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Abstract

We present results that allow the researcher in certain cases to determine the direction of the bias 

that arises when control for confounding is inadequate. The results are given within the context of 

the directed acyclic graph causal framework and are stated in terms of signed edges. Rigorous 

definitions for signed edges are provided. We describe cases in which intuition concerning signed 

edges fails and we characterize the directed acyclic graphs that researchers can use to draw 

conclusions about the sign of the bias of unmeasured confounding. If there is only one 

unmeasured confounding variable on the graph, then non-increasing or non-decreasing average 

causal effects suffice to draw conclusions about the direction of the bias. When there are more 

than one unmeasured confounding variable, non-increasing and non-decreasing average causal 

effects can be used to draw conclusions only if the various unmeasured confounding variables are 

independent of one another conditional on the measured covariates. When this conditional 

independence property does not hold, stronger notions of monotonicity are needed to draw 

conclusions about the direction of the bias.

Control for confounding variables is one of the central challenges of epidemiologic studies. 

Directed acyclic graphs that represent causal relations among variables have been used 

extensively to determine the variables on which it is necessary to condition in order to 

control for confounding in the estimation of causal effects.1–4 However, control for 

confounding is often inadequate when certain variables that are known to be confounders are 

not measured in a particular study. In such cases it is sometimes possible to provide bounds 

on the magnitudes of the true causal effects.5–7 Alternatively, certain sensitivity analysis 

techniques can sometimes be used to assess the impact of the unmeasured confounding 

variables.8–13 These sensitivity techniques are model-dependent. In this paper we present 

results that allow a researcher in certain circumstances to determine the sign of the bias 

arising when control for confounding is inadequate. The results are not model-dependent 

and can be used to draw conclusions about the presence of a true causal effect without the 

use of sensitivity analysis. Sensitivity analysis may, however, still be useful in such cases for 
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drawing conclusions about likely upper bounds for the magnitude of the effect. The theory 

presented in Appendix 1 was developed elsewhere.14 This work required fairly strong 

monotonicity assumptions discussed further below. In this paper we employ weaker 

monotonicity assumptions - only the presence of non-increasing or non-decreasing average 

causal effects - and characterize those graphs to which these weaker assumptions are 

sufficient to determine the sign of the bias of unmeasured confounding.

Consider a study examining the effect of a potentially beneficial exposure A on some disease 

Y. Suppose also that an individual’s likelihood of exposure depends on the individual’s state 

of health U, and that the individual’s state of health also affects the likelihood of developing 

the disease. The directed acyclic graph corresponding to these causal relationships is given 

in Figure 1 (this example uses concepts from causal inference that will be made more 

precise in the following section). A valid estimate of the causal effect of the exposure can be 

computed by controlling for U. Suppose now that data on the state of health of the study 

subjects is not available. Without controlling for U, the relationship between the exposure 

and disease is confounded and the observed risk difference does not equal the causal risk 

difference. Under the assumptions given in this paper it is possible to rigorously show that if 

less healthy individuals have a higher probability of receiving the exposure and if less 

healthy individuals are also more likely to develop the disease, then the estimate of the risk 

difference not controlling for U is in fact conservative for the true causal effect of A on Y.

This result is unsurprising; it is what we would expect intuitively. However, we will present 

other examples for which intuition breaks down. It is therefore important to have a rigorous 

theory describing when conclusions about the sign of the bias of unmeasured confounding 

can be drawn. The results are given within the context of causal directed acyclic graphs. We 

will introduce some new concepts, including minimal causal directed acyclic graphs, signed 

causal directed acyclic graphs and various notions of monotonic effects.

Causal Directed Acyclic Graphs

We begin by reviewing definitions and some central results concerning causal directed 

acyclic graphs. A directed acyclic graph is composed of variables (nodes) and arrows 

between nodes (directed edges) such that the graph is acyclic - i.e. such that it is not possible 

to start at any node, follow the directed edges in the arrowhead direction and end up back at 

the same node. A causal directed acyclic graph is one in which the arrows can be interpreted 

as causal relationships and in which all common causes of any pair of variables on the graph 

are also included on the graph. If there is a directed edge from A to Y then A is said to be a 

parent of Y and Y is said to be a child of A. Additional details concerning causal directed 

acyclic graphs can be found in the work of Greenland et al.2 Greater formalization is 

provided by Pearl1,15 and Spirtes et al.16 By representing causal relations, causal directed 

acyclic graphs encode the causal determinants of statistical associations.

