.
This is a major difference between the two approaches. The proof of the detailed balance
condition, however, looks very similar. We present it in Appendix A.1 for the sake of
completeness.

The symmetry of the intermediate moves aids in simplifying computations, as it bypasses
the need to calculate the normalizing constant in equation (16). This results in a very simple

form for the acceptance rate: proposed 4, are automatically accepted as a new state of the

model if their corresponding indicator matrix A, belongs to the identified set, otherwise they
are rejected.

The MCMC sweeps performed to sample the parameters and the latent variables of the
model are straightforward to implement, except for the correlation matrix of the latent
factors, which requires some elaboration. We now discuss this specific stage, and explain
the technical improvements of our sampling scheme over previous algorithms.

3.2 Sampling the Latent Factors and their Correlation Matrix in a Dimension-
Varying Model—Ours is the first paper in the Bayesian factor analysis literature to
consider correlated factors in a dimension-varying model where identification of the model
is secured explicitly. This feature of the model is challenging for the sampling procedure in
two respects. First, drawing a correlation matrix is not trivial, because of the combination of
fixed diagonal elements and positive-definiteness. Since no natural conjugate distribution
exists for this matrix, the usual Gibbs sampler cannot be implemented. Subsection 3.2.1
discusses this issue and presents the approach we adopt that relies on marginal data
augmentation. Second, the dimension of the latent part of our model is not fixed and varies
during sampling. This implies that correlation matrices of different sizes, dependent on the
number of latent factors, have to be sampled through MCMC iterations. Subsection 3.2.2
introduces the block sampling we develop to cope with this problem.

3.2.1 Sampling the Correlation Matrix through Marginal Data Augmentation: We
borrow from the literature on marginal data augmentation to sample the correlation matrix of
the factors and to boost the MCMC sampling of the factor loadings and of the factors at the

19The tempered transitions are performed through the use of a sequence of intermediate distributions that are “heated” by different
temperature parameters to flatten the likelihood function, thus allowing bigger moves.
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same time. To the best of our knowledge, this simple idea has not been applied to factor
models with correlated factors in the literature.

Marginal data augmentation (henceforth MDA, see Meng and van Dyk, 1999; van Dyk and
Meng, 2001; Imai and van Dyk, 2005), also referred to as parameter-expanded data
augmentation (Liu and Wu, 1999), has recently been proposed as a very general and simple
way to improve the convergence and the mixing of Markov chains in MCMC sampling. We
apply this approach to achieve this primary goal of boosting convergence and mixing, but
also, and maybe more importantly, to develop a new sampling scheme for the correlation
matrix that turns out to be easier to implement than existing methods based on the M-H
algorithm (Zhang et al., 2006; Liu and Daniels, 2006; Liu, 2008).

MDA consists of expanding the parameter space, at each MCMC iteration, by introducing a
set of parameters that do not belong to the original model, and that usually cannot be
identified from the data. Once the model has been transformed appropriately with these so-
called “working parameters,” a Gibbs sweep is performed in the expanded model (which is
usually easier to perform than in the original model), and the model is finally transformed
back to its original form. It is important to note that this expansion of the model is temporary
and is only used as a computational device. The draws produced in the expanded model are
not saved for posterior inference. Only the values of the parameters resulting from the final
transformation are saved.

In our factor model, the variances of the factors are restricted to 1 for purposes of
identification. This restriction can easily be relaxed to expand the model, using these
variances as working parameters. Assume for now that the dimension of the model is fixed
at K factors, and that we are therefore sampling a correlation matrix R of dimension (K x K)

in the original model, and a covariance matrix Q= ASRAY where A = diag(Aq, ..., Ak), of

same dimensions in the expanded model. At a gi\ﬁen MCMC iteration (t), MDA proceeds as
follows when it comes to the update of R:

e Model Augmentation. Expand the model with the variances of the factors A used
as working parameters. Since no information is available about these parameters
conditional on R(1), they are sampled from the prior distribution p(A | Rt™)
according to equation (22), where the current value r<(-1) js used to sample each

Ay, k=1, ..., Kconditional on a scale matrix Sf,?ior drawn from the prior p(S). Call

this draw A% and transform the model as follows, for i = 1, ..., N:20

priors

prior

ab=a® (A(t> )%a 8" —p® (Ag?ior> %,

~(t
so that in the expanded model 0\~ (O;Q(t)) with

20Here it is assumed that o and 6 have already been updated in the current MCMC iteration, hence their superscript (t); a is the factor
loading matrix, see equation (1).
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29=(a%

prior

)R (A

» Update the covariance matrix in the expanded model using a Gibbs step:

00| sy 7 (V N5 +8 9@)) ’

to obtain the updated working parameters Aggst from the diagonal of Q).
Concerning the scale matrix S applied in this step, it could be set equal to the scale

matrix sampled from the prior, i.e., stffr)ior. Alternatively, S could be up~dated
prior to sampling QO by sampling S® from p(S| £2) conditional on £ = QO. The
corresponding posterior p(S| Q) is easily derived,

p(S|2) o p(£2]S)p(S), ox | S| Zexp {
1t (S.Q_l)ﬁ -1/2 Sk ﬁ( )%1_ {
2 r kZISk exp 2Az(ll — K—I—l) ,O( ] Sk exp

- %k ((‘Q_l)kk

1
+Ai(7/—K+1))}’

and yields

- -1
51l 2~ <u42-1;(.() 1)kk+[Aﬁ2(u — K+1)] ) |

* Transform back to the identified model:

1 _1 _1
o) —a(al)”, RO=(AfL) " a0, 7.
e(t) - é(t) (Asgst)7§>

where the left arrows (+) indicate that the current values of the factor loadings and
of the latent factors at iteration (t) are replaced by the corresponding transformed
values. Note that this backward transformation is deterministic, given the updated
variances Al(fgst.

These transformations are the mechanism of the marginal data augmentation that allows the
sampling of the correlation matrix, improving the mixing of the Markov chain at the same
time.
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3.2.2 Block Sampling of the Correlation Matrix Jointly with the Factors: We specify a
maximum number K of factors a priori, but not all of them will ultimately be loaded by
measurements.21 We make a distinction between the factors that have an impact on the
measurements and belong to the identifiable set (those loaded by at least three
measurements, called “active” factors) and those that do not (the “inactive” factors, which
are not loaded by any measurements). The former correspond to the non-zero columns of the
factor loading matrix a, and the latter to the zero columns. The inactive factors can be
regarded as potential new factors, as it can happen, at any time during sampling, that some
measurements start loading on them. Conversely, existing (active) factors can be shut down
and become inactive if their dedicated measurements no longer load on them at a given
MCMC iteration.

Assume that at a particular stage there are K; active factors and K, inactive factors, with K;
+ K, = K. The latent factors are reordered such that the Ky active factors (01) appear first and
the K inactive factors (8,) appear in the last positions of 6. The rows and/or columns of the
different parameters and latent variables are thus reordered and partitioned as follows:

R11 R12 911 912
0=( 6, 65 ),a= R= 0= ,
(01 6:)a=( 1 az) ( Ry Ry ) ( £251 §29 ) (25)

where R is the correlation matrix of the factors, and € is the corresponding covariance
matrix (see equation (3)). A naive approach would be to sample the latent factors (active and
inactive) and their correlation matrix sequentially through Gibbs sampling. However,
mixing can be very poor in latent variable models. In our case, the draws of the correlations
of the inactive factors would be highly autocorrelated across MCMC iterations if we
sampled in this fashion. This would, in turn, affect the search procedure, as the sampled
inactive factors—the potential new factors—would be very similar across MCMC iterations,
making it difficult for the algorithm to pick new factors to better fit the data.

To remedy the slow mixing problem, the inactive factors and the covariance matrix €2 are
sampled simultaneously in the augmented model of the marginal data augmentation
procedure. This blocking strategy has been shown to substantially improve mixing and
convergence (Liu et al., 1994). The sampling procedure is carried out in two steps. First,
since the likelihood does not depend on the inactive factors (since a, = 0), these factors 0,
can be integrated out and the active factors can be updated marginally (van Dyk and Park,
2008). The marginal conditional prior distribution of 04; is ./ (0; ©11), and the updated
conditional posterior is derived as follows, forall i =1, ..., N:22

011" 0117 s N‘/’/(Aalaah';Ael)a

with:

21)f the sampler actually reaches the maximum number of factors K, the model should be reestimated with a larger value of K <
KMaX  as more factors may be underlying the data.

2270 make the notation lighter, in this section we drop the tildes characterizing the transformed parameters of the MDA, although all
these steps are carried out in the augmented model described in Subsection 3.2.1.
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(Ag,) '=0d () a1 +(211) " g, =0 () TNV - BX)).