Statistical associations on causal directed acyclic graphs can arise in a number of ways. Two 

variables, A and B, may be statistically associated if A is a cause of B or if B is a cause of A. 

Even if neither is the cause of the other, the variables A and B may still be statistically 

associated if they have some common cause C. Finally, the variables A and B may be 
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statistically associated if they have a common effect K and the association is computed 

within strata of K.

More formally, the statistical association between variables can be determined by blocked 

and unblocked paths. A path is a sequence of nodes connected by edges regardless of 

arrowhead direction; a directed path is a path that follows the edges in the direction 

indicated by the graph’s arrows. If there is a directed path from A to Y then A is said to be an 

ancestor of Y and Y is said to be a descendent of A. A collider is a particular node on a path 

such that both the preceding and subsequent nodes on the path have directed edges going 

into that node, i.e. both the edge to and the edge from that node have arrowheads into the 

node. A path between A and B is said to be blocked given some set of variables Z if either 

there is a variable in Z on the path that is not a collider or if there is a collider on the path 

such that neither the collider itself nor any of its descendants are in Z. If all paths between A 

and B are blocked given Z, then A and B are said to be d-separated given Z. It has been 

shown that if A and B are d-separated given Z, then A and B are conditionally independent 

given Z.

One further result regarding directed acyclic graphs has proved particularly useful in 

determining whether a particular set of variables (or none at all) suffice to control for 

confounding when estimating the causal effect of some exposure A on some outcome Y. Let 

Ya denote the counterfactual variable Y intervening to set the exposure variable A, possibly 

contrary to fact, to level a. The causal effect of A on Y comparing two levels of A, a0 and a1 

say, is defined simply as the causal risk difference [Ya1] − [Ya0]. Following Pearl,15 we 

will refer to [Ya] as the causal effect of intervening to set A to a. The backdoor path 

adjustment theorem1 states that for intervention variable A and outcome Y, if a set of 

variables Z such that no variable in Z is a descendent of A blocks all “back-door paths” from 

A to Y (i.e. all paths with directed edges into A) then conditioning on Z suffices to control for 

confounding for the estimation of the causal effect of A on Y and this causal effect is given 

by:

Note that the expression on the right hand side of the equation is simply a standardized 

mean. Pearl’s backdoor path adjustment result is a graphical generalization of Theorem 4 of 

Rosenbaum and Rubin17 and a special case of Robin’s g-formula.18,19

Minimal Causal Directed Acyclic Graphs

We need one further definition. Consider some exposure A and some outcome Y. Let X be 

some set of non-descendents of A for which we might control. We will say that a causal 

directed acyclic graph is minimal with respect to A, Y and X if the variables on the causal 

directed acyclic graph consist only of A, Y, X and all variables that are common causes of 

any two variables in {A, Y, X}. Recall that the requirement for a directed acyclic graph to be 

causal is that every common cause of any two variables on the graph must also be on the 

graph. Thus a causal directed acyclic graph that is minimal with respect to A, Y and X is the 
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smallest causal directed acyclic graph that contains A, Y and X. Furthermore, any causal 

directed acyclic graph with A, Y and X can be reduced to one that is minimal with respect to 

A, Y and X by eliminating all variables other than A, Y, X and their common causes. As an 

example, consider causal directed acyclic graph given in Figure 2. This is not minimal with 

respect to A, Y and X but can be made so by eliminating the variables Z and Q from the 

graph. Note that neither Z nor Q is a common cause of any two other variables on the graph.

The resulting graph is shown in Figure 3. The graph in Figure 3 is minimal with respect to 

A, Y and X. Thus a detailed causal directed acyclic graph might involve several intermediate 

variables that would not be on a graph that is minimal. A graph that is minimal with respect 

to A, Y and X will have considerably less detail. In particular, a graph that is minimal with 

respect to A, Y and X has the following features: (i) there are no intermediate variables on 

the graph between A and Y; (ii) for every common cause Ci of A and Y there are no 

intermediate variables between Ci and A other than X or possibly other common causes of A, 

Y and X and (iii) for every common cause Ci of A and Y there are no intermediate variables 

between Ci and Y other than A, X and possibly other common causes of A, Y and X.