Once 07 has been updated, the inactive factors and the whole covariance matrix can be
sampled simultaneously. Their joint distribution, in the expanded model, is proportional to:

(02, 2101, Y, o0, X) o< p(02]92,01)p(212, £222|8211)p(£211]61),

revealing that the covariance matrix © can be sampled by blocks. For this purpose, we
develop a sampling procedure that relies on well-known properties of the inverse-Wishart
distribution.23 More precisely, we exploit the fact that the matrix 11 is independent of the

block matrices (277" Q12 and Q20.1), Where 251 =255 — 24, 27,1 2, is the Schur
complement of either close to 0 or to 1 Q44 in §2, both a priori as well as a posteriori. Hence,
we split the scale matrix S appearing in the inverse Wishart prior and, respectively, posterior
distribution of Q in a similar way as in equation (25):

St Si2
S= .
( So1 Soo

Using the prior QnNW,;l(V — K2;511), in a first step we sample the block matrix €211
conditional on 0; from the posterior

21|01~W (v — Ko+ N;S11+6/61).

Given the independence of the blocks stated above, in a second step, we sample the Schur

complement ;.1 and the product 27! 1 jointly:

922.1~WK;1(1/;522.1), Q7 15| 2291~ (811 S812;511 ® 222.1).

K xKg

Once these different blocks of the covariance matrix have been sampled, the inactive factors
are sampled in a final step from the conditional distribution p(, | 2, 61) independently for
alli=1,...,N:

0] 02, 01i~ N (0271 212) 01:59292.1).

This block strategy of sampling the latent factors and their correlation matrix simultaneously
dramatically improves the mixing of the algorithm and, in turn, facilitates factor selection.

23366 Theorem Al in Web Appendix.
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3.3 Prior Specification and MCMC Tuning: Some Guidelines—The prior
parameters should be carefully specified for the factor selection to work appropriately.
Those discussed below, especially, play a crucial role and require particular attention.

The prior variance of the non-zero factor loadings defined in (18) is proportional to the
idiosyncratic variance of each measurement, with a scale parameter A° that determines how

diffuse the distribution is. Subsequently, we make use of a fixed scale prior, where A% — A,
Although it is usually not recommended to specify vague priors in latent variable models

(e.9., A;'=0), as the near impropriety of the resulting posterior distribution can lead to a
slow mixing of the sampler (Natarajan and McCulloch, 1998), being too informative should
also be avoided. Too small a scale parameter would shrink the distribution of the loadings
toward 0, especially in cases where measurement error is small. This could in turn induce an
overfitting of the number of latent factors, where many factor loadings would have a low
magnitude.

The degrees of freedom v in the prior of the covariance matrix of the factors in the expanded
model defined in (19) determines the marginal prior distribution of the factor correlations.
Taking v = K + 1 such that the single correlations are uniformly distributed on [-1; 1] (see
Barnard et al., 2000) can be problematic in high-dimensional models. It may indeed result in
an overestimation of the number of latent factors, where many factors would appear to be
extremely highly correlated and therefore redundant to explain the data. To cope with this
factor splitting problem, it might be helpful to increase v to prevent duplicate factors from
emerging. As outlined previously in Subsection 2.3.5 and at the beginning of this section,
increasing v is also important with respect to ensuring prior identification in cases where the
likelihood function yields considerable support for unidentifiable regions of the parameter
space.

The prior on the indicators’ probabilities © (see equation (13)) needs to be tailored
appropriately for the factor selection process. Due to the identifying constraints on the
indicator matrix A, the implied prior distribution on the number of factors appears to be very
tedious to derive analytically. It can however easily be simulated. Table 2 shows the prior
probabilities of the numbers of factors for some models studied in the Monte Carlo
experiment.

When T is specified individually for each measurement (see Subsection 2.3.1), the impact
of its prior specification vanishes if the Beta distribution is specified as symmetric (i.e., with
equal shape parameters). This might appear counterintuitive at first sight, as one could
expect a crucial role of the prior distributions of <t in the Bayesian updating process when
only one observation of A, is available at each MCMC iteration. However, with a single
observation at hand, only the mean of the prior distribution counts, and this one is not
affected by a change of scale of the prior parameters.24 This explains why there is no
difference between using a uniform prior for 1 (i.e., #eta(1; 1)) and a very informative

24The prior mean of < is xg/(ik0+£p), and this ratio is not affected by a change of scale of the parameters, as long as these parameters
remain proportional. This can also be seen from the ratio of the marginal likelihoods of A in equation (A9), which remains the same
after such a change of scale.
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prior such as a U-shaped distribution reflecting the belief that < is either close to 0 or to 1
(e.g., Beta(0.1; 0. 1)).

The number 2S of intermediate steps determines how long the algorithm navigates through
expanded models to generate proposals for the M-H moves, and turns out to play an
important role in the convergence of the algorithm. It can be specified as fixed or stochastic
(e.g., sampled from a Poisson distribution at each MCMC iteration) to introduce more
flexibility in the M-H algorithm. In some situations, for instance when the sampler is stuck
in one region of the parameter space and does not move, additional intermediate steps can be
performed to allow the algorithm to reach another state.

Convergence of the M-H algorithm can be slow in large models, due to the huge dimension
of the parameter space. The choice of the initial value for the indicator matrix A therefore
plays an important role. Instead of choosing this matrix at random, we suggest to run a
preliminary MCMC analysis based on the unrestricted sampler (Algorithm 1) to generate an
appropriate starting value. This sampler can be implemented to explore the parameter space
more quickly, but it will generate a factor loading matrix that is only partially identified, in
the sense that it contains columns with at least three non-zero factor loadings, but possibly
also columns with less than three non-zero values. Such a partially identified matrix can
however be used to generate a starting value for A that corresponds to an identified model,
by keeping only the columns with at least three non-zero values. The measurements
dedicated to unidentified factors (with less than two dedicated measurements) can then be
allocated either at random or according to our allocation rule to the identified factors. This
approach based on the partial identification of the factor loading matrix can be theoretically
justified (see, for instance, Sato, 1992, Theorem 3.9), and it can considerably reduce the
need for a long burn-in period in practice.

3.4 Posterior Inference—The use of indicators makes it very easy to summarize the
structure of the factor loading matrix. For example, the number Dy of measurements that are
dedicated to a given factor k, for k=1, ..., K, the number of discarded measurements Dy, the
number of active factors K4, or the number of included measurements M (those actually
loading on a latent factor), can be computed as:

M K K
Dp=> 1[A,=e;], K1=> 1[Dy # 0], M=) Dy, Dy=M — M.
m=1 k=1 k=1

These quantities can all be estimated using the corresponding posterior modes or posterior
means over the MCMC draws, and are not affected by the column switching problem, nor
by the sign switching problem. These two problems should, however, be dealt with (i.e.,
identification of the model should be restored a posteriori) to be able to interpret the latent
structure of the factor loading matrix.

Since there is no natural ordering of the columns of the factor loading matrix, different
approaches can be adopted to solve the column switching problem. We suggest a reordering
based on the top elements of the columns, i.e., the first row Iy in each active column k
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containing a non-zero factor loading, starting from the top of the matrix. Because of the
dedicated structure of the factor loading matrix, each of these top elements corresponds to a
different measurement. At each MCMC iteration, the non-zero columns of a are reordered
such that the top elements appear in increasing order, i.e., |1 <, < ... <lk. Finally, the rows
and columns of the correlation matrix R of the factors should also be switched accordingly.

Regarding the sign switching issue, a simple sign switch can be carried out on the MCMC
draws to reestablish the consistency of the signs across iterations. To do so, one factor
loading is used as a benchmark in each column (e.g., the factor loading with the highest
posterior probability of being different from zero in each column25). The analyst determines
which sign each benchmark loading should have, and the MCMC draws are then post-
processed. Whenever the benchmark has the wrong sign in a certain column, sign switching
has occurred at the corresponding MCMC iteration and is reversed by switching the signs of
all the loadings that are in the same column (including the benchmark), of the latent factors
corresponding to this column, as well as of the corresponding elements in the correlation
matrix R of the factors.26

The decision on defining the signs of the loadings used as benchmarks should be guided by
the meaning of the latent traits measured by the factors. If a factor captures a positive trait,
like self-esteem, and the corresponding measurements are increasing in this trait, then it is
straightforward to assume that the sign of the benchmark is positive, because a negative
loading would capture the reverse of the trait of interest. The analyst should therefore always
have the underlying literature in mind when carrying out this step, so as not to produce
results that are counterintuitive and hard to interpret.

4 Applications to Simulated and Real Data

4.1 Monte Carlo Study

Data Generation—To investigate the performance of our algorithm, we run a Monte
Carlo experiment using synthetic data simulated from a simplified version of equation (1).
Since the focus of the experiment is on the factor selection process, no covariates are
specified and the measurements are all assumed to be continuous (i.e., v,,=Y;* ), S0 as to
keep the specification as simple as possible.

We generate models of different dimensions and denote them by 24(M, Kq, D, D), where
M is the total number of measurements, K the true number of factors, D the number of
measurements dedicated to each factor, and Dg the number of extra measurements that are
uncorrelated with the other measurements.

Each model is made of M = KoD + Dy measurements that are dedicated to the latent factors
through the following indicator matrix:

25)f several factor loadings have the same highest posterior probability (e.g., 1.0), we simply take the first of them from the top of the

matrix.

26F riihwirth-Schnatter and Lopes (2012) use a similar approach to address the sign and column switching problems.

J Econom. Author manuscript; available in PMC 2015 November 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Conti et al. Page 29

— IKO ®tp
(MxKo) | O(p, i)

where 1p = (1, ..., 1)’ is the vector of ones of length D. The uncorrelated measurements (if
any) are placed at the bottom of the vector of measurements, hence the last Dy zero rows of

A. For the correlated measurements, each single non-zero factor loading o2 and each
idiosyncratic variance ¢ are simulated independently from the following distributions:

aA=(=1)"" Jam, o2 ~%(0.20;0.80),

m- m

Pm~PBer(0.5), A~ (0.04;0.64),

form=1, ..., KoD, where non-zero factor loadings o4 are assigned a sign at random with
probability 0.5. The remaining Dq uncorrelated measurements are simulated independently

from a standard normal distribution, i.e., o2 =1, for m=KgD + 1, ..., M, and the
corresponding last rows of a contain only zero elements. The correlation matrix R of the
factors is sampled as

_ . _1 _1
QNV/KDI(K0+5;IKO),A:d1ag(!2),R:A TNA?,

where Q is the factor covariance matrix (see equation (3)), and the distribution of R is
truncated to the subspace where all off-diagonal elements are smaller than 0.85 to avoid
extreme cases.2’

Model parameters are sampled independently across Monte Carlo replications. Drawing the
factor loadings and the idiosyncratic variances from these uniform distributions results in
measurements with a proportion of noise p,,=o?2 /(o2 +a,, ) that ranges from 24% to 95%
for the correlated measurements. The signal-to-noise ratio is comparable to what we observe
in our real data application. It is worth emphasizing that factor extraction is very challenging
in this context of noisy data.28

We simulate the following eight models, where the number of measurements ranges from 15
to 125, and the number of factors from 3 to 12:

M (15,3,5,0), .4(36,6,6,0), .#(72,9,8,0), .4 (120,12, 10,0),
M (17,3,5,2), #(39,6,6,3), .2(76,9,8,4), .#(125,12,10,5).

Each of these model configurations is used to generate data sets with N =500 and 1, 000
observations. For each of these data sets, 100 Monte Carlo replications are used.29

27Thus, any simulated R with at least one correlation large than 0.85 is discarded and a new R is simulated. The operation is repeated
until a correlation matrix satisfying this restriction is sampled.
See Web Appendix for additional Monte Carlo experiments with less noisy data.
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Prior Specification and MCMC Tuning—Table 1 displays the values of the prior
parameters specified for this Monte Carlo study. For the correlation matrix of the factors, we
implement the Huang-Wand prior by specifying a stochastic scale matrix S for the inverse-
Wishart of Q that is updated at each MCMC iteration in the expanded model (see Subsection
3.2). The tuning parameter v = v — K + 1 is chosen to induce a uniform prior distribution on
[-1; 1] on the individual correlations of the factors. The prior on the indicator matrix is
specified to allow uncorrelated measurements to be easily discarded from the model.
Following Subsection 2.3.1, the probability of a zero row in the factor loading matrix is
specified as measurement-specific. Conditional on the inclusion of the measurements into
the model, the Dirichlet distribution on t” is then specified differently for each model size,
S0 as to generate plausible prior probabilities for the number of factors. Table 2 shows these
prior probabilities for the first four models under investigation. These probabilities were
simulated using a simple accept-reject sampling scheme and the low acceptance rates in the
last column reflect the difficulty in sampling models that meet the identifying restrictions
when drawing only from unrestricted models.

For each Monte Carlo replication, the MCMC sampler is run for a total of 40, 000 iterations,
where only the last 20, 000 iterations are saved for posterior inference. The factor search is
carried out with a number of 2Sintermediate steps, where Sis drawn randomly at each
MCMC iteration as S= 1 + ¢, with ¢ ~ Zoisson (4).30 The starting values of the parameters
are selected at random, except for the indicator matrix A, which is specified after a pre-
MCMC analysis. This preliminary analysis is performed by running the unrestricted sampler
(Algorithm 1) for 50,000 iterations, starting with the maximum number of potential factors
and a random structure. The value of A from the last iteration is then saved and used as a
starting value, where only the identified factors (those with at least three dedicated
measurements) are kept as active factors. The remaining measurements—those dedicated to
unidentified factors—are assumed to be initially allocated to none of the identified factors.

Baseline Comparison to Classical EFA—We also perform classical exploratory factor
analysis on the simulated data sets and compare the results to those obtained with BEFA. In
a first step, we apply various criteria to select the number of factors. As explained in the next
paragraph describing the results, no clear picture emerges and these criteria do not manage
to uncover the dimension of the latent structure in a consistent way. Therefore, in a second
step we run the factor analysis conditional on the true number of factors. Maximum
likelihood factor analysis is implemented, as this classical factorization method is closest to
our Bayesian approach.?’l The results are finally rotated using a Promax rotation, which
generates a sparse factor loading matrix and is thus in line with our approach. Similarly to
BEFA, a reordering of the columns has to be done to allow a comparison of the estimated
factor loading matrix to the true one. This is done by first setting to zero all factor loadings
lower than 0.2 in magnitude, and then reordering the columns to match the true structure of
the factor loading matrix as close as possible.

29Therefore, this Monte Carlo experiment relies on 8 (model sizes) x 2 (sample sizes) x 100 (Monte Carlo replications) = 1, 600
independent data sets.

Which results in an average number of 10 steps in expanded models.

Classical estimation was carried out with the R Statistical Package (R Core Team, 2013).
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This comparison helps us assess the benefits of our approach over classical factor analytic
methods. Nevertheless, the comparison should be done carefully, due to some differences in
the implementation of the two approaches. Since classical criteria provide no conclusive
answers to the selection of the number of factors (see Table 5), the maximum likelihood
estimation presented in Table 3 is conducted conditional on the true number of factors.
BEFA, on the contrary, estimates the number of factors using little prior information—the
only prior information is conveyed by the prior distribution of the indicators, so as to
generate plausible values for the number of factors (see Table 2).32 The maximum
likelihood approach does not explicitly use the information that the measurements are
dedicated, contrary to BEFA. However, the cutoff value used to set the factor loadings to
zero (0.2) in the classical approach is based on the minimum value the factor loadings can
take in our data generating process. In real-data applications, practitioners do not have this
information and would typically fix this cutoff at a higher value (e.g., 0.5), thus changing
dramatically the final structure of the factor loading matrix. BEFA does not rely on such
cutoff values and therefore does not make use of this information.

Monte Carlo Results—The results of the Monte Carlo experiments on our eight artificial
models are summarized in Table 3. To grasp the performance of our MCMC sampler, we
compute different statistics based on posterior modes and on the highest probability model
(HPM), which corresponds to the indicator matrix most often visited by the sampler across
MCMC iterations.

The BEFA algorithm manages to recover the true structure of the factor loading matrix in
virtually all cases, as indicated by the hit rates that are all very high. The larger the model,
the more difficult the factor search, especially in this context of very noisy data. More data
available enables the sampler to better recover the full 0/1 pattern of the indicator matrix, as
indicated by the larger hit rates for N = 1000 compared to N = 500 in the column AH for all
models. Measurements that actually belong to the model are almost never wrongly discarded
(first four models), and extra measurements—those that are uncorrelated with the other
measurements—are retrieved very accurately (last four models). This last result is obtained
thanks to the hierarchical prior on the indicator matrix with measurement-specific
parameters tom, which introduces more flexibility in the estimation of the number of zero
rows of the indicators matrix, especially in large models (see Subsection 2.3.1).33

Table 4 display some information assessing the numerical efficiency of our sampler. In most
cases, Metropolis-Hastings acceptance rates are very high. Low acceptance rates indicate ill-
convergence, as the sampler keeps proposing nonidentified models that never get accepted.
In such cases, it is recommended to restart the sampling with different starting values. To
gauge the numerical accuracy of our sampler, we compute inefficiency factors for the
correlations of the factors, the top elements of the factor loading matrix, as well as the
idiosyncratic variances corresponding to the highest posterior probability models (HPM).
Each of these inefficiency factors is computed as the inverse of the relative numerical

32Nonetheless, we show in the Web Appendix that the impact of this prior distribution is negligible.
We ran the same simulations with the initial prior specification on t assuming a common parameter tg across measurements, and as
expected, the number of uncorrelated measurements Do was always underestimated, especially in large models. See Web Appendix

for more details.
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efficiency (Geweke, 1989), and measures the number of draws required to achieve the same
numerical precision as an independent sample from the target distribution.34 These factors
are close to 1 in all cases, revealing a very good mixing of our sampler.35 These good
properties are obtained thanks to the marginal data augmentation sampling scheme used for
the correlation matrix, and also to the intermediate steps in augmented models that are not
saved for posterior inference and therefore induce a thinning of the Markov chain. Inference
was conducted with a code written in Fortran for improved speed, and computational time
was assessed on 2.66GHz Intel Xeon CPUs. Running times are displayed in minutes, and
correspond to the total number of 40,000 MCMC iterations, each iteration being made of 2S
intermediate steps in augmented models (10 intermediate steps on average).