Signed Causal Directed Acyclic Graphs

Our results concerning the sign of the bias of unmeasured confounding will be stated in 

terms of signed edges. When signs are given to edges of a directed acyclic graph various 

counterintuitive results can sometimes arise. It is thus important to define precisely what we 

mean by a signed edge and to understand what conclusions we can draw from signed edges. 

Signs might be given to edges to indicate a variety of relationships. For example, a sign 

might be given to an edge to indicate that intervening on the parent will increase or leave 

unchanged the average value of the child over the population. This is a non-decreasing 

average causal effect; in this setting a particular intervention to increase one variable would 

thus either increase or leave unchanged the average value of the outcome over the whole 

population. This is a relatively weak condition for giving a sign to an edge, and it is this 

weak condition that we will consider in this and the next section. We will consider stronger 

conditions in a subsequent section and in Appendix 1. In general, whether a sign can be 

appropriately placed on an edge depends also on the context i.e. on which other variables are 

present on a directed acyclic graph. Consider some variable S that is a parent of some other 

variable T, and let Q denote the parents of T other than S. We will say that S has a positive 

average monotonic effect on T if increasing S with Q fixed always increases or leaves 

unchanged the average value of T over the population. More formally, S has a positive 

average monotonic effect on T if [T|S, Q] is non-decreasing in S for all values of Q. 

Similarly, S has a negative average monotonic effect on T if [T|S, Q] is non-increasing in S 

for all values of Q. Whether S has a positive average monotonic effect on T depends on 

which parents of T are on the graph. The variable S might have a positive average monotonic 

effect on T on one directed acyclic graph but not on another graph that has more parents of 

T.

When a parent S has a positive average monotonic effect on child T, we will say that the S – 

T edge is of positive sign. When S has a negative average monotonic effect on T, we will say 

that the edge is of negative sign. If S has neither a positive average monotonic effect nor a 
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negative average monotonic effect on T, then the edge is said to be without sign. The sign of 

a path is then defined to be the product of the signs of the edges that constitute that path. If 

one of the edges on a path is without a sign then the sign of the path is said to be undefined. 

A signed causal directed acyclic graph is a causal directed acyclic graph with signs on those 

edges that allow them.

Sign of the Bias of Unmeasured Confounding

We can now consider the sign of the bias that arises when control for confounding is 

inadequate. As noted above, Pearl1 showed that for intervention variable A and outcome Y, if 

a set of variables Z such that no variable in Z is a descendent of A blocks all back-door paths 

from A to Y, then the expected value of Y intervening to set A = a is given by

(1)

Now if X is some set of variables that does not block all backdoor paths from A to Y and an 

attempt is made by using the analog of the correct formula to estimate the causal effect on Y 

of intervening to set A = a controlling only for X, one would obtain

(2)

Expression (1) will in general differ from expression (2) since expression (2) does not 

control for all the confounding variables. Result 1 relates signed edges to the sign of the bias 

which arises when control for confounding is inadequate. The proof of Result 1 is given in 

Appendix 2; the proof makes use of a result concerning potential outcomes.20 The result 

requires that the intervention variable A be binary (an assumption which we discuss further 

below).

Result 1

Suppose that a directed acyclic graph is minimal with respect to A, Y and X, where A is 

binary and X is a set of non-descendents of A. Let U denote the non-descendents of A on the 

graph other than X. Suppose further that if U contains more than one variable so that U = 

(U1, …, Un), then the components of U are conditionally independent given X. The 

following statements then hold:

i. if for each Ui, the Ui – A edge (if it exists) is of the same sign as the Ui – Y edge (if 

it exists) then S1 ≥ [Y1] and S0 ≤ [Y0]. I.e. the estimate of the causal effect on Y 

of intervening to set A = 1 controlling for X will be greater than the true causal 

effect [Y1], and the estimate of the causal effect on Y of intervening to set A = 0 

controlling for X will be less than the true causal effect [Y0].

ii. if for each Ui, the Ui – A edge (if it exists) is of the opposite sign as the Ui – Y edge 

(if it exists) then S1 ≤ [Y1] and S0 ≥ [Y0].