The last columns of Table 3 show the results obtained from Maximum Likelihood
estimation of the factor models with Promax rotation run on the same data sets. This
approach is clearly outperformed by our BEFA method. It turns out to perform reasonably
well on small models, but exhibits difficulties in recovering the true pattern of the indicator
matrix when model size increases—although it is run conditional on the true number of
latent factors and the true value of the minimum factor loading is used as threshold. The
larger the model, the worse the performance: Too many correlated measurements turn out to
be discarded (cf. columns for Dg) and some factor loadings equal to zero in the true model
are estimated as different from zero (cf. column for np). The comparison between the two
approaches is thus striking, especially given the fact that although BEFA is run without
knowing the true number of factors a priori, contrary to classical EFA, it still manages to
perform better in recovering the true latent structure.

Finally, Table 5 shows the results obtained by applying to the same simulated data methods
routinely used in psychometrics and econometrics to select the number of components/
factors.36 While, as seen in Table 3, the BEFA algorithm displays remarkably high hit rates,
the different classical criteria are not able to recover the dimensionality of the true latent
structure in a consistent way. In particular, while most of the methods succeed in recovering
it for the simplest models with three factors, their performance varies between under-(in the
case of the Velicer and of the Onatski method, and of the Bayesian Information Criterion)
and over-extraction (in the case of the Kaiser criterion) for the higher-dimensional models.
In general, doubling the number of observations from 500 to 1,000 allows a more accurate
selection of the number of factors, while including in the data extra measurements
uncorrelated with the others (as in the last four models) leads to an even greater degree of
over-extraction.

We now apply our methodology to real data for the estimation of a high-dimensional factor
model.

34For example 100, 000 draws from a sampler with an inefficiency factor of 10 will have the same numerical accuracy as 10, 000
draws from an independent sample. Inefficiency factors computed as explained in Kastner and Frihwirth-Schnatter (2014).

Larger inefficiency factors would be obtained if they were not calculated for HPM—i.e., if they took into account model uncertainty
due to the unknown structure of the factor loading matrix a. However, researchers are usually interested in the final structure of a
gHPM in this case), hence the results reported.

6A brief description of the various classical methods used in this section for selecting the number of components/factors and for
performing rotation is provided in the Web Appendix. The scree plots displaying the average eigenvalues across the 100 Monte Carlo
replications for each model are also shown there.
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4.2 Empirical Analysis of the BCS Data

This section of the paper applies our method to data on cognitive, psychological and health
measurements. Classical Exploratory Factor Analysis is widely used to boil down high
dimensional data on psychological traits to interpretable scales. This is the method used to
obtain the Big Five3’ (see Goldberg, 1990). We estimate the structure of cognitive,
psychological and physical traits in childhood using the BEFA approach. We then show
which alternative structures are obtained by the methods traditionally used.

Data—We apply our method to data from the British Cohort Study (BCS), which has been
widely used in an interdisciplinary literature on the effects of early life conditions on adult
outcomes. The BCS is a longitudinal survey following all babies born in a particular week of
April 1970 in the United Kingdom. A wealth of information has been collected at multiple
ages on the cohort members’ cognitive, behavioral and physical development, their family
and school environment, and their labor market and life outcomes. For this application, we
use information on family background characteristics from the birth sweep, and on 131
cognitive, behavioral and health measurements—28 binary and 103 continuous—at age 10,
to estimate the structure of childhood traits for the male cohort members.38

Prior Specification and MCMC Tuning—We run our algorithm on this data set and
assume that the number of underlying factors does not exceed 20, (so K = 20).39 We adopt a

prior specification that is similar to the one used in the Monte Carlo study, assuming ¢° =0
m

and Ag = 3, and for the continuous measurements ¢y = 2.5 and ¢ specified as in equation
(17). The only differences worth pointing out are for the regression coefficients, the
correlation matrix of the factors, and the indicator probabilities. We introduce covariates in
our factor model to control for observed heterogeneity, and assume that the corresponding

regression coefficients are a priori centered (5°, =0) with prior variance B? =3 14070
hinder factor splitting, which happens to be a problem in our application when assuming a
uniform prior on the individual factor correlations, we increase the number of degrees of
freedom to v = K + 5. As shown in Figure 1, this value of v shifts the prior distribution of
the maximum correlation away from 1. The scale matrix Sis specified as stochastic to
implement the Huang and Wand (2013) prior, and its diagonal elements are allowed to take
relatively large values to enhance mixing by fixing Ay = 100. Finally, the prior on the
indicator weights is specified with measurement-specific parameters tg, assumed to have a
symmetric prior Beta distribution (g = g = 0.1), and for the included measurements the
Dirichlet prior is specified with concentration parameter k = 0.5, a prior similar to the one
used for the largest model with 125 measurements in our Monte Carlo study (see Table 2).
We start the algorithm with a single factor and run the sampler for 100, 000 iterations, where
only the last 40, 000 ones are used for posterior inference.#! For the factor selection, 2S

37n psychology, the Big Five personality traits are five broad domains or dimensions that are used to describe human personality, and
that are based on the Five Factor Model (FFM)(Costa and McCrae, 1992). The Big Five are Openness, Conscientiousness,
Extraversion, Agreeableness, and Neuroticism (OCEAN).

Full details on the data and the measures we use are in Appendix B.

Since we find 13 factors, there is no need to rerun with a larger maximum number of factors.

See Appendix B for scaling of the covariates.

lwe resort to a long burn-in period for the empirical application, as the pre-MCMC stage based on the unrestricted algorithm turned

out to produce too many nonidentified factors that could not be used to generate a sensible starting value for A.
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intermediate steps are performed at each MCMC iteration, with S=1 + ¢ and ¢ ~ Z0isson
(4). We run the MCMC sampler several times with different starting values to check it
converges to the same solution. After sampling, the MCMC draws are post-processed
following the strategy described in Subsection 3.4 to solve the sign and column switching
problems and make interpretation possible.

Empirical Results—The main results are presented in Figure 2, which displays the
posterior means of the factor loadings in the highest probability model (HPM)—the model
that corresponds to the indicator matrix A that is visited most often by the algorithm. In our
application, the posterior probability of the HPM is 0.42. These results show that the method
succeeds in condensing the information contained in the data in a concise and interpretable
way. BEFA uncovers 13 factors (out of an admissible set of K = 20) from the 131
measurements recorded from multiple sources on the development of the child at age 10.
The factor loading matrix should be interpreted jointly with Figure 3 that shows the
posterior correlations among the estimated factors and gives more insights into the
interrelations between the latent constructs.

First of all, the measurements are clearly allocated to one of three broad categories—
cognitive, noncognitive and health. All intelligence test scores load on a single factor, which
we term cognitive ability (61);42 likewise, all physical measurements load on a separate
factor, hence named Body Build (613). Most importantly, the numerous measures belonging
to the five noncognitive scales (the Rutter, Conners, Child Developmental, Self-Esteem and
Locus of Control scales) are allocated to 11 different factors in such a way that items
describing the same trait consistently load on the same factor. In this way, each factor
beyond the first one can be clearly named as a child mental health problem or facet of
temperament, as shown in the columns of Figure 2 (6,-612). For example, the factor we call
“Attention Problems [T]” (0s) is loaded by all teacher-reported items denoting inability to
pay attention in class. Second, measurements collected from different subjects (mothers,
teachers, and the children themselves) load on separate factors, although some of them use
exactly the same Wording.43 Third, Figure 3 shows that the estimated correlations among
the factors are informative:44 in addition to the two main clusters of inter-correlated mother-
(6,— 04) and teacher-(0s5— 011) reported traits, BEFA also succeeds in uncovering meaningful

42\tems from the locus of control scale also load on this factor. While this might seem prima facie unusual, it is not actually
uncommon in the literature. Costa and McCrae noticed “Many lexical studies show that some aspects of rated or self-reported
intelligence (e.g., logical, foresighted vs thoughtless, imperceptive) also load on a Conscientiousness factor; we view these as
reflections of Competence. We would also hypothesize that locus of control would be related to this facet.” (Costa et al., 1991).
Additionally, also Van Lieshout and Haselager (1994) and Mervielde et al. (1995) obtain childhood factors loading on both
intellectual capacity/intelligence and Conscientiousness. Finally, von Stumm et al. (2009), analysing these same data, also notice a
substantial overlap of locus of control and intelligence. They hypothesize this may be partially due to the shared cognitive-based
setting of assessment (i.e., in school under teacher’s supervision). Alternatively, like Costa et al. (1991), they speculate that these
scales may tap into the same dimension of individual differences. Intelligence enables learning and understanding, which facilitate
pupils’ school performance and academic achievement. This encourages a sense of personal competency and, thus, students are likely
to attribute school achievements to their own ability and effort rather than external circumstances. In our results, all the locus of
control items which load on factor 1 specifically refer to academic performance, attesting that the measurement of locus of control in
the BCS 1970 is closely linked to school experiences.

This occurs in the case of the Child Developmental Scale, which was specifically developed for inclusion in the BCS by selecting
appropriate items from the Rutter and Conners instruments, and adding a few additional ones—such as motor coordination problems
—to make the scale a more comprehensive measure of child development. The list of items with the same wording and the different
factors they load on is shown in the Web Appendix. The detailed description of each item by which each factor is loaded is also
reported there.

Posterior standard errors for the estimated correlations are displayed in Table A3.4 in the Web Appendix.
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correlations across traits derived from reports by different informants. For example, the
correlation between cognitive ability (61), as measured by intelligence test scores
administered to the child, and attention problems (65s), as measured by teacher-reported
items, is —0.504. And the low correlation between mother- and teacher-reported traits is also
consistent with a consolidated literature in child psychology, starting from the seminal study
of Achenbach et al. (1987), who report that correlations of ratings are low between
informants who play different roles with children.

Comparison with Estimates from Classical Methods—We now compare the
performance of our procedure with that of approaches traditionally used in the applied
literature.#° Given the lack of a commonly accepted method of aggregation, different studies
summarize the available information in many different ways, and often arrive at different
conclusions, even when analyzing the same data. First and foremost, all studies make a
priori judgments on which sets of scales to aggregate: no previous study has analyzed all the
information available in the data as we do here. At the initial stage, researchers usually
define broad categories—such as cognition, personality and health—then eventually define
sub-categories (e.g., verbal and mathematical intelligence, conduct or attention problems).
This approach may be appropriate when a priori information is available to the researcher.
Then, analysts use their method of choice to condense the information available within each
of these pre-defined categories. The two most commonly used approaches are: (1)
construction of simple sums or averages; (2) Exploratory Factor Analysis (EFA), with the
extraction of principal components or factors.

A first common approach to aggregation is to take sums or unweighted averages, either of
different scales belonging to a broad category (e.g., all cognitive scales), or of different
items belonging to the same scale (e.g., all items belonging to the self-esteem scale), as done
in Murasko (2007), Gale et al. (2008) and Kaestner (2009), among others. This simple
procedure makes two strong assumptions: equal weighting of items (i.e., all measures are
assumed to incorporate the same share of information about the latent factors), and absence
of measurement error. Both of these assumptions are at odds with the data.46 On the one
hand, different measurements associated with the same factor clearly have different factor
loadings (Figure 2). On the other hand, we find substantial measurement error in the
measurements (Figure 4). This provides evidence that, at least when using the BCS data,
unweighted aggregates are not an adequate representation of the latent structure of
childhood traits.

Another approach commonly adopted is to extract principal components or factors.
Although the two methods are conceptually different, they are often used interchangeably in
the applied literature, when there is need for dimensionality reduction. For example,
Feinstein (2000), Blanden et al. (2007), Gale et al. (2009), Jones et al. (2011) and Dohmen
et al. (2012) all extract principal components, while von Stumm et al. (2009), Baron and
Cobb-Clark (2010), Antecol and Cobb-Clark (2010), Helmers and Patnam (2011) and

45 brief description of the various classical methods used in this section for selecting the number of components/factors and for
performing rotation is provided in the Web Appendix.
See Cunha and Heckman (2008) for an exploration of these issues.
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Fiorini and Keane (2012) extract factors, although they deal with similar applications and
sometimes even use the same data.

When components are extracted, error in the measurements is not accounted for. When
extracting factors, instead, the analyst only analyzes the variability in the observed
measurements which can be explained by the common factors not affected by measurement
error. Stated differently, components extraction is based on an eigenvalue decomposition of
the raw correlation matrix (Jolliffe, 1986), while factor extraction is applied on the
“reduced” correlation matrix with measurement error variance removed (the one based on
the factor covariance).4’

It is instructive to compare the steps involved across the various methods. While BEFA is a
unified single step procedure, traditional approaches involve multiple stages: a first step in
which the number of components/factors is selected, a second step in which components/
factors are extracted (conditional on the number selected in the first step), and a third step in
which rotation is performed to search for a simple structure.8 Acrbitrary decision rules are
involved at each step. Several criteria are available to select the dimensionality of the latent
structure, to extract the factors (Gorsuch, 1983), and to rotate the resulting loading matrices
(Jennrich, 2001, 2002). If a simple structure does not emerge in a first round, classical
Exploratory Factor Analysis procedures also involve further steps, in which measurements
weakly loading on factors are iteratively eliminated on the basis of arbitrary threshold rules,
until a stable solution with only single loaders is achieved. The elimination criterion is also
usually based on the magnitude of the loadings, without accounting for their statistical
significance.

BEFA performs all of these steps in one coherent Bayesian procedure, where the dimension
of the latent structure is estimated jointly with the allocation of the measurements to the
factors. This is in contrast with traditional approaches in which the various steps are
performed sequentially, and each of them requires ad hoc judgments, which affect the final
outcome, as shown in Table 7.49

First, as already seen in the previous section with the application to the simulated data, the
choice of the method used to select the dimensionality of the latent structure is not
innocuous. Table 6 shows that the number of components/factors estimated from the raw
measurements ranges from a minimum of 6 when using the Scree plot and the Onatski
(2009) method, to a maximum of 72 when applying the Akaike Information Criterion.%0 It
also shows that each method selects a number of components bigger than the number of
factors. Because component extraction does not discriminate between common and unique
variance, spurious components/factors are likely to be extracted. Additionally, using raw or

47\ practice, the two methods will yield similar results when the values of the communalities are relatively high (Fabrigar et al.,

1999).

48The procedure of rotation identifies blocks of measures that within blocks are strongly correlated with one component/factor (i.e.,
satisfy convergent validity) but are weakly correlated with other components/factors across blocks (i.e., satisfy discriminant validity).
Discarding measurements is an intuitively unsatisfactory procedure but it is an essential part of Exploratory Factor Analysis. (See,
e.g., Gorsuch, 2003). At the same time, the procedure used in this paper can be faulted by assuming that each measurement loads on at
most one factor. In future work, we plan to relax this requirement.
Scree plots of the eigenvalues from both the raw and the reduced polyserial correlation matrix are shown in the Web Appendix. It is
evident that, in both cases, no clear separation or “elbow” emerges.
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residualized measurements®® also makes a difference, since in the latter case a smaller
number of components/factors is usually selected. This might suggest that, when using raw
measurements, spurious components are likely to be extracted.

Second, in the classical approach, not only the criterion to detect the number of components/
factors plays a role, but also the extraction and rotation methods have a non-negligible
influence on the final structure. This is clearly visible in Table 7. Here we show the final
number of components/factors and measurements which result by applying to the initial set
of 131 measurements (both raw and residualized) different dimensionality selection criteria,
extraction and rotation methods, and use the same set of rules to discard items, as suggested
in Costello and Osborne (2005), and applied in Heckman et al. (2013).52 The extraction
methods applied are those of principal components (routinely used to construct ability
measures),3 principal factors (Gorsuch, 1983, 2003), applied among others in Antecol and
Cobb-Clark (2010) and von Stumm et al. (2009), and maximum likelihood factor analysis
(the method closer to BEFA). We then use two commonly applied methods of oblique
rotation—promax and quartimin—that penalize departures from Thurstone’s simple
structure, and allow for correlated factors which are also accommodated in BEFA. Hence,
for each set of measurements (raw or residualized), initial number of components/factors,
extraction and rotation method, we apply the following rules. First, we exclude items with
loadings smaller than 0.5 in absolute value (to avoid the weak-loading problem), and also
items with a loading of 0.32 or higher in absolute value (as suggested in Tabachnick and
Fidell, 2001) on two or more factors (to avoid the crossloading problem). Second, we also
exclude measurements in cases where only two of them load on a single factor (to avoid
weakly-identified constructs). This restriction serves the same purpose as our identifiability
condition (that at least three measurements must be dedicated to each factor). In the classical
setup this condition is applied ex-post and in a sequence of steps subject to arbitrary choices,
while in BEFA it is explicitly incorporated into the MCMC sampling scheme. This iterative
procedure of components/factors selection, extraction, rotation, and elimination of
measurements is repeated until no further items are dropped.