If the conditions in (i) are satisfied, then S1 – S0 ≥ [Y1] – [Y0] and there is positive bias. If 

the conditions in (ii) are satisfied then S1 – S0 ≤ [Y1] – [Y0] and there is negative bias. 
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Result 1 can therefore allow the researcher (under the circumstances stated in the result) to 

determine the sign of the bias, thereby making clear whether, due to lack of control for 

certain confounding variables, the estimate under consideration is biased towards the null or 

away from the null. If the estimated risk difference controlling only for X is negative and the 

conditions in (i) are satisfied, then the estimate of the risk difference controlling only for X is 

an overestimate of the true causal risk difference. The estimate is thus biased towards the 

null; if the estimated risk difference controlling only for X is clinically and statistically 

significant, one could conclude that the true causal effect is also clinically and statistically 

significant. Similarly, if the estimated risk difference controlling only for X is positive and 

the conditions in (ii) are satisfied, then the estimate of the risk difference is an underestimate 

of the true causal risk difference. The estimate is thus again biased towards the null. In such 

cases, one need not resort to sensitivity analysis techniques to draw conclusions about the 

presence of a true causal effect, because the direction of the bias is clear and the estimates 

are conservative. Sensitivity analysis may, however, still be useful in such cases in drawing 

conclusions about likely upper bounds for the magnitude of the effect. If, however, the 

estimated risk difference controlling only for X is positive and the conditions in (i) are 

satisfied, or if it is negative and the conditions in (ii) are satisfied, then the estimate is biased 

away from the null. In this case, it is not possible to draw conclusions regarding the true 

causal effect without further sensitivity analysis.

If we return to the example in Figure 1, it follows by Result 1 that if less healthy individuals 

have a higher probability of receiving the exposure and if less healthy individuals are also 

more likely to develop the disease, then the estimate of the risk difference not controlling for 

health status U is in fact conservative for the true causal effect of exposure A on outcome Y.

The use of Result 1 is further illustrated by an example taken from Greenland et al.2 

Consider a study of the effect of antihistamine treatment, denoted by A, on asthma 

incidence, denoted by Y, among children attending various public schools. Suppose that air 

pollution levels, denoted by V, is independent of sex, denoted by S, among public school 

children. Suppose further that sex influences the administration of antihistamine only 

through its relation to bronchial reactivity, denoted by W, but that sex directly influences 

asthma risks; that air pollution leads to asthma attacks only through its influence on 

antihistamine use and bronchial reactivity; and that there are no important confounding 

variables beyond air pollution, bronchial reactivity and sex. The causal relationships among 

these variables are given in Figure 4. If we may furthermore suppose that air pollution has a 

positive average monotonic effect on bronchial reactivity and on antihistamine use, and that 

bronchial reactivity has a positive average monotonic effect on antihistamine use and on 

asthma, then we may also add to the directed edges the positive signs indicated in Figure 4. 

Suppose that data were available on antihistamine use (yes or no), asthma, air pollution, and 

sex, but that no data were available for bronchial reactivity. Suppose further that, controlling 

only for air pollution and sex, antihistamine use was found to lower the risk of asthma. 

Conditioning on V and S, there is an unblocked backdoor path between A and Y, namely A –

W – Y. Let X = {V, S} and let U = W in the statement of Result 1. The W – A edge and the W 

– Y edge are of positive sign. Furthermore, the graph in Figure 4 is minimal with respect to 

A, Y and X = {V, S}. Since U = W, consists of only one variable the condition that the 
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components of U are conditionally independent of one another given X is trivially satisfied. 

Thus we could conclude from Result 1 that the estimate of the true effect of antihistamine on 

asthma is to lower asthma risk, i.e. that the true causal risk difference, controlling for air 

pollution, sex and bronchial reactivity, is negative. This is because the estimate of the risk of 

asthma when A = 1 controlling only for air pollution and sex is an upper bound for [Y1], 

and the risk of asthma when A = 0 controlling only for air pollution and sex is a lower bound 

for  [Y0]. Thus if we used observed data and found that S1 –S0 = Σv,s  [Y |A = 1, V = v, S = 

s]P(V = v, S = s) − Σv,s  [Y |A = 0, V = v, S = s]P(V = v, S = s) = −0.1, we could conclude 

that the true causal effect is such that  [Y1] −  [Y0] < −0.1. Note that if we had data only 

on A, Y and S, (i.e. if data were unavailable for both V and W) then we could not apply 

Result 1. This is because if we let X = S and let U = {V,W}, then the components of U 

(namely V and W) are not conditionally independent of one another given X = S since V is a 

cause of W.

When Intuition Fails

There are certain limitations of the application of Result 1 to signed directed acyclic graphs, 

and contexts in which intuition fails. First, Result 1 requires that the exposure variable under 

consideration be binary. The result also holds when A is not binary if A = 1 is replaced with 

the maximum value of A and if A = 0 is replaced with the minimum value of A. However 

counterexamples can be constructed to demonstrate that the result cannot be generalized 

beyond the extreme values of the intervention variable (see counterexample 1 in the online 

Appendix). Although Result 1 does not hold for intermediate values of the intervention 

variable, the result can still be useful when the intervention variable A is ordinal or 

continuous. A non-binary intervention variable may be dichotomized at various cutpoints. 

The analysis may proceed with this dichotomized intervention variable, with Result 1 

employed to assess the sign of the bias. The analysis may then be repeated at different 

dichotomization points and conclusions drawn from the resulting analyses.

A second warning is also important: Result 1 applies only to directed acyclic graphs in 

which the components of U are conditionally independent of one another given X. This 

condition is trivially satisfied if U consists of only one variable, i.e. if there is only one 

unmeasured confounder. When U contains more than one variable we can assess the 

conditional independence condition using the d-separation criterion discussed in the 

introductory section on directed acyclic graphs. For example, in the graph in Figure 3, the d-

separation criterion implies that V is independent of W conditional on X because all paths 

between V and W are blocked given X. In general, the conditional independence condition 

will fail whenever two components of U are both causes of the same variable in X, or when 

one component in U is a cause of another component in U. Consider the signed causal 

directed acyclic graph given in Figure 5. Note if we let X = ∅, then the graph in Figure 5 is 

minimal with respect to A and Y. In this example if we let X = ∅ and U = {V,W}, then the 

conditional independence condition of Result 1 will not be satisfied because V is a cause of 

W. In the online Appendix (counterexample 2) we give a numerical illustration showing that 

if signs are given to edges for positive and negative average monotonic effects on causal 

directed acyclic graphs for which the conditional independence condition of Result 1 does 

not hold, then the conditions in (i) and (ii) are insufficient for drawing the conclusions of 
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Result 1. In the next section we consider assumptions under which the conditional 

independence condition of Result 1 is not needed. Before moving on we note that the 

condition that the graph be minimal with respect to A, Y and X is not strictly necessary; some 

progress can be made with non-minimal graphs. However, a non-minimal graph has 

unnecessary variables, the addition of which may violate the conditional independence 

condition of Result 1.

This brings us to a third warning. Intuitions concerning signed edges can sometimes fail. In 

particular, examples can be constructed in which an intervention to increase A will increase 

B on average, and an intervention to increase B will increase C on average, but an 

intervention to increase A will decrease C on average. The signed causal directed acyclic 

graph given in Figure 6 and the numerical calculation given in the online Appendix 

(counterexample 3) illustrate such a case. The relation of a positive average monotonic 

effect is thus not a transitive relation. In the next section we give stronger conditions - 

monotonic effects and distributional monotonic effects - under which intuitions concerning 

signed edges are better preserved. Monotonic effects and distributional monotonic effects do 

constitute transitive relations. The observation that average monotonic effects are not 

transitive allows us to give an interpretation to the conditional independence condition of 

Result 1. As noted above, the conditional independence condition will in general be violated 

whenever two components of U are both causes of the same variable in X, or when one 

component in U is a cause of another component in U. If two components of U are both 

causes of the same variable in X, the failure of Result 1 may be seen as an instance of 

conditioning on a common effect or ”collider stratification bias.”21,22 If, on the other hand, 

the conditional independence condition is violated because one component in U is a cause of 

another component in U, then Result 1 may fail because positive average monotonic effects 

are not transitive. The conditional independence condition can thus be seen as an assumption 

that rules out such instances of collider stratification and lack of transitivity.

Monotonic Effects and Distributional Monotonic Effects

As noted above, signs might be given to edges to indicate a variety of relationships. In 

Appendix 1 we introduce the notions of a monotonic effect and a distributional monotonic 

effect. The requirements for attributing a monotonic effect or a distributional monotonic 

effect are considerably stronger than those for a positive average monotonic effect. 