It is clear from Table 7 that both the choice of the initial number of components/factors to
extract and the extraction/rotation method adopted have a substantial impact on the final
structure achieved, when performing this iterative sequential elimination procedure.>* The
final structure achieved depends on both the chosen initial number of components/factors,
and on the choices made at the various steps. It ranges between a minimum of 4 final factors
and 34 measurements, to a maximum of 11 final factors and 76 measurements. Starting by
selecting a smaller number of factors in general leads to retaining a smaller number of
measurements. The choice itself among the different final configurations is not innocuous.

51\wve define residualized measurements as the residuals of a linear regression of the measurements on the seven covariates (X) which
are included in the BEFA measurement system. We use a linear probability model for the binary measurements. The covariates
included are mother’s age at birth, mother’s education at birth, father’s high social class at birth, total gross family income at age 10,
an indicator for broken family, the number of previous livebirths, and the number of children in the family at age 10. More details are
Erovided in Appendix B.2.

2Similar threshold rules to discard weakly-loading items and to interpret the resulting structure are applied by von Stumm et al.
2009) and Fiorini and Keane (2012).

S\We use the component loadings, i.e., the eigenvectors scaled by the square root of the eigenvalues.
S4Browne (2001) was the first to show how different rotation criteria can influence factor pattern matrices.
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While more parsimonious, a lower-dimensional structure would not display the richness of
the childhood traits as uncovered by the BEFA approach. In almost all final configurations
obtained with this procedure, the health factor has been discarded (with the exception of the
structure obtained when extracting principal components with an initial number of 12);
additionally, when using maximum likelihood factor analysis with 6 initial factors, the
cognitive factor is discarded.

In sum, alternative classical approaches to aggregating high-dimensional data often make
assumptions that are not supported by the data (equal weighting of items and absence of
measurement error), or that lead analysts to discard many measurements loading on multiple
factors. The multistage procedure of classical EFA is based on separate stage-wise choices
of significance levels, criteria for selection of the dimension of the model, criteria for
allocation of measurements to factors and criteria for estimating factor loadings made by the
analysts at various steps of the process. Although the BEFA method requires some a priori
judgments, it is a unified procedure that simultaneously chooses the dimension of the model,
the allocation of measurements to factors and factor loadings using the same algorithm and
tuning parameters.

5 Conclusion

This paper develops and applies a new method—Bayesian Exploratory Factor Analysis
(BEFA)—to constructing maximum posterior probability indices that summarize high-
dimensional data by a low dimensional set of interpretable aggregates. We develop an
integrated Bayesian framework to factor selection that simultaneously tackles several steps
in building a factor model that are usually done sequentially: the choice of the dimension of
the latent structure, the allocation of the measurements to the factors, as well as the
estimation of the corresponding factor loadings.

Our method advances the traditional literature on Exploratory Factor Analysis. BEFA
constitutes a significant departure from traditional factor-analytic methods by overcoming
the intrinsic arbitrariness of the choices made by analysts in the various steps—from the
choice of dimension to the extraction and rotation method. Ours is a coherent estimation
framework. It is the first paper in the Bayesian literature to estimate a dedicated factor
model with correlated factors, where the dimension of the factor structure is a priori
unknown. Importantly, it links the two literatures, by invoking classical criteria to achieve
identification, and by imposing identifying restrictions as an integral feature of the
estimation algorithm.

We make several contributions in implementing our algorithm. To explore the parameter
space, our sampler is allowed to navigate through expanded models where the identifying
restrictions are relaxed. However, these intermediate steps are not used for posterior
inference. They only serve as a computational tool. Eventually the algorithm only samples
identified models. To draw the factors and their correlation matrix, marginal data
augmentation methods as well as block sampling of the active and inactive factors have been
adapted to our problem, to make it possible to sample these parameters and latent variables
in a dimension-varying model.
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We check the performance of our approach by a Monte Carlo experiment, and we show that
it outperforms classical methods both for dimensionality selection, and identification of the
true latent structure. Its applicability is demonstrated with an empirical study. We estimate
the structure of the childhood mental and physical traits, and show that the method succeeds
in producing interpretable aggregates. We compare its performance with that of several
existing classical Exploratory Factor Analysis approaches. We show that application of
classical Exploratory Factor Analysis can lead to different conclusions, depending on the
choices made by the analysts at various steps of the process and the sequential item
elimination rules used to achieve interpretability of the structure. Our method is a coherent,
theoretically-based alternative.

Classical EFA discards data that load on multiple factors. Our version of BEFA does not
discard data, except for measurements that do not load on any factor. However, the analysis
of this paper assigns measurements to at most one factor. In research underway, we extend
our approach to allow measurements to be allocated to multiple factors. This changes the
identification and computation algorithm substantially and warrants a separate analysis.
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Appendix

A Details on MCMC Sampling
A.1 Proof of the Detailed Balance Condition for the MH Sampler with Intermediate Steps

To prove that the Markov chain resulting from the sampling scheme introduced in Section
3.1.2 leaves the distribution of & invariant, it is enough to show that the detailed balance

condition holds for accepted moves. The probability of starting from a set of parameters 4,
belonging to the identified set (i.e., A, ¢ 9), going through the sequence of intermediate
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states 9y,..., 90, ,, 0,0

) S—17

G1se s Y, and finally accepting the final state I (i.e., if
Ay € 2), can be shown to be the same as the probability of starting from the same state j,,
(assuming it belongs to the identified set), moving to ,j, through the same sequence of

transitions, but in reverse order, and accepting 1), as the new identified state:
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where equation (A2) follows from the mutual reversibility condition of equation (23).
Furthermore, both equation (A2) and equation (A3) use the fact that p(3) o< py(3) 84(8), see
equation (24).

The detailed balance condition of the unrestricted MCMC move through the intermediate
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steps follows by integrating out the intermediate states 9,....9. ,9.,9
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both sides of equation (A1), to provide the kernel of the transition from ) 0.,
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A.2 Posterior Distributions

A.2.1 Indicator Matrix—The indicator matrix A can be sampled row-wise using Gibbs
updates. The posterior probability that the mi measurement is dedicated to the k" factor (or
not dedicated to any factor if k = 0) is a function of the marginal likelihood of its
corresponding latent utility, fork=0, 1, ..., K:

P(Y:HAm:ek;, X, 0, /Bm)p(Am:eHAfm: T)

Pr(Am:ek|an,A,m,X,O,,Bm,T): 5 A4
leiop<Y:n‘Am:elaXaOvﬂm)p(Am:el|A—maT) (A4)

where p(Y} |A,,=er X, 0, 3,,) denotes the marginal likelihood of the vector

Y5, =Y., Y, )’ conditioning on the remaining rows A_p, of the indicator matrix.

From a computational point of view, these posterior probabilities can be calculated using the
posterior log odds, which are more stable numerically than computing equation (A4)
directly:

-1

K
Pr(Am:ekpf.:;ﬂ A*WH X) 07 ﬁma 7_): |:Zexp(ﬁm,(k4>l) ):| )
=0

where O (k1) denotes the posterior log odds for a move from a model where measurement
m s dedicated to factor k to a model where it is dedicated to factor |. More details on the
posterior log odds are presented in Appendix A.3.
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A.2.2 Idiosyncratic Variances and Factor Loadings—The idiosyncratic variances &
corresponding to the continuous variables,® and the factor loadings a are sampled

simultaneously for each measurement m. Let o2 denote the only non-zero element in row m
of the factor loading matrix, where the corresponding measurement mimplicitly loads on
factor k.

In the case of a continuous measurement that does not load on any factor (“null model”
where A, = &), the idiosyncratic variance is sampled as follows:

072n| .._N{f—l(cN;C’fr\{")’ ,

_. N Nn_ 0 | YV.uVom
CN—CO+§7 Cm _Cm+T7

wherey | =Y* — Xg3,..