However, these stronger requirements also allow for stronger conclusions to be drawn. In 

particular, in the context of monotonic effects or distributional monotonic effects 

conclusions can be drawn about the direction of unmeasured confounding bias even when 

there are multiple unmeasured confounding variables that do not satisfy the requirement of 

Result 1 that the various unmeasured confounding variables are independent of one another 

conditional on the measured covariates. See Appendix 1 for further details.

Other Measures of Effect

The results in this paper are easily extended to measures of effect other than the causal risk 

difference. For example, suppose that the outcome Y is binary. If the conditions of Result 1 

or Result 2 held and the sign of all unblocked backdoor paths were positive, then for the 
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causal risk ratio one could conclude that 

and for the causal odds ratio one could conclude that 

. If the sign of all unblocked backdoor paths were negative, then the direction of the 

inequalities would be reversed.

Discussion

We have formalized the conditions under which signs can be added to the edges of a causal 

directed acyclic graph. We have also given results that formalize conclusions about the 

direction of the bias that are often drawn intuitively, and we have described the cases in 

which such intuition may fail. Signs can be added to edges when intervening on the parent 

node increases on average the value of the child node regardless of the values of the other 

parents. These signs can be used to draw conclusions about the direction of the bias of 

unmeasured confounding (see Result 1). If only one unmeasured confounding variable is 

present, it is relatively easy to draw conclusions about the direction of the bias. When higher 

values of the unmeasured confounding variable increase on average both the exposure and 

the outcome, then there will be positive bias. If higher values of the unmeasured 

confounding variable increase on average either the exposure or the outcome and decrease 

on average the other, then there will be negative bias. If the estimate without controlling for 

the unmeasured confounding variable is positive and the direction of the bias is negative, 

then we could conclude that the estimate without controlling for unmeasured confounding is 

biased towards the null and thus conservative. In such cases we could conclude the presence 

of a true causal effect without using sensitivity analysis techniques, although sensitivity 

analysis might still be useful in giving an upper bound on the magnitude of the effect. 

Similarly, if the estimate without controlling for the unmeasured confounding variable is 

negative and the direction of the bias is positive, then we could conclude that the estimate 

without controlling for unmeasured confounding is again biased towards the null and thus 

conservative.

If there is more than one unmeasured confounding variable, the same principles apply but 

somewhat stronger assumptions are needed. Specifically, if there are multiple unmeasured 

confounding variables, then we need to impose some restrictions on the relationships 

between the different unmeasured confounding variables. Specifically it must be that no 

unmeasured confounding variable is the cause of another unmeasured confounding variable, 

and it must also be the case that, if there are measured covariates for which control is being 

made, then no two unmeasured confounding variables can be causes of the same measured 

covariate. If there are multiple unmeasured confounding variables and these conditions are 

not met, counterintuitive results can sometimes occur. Even if these conditions are not met, 

progress can still sometimes be made concerning the direction of the bias but stronger 

notions of monotonicity are then needed (discussed in Appendix 1).

To use the results in this paper, some knowledge of the relationship between the unmeasured 

confounder and the exposure and between the unmeasured confounder and the outcome are 
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necessary, namely whether the unmeasured confounder increases or decreases on average 

the exposure and the outcome. When such knowledge is available, our results can be useful 

in drawing conclusions about the direction of the bias that results from unmeasured 

confounding. Thus, the results can sometimes also be useful in drawing conclusions about 

the presence of a true causal effect even in the presence of unmeasured confounding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1

Monotonic Effects and Distributional Monotonic Effects

Here we introduce the notions of a monotonic effect and a distributional monotonic effect. 

The requirements for attributing a positive monotonic effect are considerably stronger than 

those for a positive average monotonic effect. The definition of a monotonic effect 

essentially requires that some intervention S either increases or decreases some other 

variable T not merely on average over the entire population but rather for every individual in 

that population regardless of the inventions made on the other parents of T. More formally, 

if a variable S is a parent of some variable T and Q is the set of parents of T other than S then 

we will say that S has a positive monotonic effect on T if for all individuals ω in the 

population and all values of q, Ts1,q(ω) ≥ Ts0,q(ω) whenever s1 ≥ s0 where Ts,q(ω) is the 

counterfactual value for individual ω intervening to set S = s and Q = q. We will say that S 

has a negative monotonic effect on T if for all individuals ω in the population and all values 

of q, Ts1,q(ω) ≤ Ts0,q(ω) whenever s1 ≥ s0. The requirements for the attribution of a 

monotonic effect are thus considerable. However whenever a particular intervention is 

always beneficial or neutral for all individuals with respect to a particular outcome, one will 

be able to attribute a positive monotonic effect; whenever the intervention is always harmful 

or neutral for all individuals with respect to a particular outcome, one will be able to 

attribute a negative monotonic effect. Examples of monotonic effects might include the 

effect of smoking on lung cancer or the effect of certain environmental exposures or genes 

on particular outcomes. However, because for any individual we observe the counterfactual 

outcome only under one particular value of the intervention variable, the presence of a 

monotonic effect is not identifiable and we must thus rely on substantive knowledge of the 

problem under consideration in order to attribute a monotonic effect. The requirements for a 

distributional positive monotonic effect are between those of a positive monotonic effect and 

those for a positive average monotonic effect. The presence of a distributional monotonic 

requires that for all t a higher value of S makes the probability of event {T ≥ t} over the 

whole population more likely or as likely regardless of the value the parents of T other than 

S. More formally, suppose that variable S is a parent of some variable T and let Q denote the 

parents of T other than S. We say that S has a positive distributional monotonic effect (or a 

weak positive monotonic effect 14) on T if the survivor function P(T ≥ t|S = s,Q = q) is such 

that whenever s1 ≥ s0 we have P(T ≥ t|S = s1,Q = q) ≥ P(T ≥ t|S = s0,Q = q) for all t and all q; 

the variable S is said to have a negative distributional monotonic effect on T if whenever s1 ≥ 

s0 we have P(T ≥ t|S = s1, Q = q) ≤ P(T ≥ t|S = s0, Q = q) for all t and all q.
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The presence of a distributional monotonic effect is a substantially less stringent condition 

than that of a monotonic effect. If intervening to increase S led to a decrease in T for only a 

single individual the strong conditions for a monotonic effect would fail. The less stringent 

conditions required for attributing a distributional monotonic effect circumvents this 

difficulty. Consider, for example, an analysis comparing the effect on thyroid cancer of no 

radiation exposure to a high level of radiation exposure. For most individuals the exposure 

to a high level of radiation will increase the likelihood of developing thyroid cancer. 

However, exposure to a high level of radiation may, for a few individuals, destroy already 

existing thyroid cancer cells and thereby prevent the cancer’s development. Within joint 

strata of particular sets of background variables on a causal directed acyclic graph, the 

exposure to radiation will increase the overall likelihood of thyroid cancer but it may not do 

so for every individual in the population. In such a scenario the high level of radiation 

exposure would not have a monotonic effect on the development of thyroid cancer but it 

would have a distributional monotonic effect.

It can be shown that the presence of a positive monotonic effect implies the presence of a 

positive distributional monotonic effect and that the presence of a positive distributional 

monotonic effect implies the presence of a positive average monotonic effect. In the case of 

a binary outcome T, a positive distributional monotonic effect and a positive average 

monotonic effect are equivalent. Unlike positive average monotonic effects, positive 

monotonic effects and positive distributional monotonic effects are transitive. Theorems 

concerning the transitivity of monotonic effects and distributional monotonic effects have 

been given in related work.14 When signs are given to edges in the presence of monotonic 

effects or distributional monotonic effects we can draw conclusions about the sign of the 

bias even when the conditional independence condition of Result 1 does not hold. Thus, 

although the requirements for monotonic effects and distributional monotonic effects are 

considerable, they do allow the researcher to draw conclusions in a greater number of 

contexts. The following Result was proved by VanderWeele and Robins.14

Result 2

Suppose that for some binary intervention A and some outcome Y, some set X of non-

descendents of A does not block all backdoor paths from A to Y but does not open any 

backdoor paths from A to Y which were blocked without conditioning on X. Suppose also 

that X has no ancestors outside of the set X. Suppose further that signs are given to edges 

only for monotonic effects or distributional monotonic effects. Let Sa = Σx [Y|A = a, X = 

x]P(X = x). If all unblocked backdoor paths from A to Y are of positive sign then S1 ≥ [Y1] 

and S0 ≤ [Y1]. If all unblocked backdoor paths from A to Y are of negative sign then S1 ≤ 

[Y1] and S0 ≥  [Y1].