In the general case of a dedicated measurement, the posterior distributions of the
idiosyncratic variance and of the non-zero factor loading are:
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where, under the fixed-scale normal prior:
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In the binary measurement case, non-zero factor loadings are sampled from equation (A5),

where 52 =1. No parameters need to be sampled in the “null model” case for binary
measurements.

A.2.3 Regression Coefficients—The regression coefficients B are sampled row-wise
from the following conditional distribution, form=1, ..., M:

B~ N (BNON. BN,

m-m?

-1 —1 -1 «
(BY) ' =(Bp) +xX'X, b)=(Bh) W+ X' (Y, — 0an),

m

where a, is the column vector representing the m row of a..

A.2.4 Latent Variables for the Binary Measurements—If measurement mis

dichotomous, its corresponding latent variable y;* is sampled from the following truncated
normal distribution, for each individual i =1, ..., N:

55Recall that for the binary measurements, we set 07271:1.
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n 9</V(0;oo)(X£ﬁm+0;am§1) ifY;,=1.

A.2.5 Indicator Probabilities—The indicator probabilities © are sampled by first drawing
the components tp and ©":

ro~Betalro+no(A)iGo+M —no(A)),  B(ro)=F5i5h o
T*~Dir(k1+n1(AQ),. ..,k +n, (AQ)),

M
where 7.(A)=)  _ 1[An=ex]is the number of measurements dedicated to factor k (or

not dedicated at all if k = 0). Then, compute the resulting probabilities © using equation (14).
In the case of the alternative hierarchical prior described in Subsection 2.3.1, each ton, is
sampled from PBeta(xg + 1[Am = €] ; Eg + M — 1[An, = €g]). However, since only one
observation is available for the update, it is recommended to integrate the © parameters to
obtain faster convergence and better mixing of the sampler (see Appendix A.3.2).

A.3 Posterior Log Odds

A.3.1 Deriving the Log Odds Conditional on the Indicator Probabilities tT—The
posterior log odds that a measurement m currently dedicated to factor k becomes dedicated
to factor k' (“null model” if k or k' = 0) can be expressed as:

O (k")
:1OgPI‘(Am:€]€/ IY:W A_m, X, 0; /Bm’ T)
Pr(Apm=er|Y:,, A, X,0,8m,T) ’
PV lAm=er; X, 0, 5m)
(Y| Am=ep, X, 0, 5m)
p(Am:ek’v A7m|7—)
p(A=er, A |7

=log (A7)

+log

== O (k—k),

where the last term is equal to log(t/tx) when sampling is done conditional on the
parameters t (see Appendix A.3.2 for the case where T is integrated out).

The marginal likelihoods of the latent variables of the measurements are required to
compute the posterior log odds. These marginal likelihoods differ for continuous and binary
measurements, and for the case of the “null model” and the general case of a dedicated
measurement. In the continuous case, they can be expressed as, using the posterior moments
derived in A.2.2:

N D))
\ (2m)™ m) oy
Pl B X6, 5m)= 9 o )~ 14N Ty )C8)
|A0 |1/2 Nyel
%17 Deo)(@X)

in the“null model,”

in the dedicated case.
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while in the binary case:

N ~ 1!
(2m) " 2exp{—3Y Y.} in the“null model, "otherwise

p(Y:n Am1X>03/6m): N Nl/2 A 20 )2
| (2m)" 7 Lalrrexp{—1 (V. ¥+ - —A%(a%f)}.

48,172

With these marginal likelihoods in hand, it is straightforward to compute the posterior log
odds. In the continuous measurement case, they are equal t0:%6

ka

m mk

1 m 1 P CN™ — Qi /
ﬁm,(oﬂk):_§log(P7nk‘)_chog (1 - ﬁ) +log ™’ ﬁm,(kﬂk’):_§1og (P u >_CN10g (%) +10g‘Ti

and in the binary case:

1 Tk
ﬁm,(()—»k): - _log(Pmk)+ka+10g_7
2 7o

Pmk/ Trk!
Dkt — log—,
Pmk: ) +ka ka+ og ™

1
ﬁm,(kﬁk’): - ilog (

forall k# 0 and k’ # 0, where:

(Zi]\ileik?im>2
(A0) 715N, 03, )

=1

1
P, mk— 1+A Zazkank—E(

A.3.2 Integrating out the Indicator Probabilities T—Integrating out the vector of
indicator probabilities t from the likelihood function does not affect the ratio of the marginal
likelihoods of y* in equation (A7), but only the last term that is equal to log(ti/tx) when
sampling is done conditional on <. For a move from a model where measurement mis
dedicated to factor k to a model where it is dedicated to factor K, this second term should be
replaced by the ratio of the marginal likelihoods of A in the two models. This ratio is
expressed as log(p(A™)/p(A™)), where the two indicator matrices AT and A™ are
identical up to row m, where in the first case this row is the indicator vector g, while in the
second it is ey.

The marginal distribution of the indicator matrix A is equal to:

| Blrotno(A), 1M —ng(A)) T (Xhrme) T T (it (A)

Tk

9

70, 7°)p(10)p(T* )dTodT* , =

a- [ [a

S6For the computation of the posterior log odds, the factor loadings are assumed to be a priori centered (i.e., aOmZO) to simplify the
calculations. This assumption is usually adopted in factor analysis.
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M
where 7, (A)=)_ _ 1[Ay=ei] fork=0, ..., K. Given that the numbers of measurements

in the different groups are equal to:
np(A™ )=ng(A™) =1, 1, (A™)=n,(A™"),
nk/(Amkl):nk/(Amk)'f'l,

forall kz K and | ¢ {k, k'}, it follows from equation (A8) that the ratio of the marginal
likelihoods, for all k # K, simplifies to:

mk
m_ no(A™)+ko M*"[)(Amk)ileZlelm fork’=0.

(A" —1tr,  M—no(A™)—1+&

In the case of the alternative hierarchical prior specification on <, with individual tom
parameters but common " for the measurements, the marginal distribution of the indicator
matrix A is:

(ko) 0@ (g)M o) T (SH k) THL AT (kx4 A))
(k060" T (M = no(A)+ A kk ) T T (k)

p(A)=

)

and the ratio of marginal likelihoods, for a move from kto k’ in row m, for k # K, simplifies

to:
mk
p(A™F) % fork # Oandk’ # 0,
= iy K A9
p(Amk) K_OJano(A k)*1+zl:1'il fork!—0. (A9)

&o nk(A"”k)71+/<;k

B Data: The British Cohort Study

We use data from the British Cohort Study (BCS), a survey of all babies born (alive or dead)
after the 24t week of gestation from 00.01 hours on Sunday, 5 April to 24.00 hours on
Saturday, April 11", 1970 in England, Scotland, Wales and Northern Ireland. There have
been seven follow-ups on the members of the birth cohort: in 1975, 1980, 1986, 1996, 2000,
2004 and 2008. We draw information on background characteristics from the birth survey,
and on cognitive, mental and physical health measurements from the second sweep (age 10).
We exclude children born with congenital abnormalities, non-whites, and respondents with
missing information on the background characteristics. Individuals with missing
observations on some of the cognitive, mental and physical health measurements are
discarded from the sample, so we are left with a sample of 2,080 men.
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B.1 The Measurement System

The measurement system includes one hundred and thirty one indicators of child cognitive,
mental and physical health traits, all collected at age ten. Notice we use both binary and
continuous measurements, which have been standardized to have zero mean and standard
deviation equal to one for use in our empirical application.

Cognitive Ability Scales—As indicators of cognitive ability, we use the following seven

tests:

The Picture Language Comprehension Test [PLCT]: this is a new test specifically
developed for the BCS on the basis of the American Peabody Picture VVocabulary
Test and the English Picture Vocabulary Test; it covers vocabulary, sequence and
sentence comprehension.

The Friendly Math Test [FMT]: this is a new test specifically designed for the
BCS; it covers arithmetic, fractions, algebra, geometry and statistics.

The Shortened Edinburgh Reading Test [SERT]: this is a shortened version of the
Edinburgh Reading Test, which is a test of word recognition particularly designed
to capture poor readers; it covers vocabulary, syntax, sequencing, comprehension,
and retention.

The four British Ability Scales [BAS]: these measure a construct similar to 1Q, and
include two non-verbal scales (Matrices [BASTM] and Recall Digits [BASTRD])
and two verbal scales (Similarities [WS] and Word Definition [BASTWD]).

Mental Health Scales—As indicators of psychological and behavioral problems, we use
the items from the following five tests:

1.

The Rutter Parental ‘A’ Scale of Behavioral Disorder (Rutter et al., 1970): it was
administered to the mother, and designed to capture the presence of problem
behaviors. It contains 19 items which are descriptions of behavior, and the mother
was asked to indicate whether each description ‘does not apply’, ‘applies
somewhat’ or “‘definitely applies’ to the child, on a scale from 0 to 100. A visual
analogue scale was used: the mother had to draw a vertical line through the printed
horizontal line to show how much a behavior applied (or not) to the child.