Let us return to the causal directed acyclic graph given in Figure 4. Suppose that data were 

only available for A, Y and S but that the signed edges on Figure 4 represented not merely 

average monotonic effects but distributional monotonic effects. Conditioning only on S, 

there are two unblocked backdoor paths between A and Y: A – W – Y and A – V –W – Y. The 

sign of both of these unblocked backdoor paths from A to Y are positive. Note that S has no 

ancestors. We could conclude from Result 2 that the estimate controlling only for S is biased 
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towards the null and thus conservative for the true causal effect of A on Y. As noted above, 

to draw this conclusion when data is only available on S we cannot use Result 1. Average 

monotonic effects are not sufficient here because the conditional independence condition is 

not satisfied; in this case we need distributional monotonic effects so that we can apply 

Result 2.

Appendix 2

Proof of result 1

We will use that notation A∐B|C to denote that A is independent of B conditional on C. 

Using this notation, the causal effect of A on Y is said to be unconfounded given Z if Ya∐A|

Z. Note that Pearl’s backdoor paths criterion thus can be stated as follows: if a set Z of non-

descendents of A blocks all backdoor paths from A to Y then Ya∐A|Z. In the proof we will 

make use of the following result concerning potential outcomes19: Suppose that A is binary 

and that (1) Ya∐A|{X, U} for a = 0, 1, (2) [Y|A = a, X = x, U = u] is non-decreasing in u for 

all a and x, (3)  [A|X = x, U = u] is non-decreasing in u for all x and (4) if U is multivariate 

then the components of U are conditionally independent given X then Σx  [Y|A = 1, X = 

x]P(X = x) ≥  [Y1] and Σx  [Y|A = 0, X = x]P(X = x) ≤  [Y0]. We use this result to prove 

that given in the present paper. Consider the case in which the conditions in (i) are satisfied; 

when the conditions in (ii) are satisfied the proof is analogous. Since X and U include all 

non-descendents of A on the graph, X and U must block all backdoor paths from A to Y and 

from Pearl’s backdoor path criterion it follows that (1) holds. Condition (4) holds by 

assumption. We will now show that conditions (2) and (3) hold. For every node Ui such that 

the edges Ui – A and Ui – Y, if they exist, are of negative sign, we may replace Ui on the 

graph with its negation −Ui so that the edges into A and Y are of positive sign. We may thus 

assume without loss of generality that if the conditions in (i) hold then every edge from each 

Ui to A and to Y, if they exist, are of positive sign. Let paY and paA denote the parents of Y 

and A respectively. Since X and U contain all the variables on the graph other than A and Y 

we have that paY ⊆ A⋃X⋃U and paA ⊆ X⋃U. Thus  [Y|A = a, X = x, U = u] =  [Y|paY] 

and since every edge from Ui to Y is of positive sign we have that  [Y|A = a, X = x, U = u] 

=  [Y|paY] is non-decreasing in u by the definition of a positive average monotonic effect. 

Similarly,  [A|X = x, U = u] =  [A|paA] and since every edge from Ui to A is of positive 

sign we have that  [A|X = x, U = u] =  [A|paA] is non-decreasing in u. Conditions (2) and 

(3) thus hold and the conclusion follows.
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Figure 1. 
Example illustrating confounding by health status: Y - disease; A - exposure; U - 

unmeasured health status.
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Figure 2. 
Graph that is not minimal with respect to A, Y and X: Y indicates outcome; A, indicates 

exposure; X, indicates measured confounding variable; V, W, indicate unmeasured 

confounding variables; Q, Z, indicate intermediate variables.
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Figure 3. 
Graph that is minimal with respect to A, Y and X: Y indicates outcome; A, indicates 

exposure; X, indicates measured confounding variable; V, W, indicate unmeasured 

confounding variables.
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Figure 4. 
Example illustrating the use of Result 1: Y indicates asthma; A, indicates antihistamine 

treatment; S, indicates sex; V, indicates air pollution; W, indicates bronchial reactivity.

VanderWeele et al. Page 17

Epidemiology. Author manuscript; available in PMC 2014 November 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
Example illustrating that Result 1 may fail for graphs on which the conditional 

independence condition is not satisfied: Y indicates outcome; A, indicates exposure; V, W, 

indicate unmeasured confounding variables.
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Figure 6. 
Example illustrating that positive average monotonic effects are not transitive: A indicates a 

variable with a positive average monotonic effect on B; B, indicates a varaible with a 

positive average monotonic effect on C; C, indicates outcome.
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