The Conners Hyperactivity Scale (Conners, 1969): it was also administered to the
mother, and developed to assess attention deficit/hyperactivity disorder and
evaluate problem behavior in children and adolescents. It includes 19 items, and the
mother was asked to indicate whether each description applied to the child on a
scale from 0 to 100, using a visual analogue like for the Rutter Scale.

The Child Developmental Scale: it was administered to a teacher with knowledge
of the child, to assess the child neurodevelopmental behavior against the ‘average’
behavior of most children of a similar age. It includes 53 items, and the teachers
were asked to indicate their level of agreement with each statement by bisecting a
line, which was coded into a 47-point scale ranging from “Not at all” to “A great
deal”. The items for this scale were taken mainly from the Conners Teachers
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Hyperactivity Rating Scale (Conners, 1969) and the Rutter Teacher Behavioral
Scale ‘B’ (Rutter, 1967), and questions from the Swansea Assessment Battery (with
permission of Professor Maurice Chazan; see Butler et al., 1997).

The Self-Esteem (Lawseq) Scale: it was administered by the teacher and completed
by the child to measure his self-esteem with reference to teachers, peers and
parents. It includes 12 items (The total number of questions included is 16, but four
of them are distractors) and was created by former Chief Educational Psychologist
of Somerset LEA (Local Education Authority) Lawrence (Lawrence, 1973, 1978).
The child was asked to answer ‘yes’, ‘no’ or ‘don’t know’, where the answer ‘no’
represents a higher level of self-esteem (only one question is reverse-scored, and
we have recoded it accordingly). For use in our empirical application, we have
recoded all the answers into binary measurements, by giving a value of 1 to all the
‘no’” answers, and a value of 0 to all the “yes’ and ‘don’t know’ answers.

The Locus of Control (Caraloc) Scale: it was administered by the teacher and
completed by the child to measure his perceived achievement control. It includes
16 items (the total number of questions included is 20, but four of them are
distractors) and was constructed from several well known tests of locus of control
(Gammage, 1975). The child was asked to answer ‘yes’, ‘no’ or ‘don’t know’,
where the answer ‘no’ represents a more internal locus of control (only one
question is reverse-scored, and we have recoded it accordingly), which is desirable
and also referred to as “self-agency”, “personal control”, “self-determination”, etc.
For use in our empirical application, we have recoded all the answers into binary
measurements, by giving a value of 1 to all the “no” answers, and a value of 0 to all
the ‘yes’ and ‘don’t know’ answers (a similar scoring scheme has been used in
Ternouth et al., 2009).

Physical Health—As indicators of physical health, we use the following five measures, all
recorded during medical examinations: height, head circumference, weight, systolic and
diastolic blood pressure.’

B.2 Control Variables

The following seven control variables — denoted X in our model — are included in the
measurement system. The variables have been standardized to have zero mean and standard
deviation equal to one. i) mother’s age at birth, ii) mother’s education at birth (a dummy
variable for whether the mother continued education beyond the minimum school-leaving
age®8), iii) father’s high social class at birth,5 iv) total gross family income at age 10,50 v)

STWhile the availability of information on height and weight is not a unique feature of our data, differently from our case most of the
measures recorded in public-use data are self-reported: as such, they are subject to substantial measurement error, which is usually not
dealt with by researchers with the use of suitable methods such as factor-analytic techniques as we instead do here.
The compulsory minimum school leaving age was increased from fourteen to fifteen in 1947, following the 1944 Education Act.
The BCS uses the Registrar General’s classification for measuring social class (SC). High Social Class comprises SCI, SCII and
SCHINM (Non-Manual). Social class I includes professionals, such as lawyers, architects and doctors; Social Class Il includes
intermediate workers, such as shopkeepers, farmers and teachers; Social Class 111 Non Manual includes skilled non-manual workers,
such as shop assistants and clerical workers in offices.
60This is a categorical indicator taking the following values: 1=under £35 pw; 2=£35-49 pw; 3=£50-99 pw; 4=£100-149 pw; 5=
£150-199 pw; 6=£200-249 pw; 7=£250 or more per week.
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an indicator for broken family (a dummy variable for whether the child lived with both
parents since birth until age 10), vi) the number of previous livebirths, and vii) the number
of children in the family at age 10.
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Figure 1.
Marginal prior distributions of the maximum correlation in absolute value (p(maXjzk |Ril),

left panel) and of the smallest eigenvalue (min[eigen(R)], right panel) of the correlation
matrix R in a model with K = 20, for different degrees of freedom for R.
Notes. Kernel density estimation based on 10° draws from the prior distribution of R.
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Figure 2.
BEFA, Posterior Factor Loading Matrix in the BCS.

The factors capture the following traits (interpretation done a posteriori):

0,  Cognitive Ability, 6,  Behavioral Problems [M], 63  Anxiety [M],
0,  Hyperactivity [M], 605  Attention Problems [T], 0  Anxiety [T],
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06;  School Phobia [T], 6g  Conduct Problems [T], 69  Motor Coordination Prob. [T],
0,0 Depression [T], 0.,  Concentration Prob. [T], 0.,  Positive Sense of Self [C],
6,3 Body Build.

Notes. The 131 measurements (tick marks on the vertical axis) are in the order specified in
Appendix B. [M] refers to traits extracted from items evaluated by the mather, [T] by the
teacher, [C] by the child. Active factors only are displayed, out of a maximum of 20
potential factors.
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Cognitive Ability — 64

Behavioral Problems [M] — 65
Anxiety [M] — 03

Hyperactivity [M] — 64

Attention Problems [T] — 05
Anxiety [T] — 05

School Phobia [T] — 07

Conduct Problems [T] — 6
Motor Coordination Prob. [T] — fgy
Depression [T] — 609
Concentration Problems [T] — 61,
Positive Sense of Self [C] — 012
Body Build — 6043

01 02 93 94 05 06 07 98 99 010 011 912 013

Figure 3.
BEFA: Posterior Correlation Matrix of the Factors in the BCS Application.

Notes. Each pie represents the correlation between the corresponding factors, clockwise for
positive values and counterclockwise for negative values. [M] refers to traits extracted from
items evaluated by the mother, [T] by the teacher, [C] by the child. Active factors only are
displayed, out of a maximum of 20 potential factors. For standard errors and credible
intervals, see Web Appendix.
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Figure 4.

BEFA, Proportion of total variance of measurements due to noise.

Notes. Segments on top of bars represent the corresponding 95% highest posterior density
intervals. Measurements are ordered as follows, from top to bottom: Cognitive items (PLCT,
FMT, SERT, BASTM, BASTRD, BASTS, BASTWD), Rutterl to Rutter 19, Connersl to
Conners19, Child development scale (CDEV1 to CDEV53), Self-esteem (Lawseql to
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Lawseql2), Locus of Control (Locusl to Locusl16) and Health (Height, Head, Weight,
Bpsys, Bpdias). See Appendix B for details.
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Table 1

Baseline Prior Specification for the Monte Carlo Study

Parameters Values

Indicator matrix ko=§ =0.1landkx=1.0/0.8/05forKy,=3,6/9/12

Idiosyncratic variances 0
cy=2.5and Cm specified to avoid a Heywood problem

Factor loadings
a% =0 gng A =3.0

Factor correlation matrix
v*¥=2and 'k (Huang-Wand prior)
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Table 6

Classical Methods to Select the Number of Components/Factors

Method

Cattell’s Scree Plot
Onatski

Velicer’s Rule
Optimal Coordinates
Kaiser’s Rule
Akaike IC

Bayesian IC

Number of components Number of factors
Raw Residualized Raw Residualized
Measurements Measurements Measurements Measurements
6 4 6 4
nfa nfa 6 5
12 11 nla nla
15 11 13 11
28 29 25 25
nla WE 72 47
n/a nfa 21 18

Page 65

Notes. IC = Information Criterion. We use the eigenvalues of the raw correlation matrix to find the number of components (when applying the
Scree, Velicer, Optimal Coordinates and Kaiser methods), and the eigenvalues of the reduced correlation matrix to find the number of factors
(when applying the Scree, Optimal Coordinates and Kaiser methods). To construct the reduced correlation matrix, we use the squared multiple
correlations as estimates of the communalities. The Akaike and Bayesian Information Criteria are computed after having performed maximum
likelihood factor analysis. For the Onatski method, we specify kg = 3 and k1 = 10. We define residualized measurements as the residuals of a linear
regression of the measurements on the covariates (X) which are included in the BEFA measurement system (see Appendix B.2). We use a linear
probability model for the binary measurements.
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