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Integrated Genomic Characterization of Papillary Thyroid 
Carcinoma

A full list of authors and affiliations appears at the end of the article.

Summary

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Here, we describe 

the genomic landscape of 496 PTCs. We observed a low frequency of somatic alterations (relative 

to other carcinomas) and extended the set of known PTC driver alterations to include EIF1AX, 

PPM1D and CHEK2 and diverse gene fusions. These discoveries reduced the fraction of PTC 

cases with unknown oncogenic driver from 25% to 3.5%. Combined analyses of genomic variants, 

gene expression, and methylation demonstrated that different driver groups lead to different 

pathologies with distinct signaling and differentiation characteristics. Similarly, we identified 

distinct molecular subgroups of BRAF-mutant tumors and multidimensional analyses highlighted 

a potential involvement of oncomiRs in less-differentiated subgroups. Our results propose a 

reclassification of thyroid cancers into molecular subtypes that better reflect their underlying 

signaling and differentiation properties, which has the potential to improve their pathological 

classification and better inform the management of the disease.

Introduction

The incidence of thyroid cancer has increased 3-fold over the past 30 years (Chen et al., 

2009) and the prevalence of different histologies and genetic profiles has changed over time 

(Jung et al., 2014). All thyroid cancers, except medullary carcinoma, are derived from 

follicular cells that comprise the simple unicellular epithelium of normal thyroid. Eighty 

percent of all thyroid cancers are papillary thyroid carcinomas (PTCs), named for their 

papillary histological architecture. In addition, PTCs encompass several subtypes, including 

the follicular variant (FV), characterized by a predominantly follicular growth pattern. PTCs 

are usually curable with 5-year survival of over 95% (Hay et al., 2002); however, 

occasionally they dedifferentiate into more aggressive and lethal thyroid cancers. Current 

treatment involves surgery, thyroid hormone and radioactive iodine (RAI) therapy (which 

exploits thyroid follicular cells' avidity for iodine).

Previous genetic studies report a high frequency (70%) of activating somatic alterations of 

genes encoding effectors in the mitogen-activated protein kinase (MAPK) signaling 

pathway, including point mutations of BRAF and the RAS genes (Cohen et al., 2003; Kimura 

et al., 2003; Lemoine et al., 1988; Suarez et al., 1988), as well as fusions involving the RET 

(Grieco et al., 1990) and NTRK1 tyrosine kinases (Pierotti et al., 1995). These mutations are 

almost always mutually exclusive (Soares et al., 2003), suggesting similar or redundant 

downstream effects. The various MAPK pathway alterations are strongly associated with 

distinct clinicopathological characteristics (Adeniran et al., 2006), and gene expression 

(Giordano et al., 2005) and DNA methylation profiles (Ellis et al., 2014). Mutations in 
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members of the phosphoinositide 3-kinase (PI3K) pathway, such as PTEN, PIK3CA and 

AKT1, have also been reported at low frequencies (Xing, 2013).

We present The Cancer Genome Atlas (TCGA) project results from a comprehensive 

multiplatform analysis of 496 PTCs, the largest cohort studied to date. Clinically aggressive 

thyroid cancers (poorly and undifferentiated carcinomas) were excluded to maximally 

develop the compendium of tumor-initiating alterations. While excluding histological types 

of aggressive tumors limited some aspects of the study, the homogeneous PTC cohort 

allowed robust correlative analyses of multidimensional molecular data. The relatively quiet 

PTC genome allowed us to assess the signaling and differentiation consequences of the 

common drivers. Furthermore, the cohort allowed us to define integrated molecular subtypes 

that correspond to histology, signaling, differentiation state and risk assessment. We put 

forth that our results will lead to improved clinicopathologic classification and management 

of patients.

Results

Samples, Clinical Data and Analytical Approach

Tumor samples and matched germline DNA from blood or normal thyroid from 496 patients 

included 324 (69.4%) classical-type (CT), 99 (21.2%) follicular-variant (FV), 35 (7.5%) tall 

cell variant (TCV), 9 (2.0%) uncommon PTC variants and 29 without histological 

annotation, primarily from non-irradiated patients (Table S1A). We estimated risk of tumor 

recurrence based on the 2009 American Thyroid Association guidelines (American Thyroid 

Association Guidelines Taskforce on Thyroid et al., 2009), and assessed mortality risk using 

MACIS scores (Hay et al., 1993) (see Supplement). We generated comprehensive and high-

quality molecular data at TCGA genome sequencing and characterization centers with one 

proteomic and six genomic platforms (Table S1B), and analyzed the data at multiple 

genomic data analysis centers (Table S1C). Although 496 primary tumors were studied, the 

number of informative cases varied across platforms mostly for technical reasons and 390 

tumors were analyzed on all major platforms (SNP arrays, exomes, RNA-seq, miRNA-seq 

and DNA methylation).

Our analysis strategy consisted of three parts, each based on integrating several molecular 

datasets. First, we identified somatic mutations that included single nucleotide variants, 

small insertions and deletions, gene fusions and copy number alterations in order to 

characterize the genomic landscape of PTC and identify driver events in cases without any 

previously known driver (i.e., the so-called ‘dark matter’ of the PTC genome). Next, we 

focused on the consequences of the driver mutations. We developed a gene expression 

signature of samples with these mutations and characterized tumors based on this signature. 

We then determined the differential signaling consequences of BRAFV600E and RAS 

mutations, the most common pathogenic mutations in the cohort, using protein and mRNA 

expression data. Finally, we used the molecular data to derive molecular classifications of 

PTC and integrated these classifications with data related to genotype, signaling, 

differentiation and risk.
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Somatic Single Nucleotide Variants and Insertions and Deletions

Whole exome DNA sequencing of 402 (of 496) tumor/normal pairs (average depth-of-

coverage; 97.0× for tumors, 94.9× for normals) showed a low somatic mutation density 

(0.41 non-synonymous mutations per Mb, on average) (Figures 1A and S1A; Table S3) 

relative to other cancers (Lawrence et al., 2014; Lawrence et al., 2013). Mutation density 

correlated with age (Pearson correlation p=5.2×10-18, Figure S1B), risk of recurrence 

(Kruskal-Wallis test p=3.4×10-4), and MACIS score (Pearson correlation p=4×10-15, Figure 

S1C). To compensate for the confounding effect of age-at-diagnosis, we regressed the effect 

of age from mutation density and found that the association of risk with age-corrected 

mutation density remained (Kruskal-Wallis test p=9.7×10-3; MACIS scores did not, p=0.19, 

Figure S1C). This association was maintained for the CT cohort (p=0.0044), but not for 

other variants (Figure S1D). The correlation between mutation density and age suggests age 

should be used as a continuous variable in risk stratification (Bischoff et al., 2013)), instead 

of a threshold of 45 years used in many staging systems.

Mutation densities were not associated with other variables, like genotype or radiation 

exposure (Mann-Whitney p=0.579 and p=0.173, respectively; Figure S1E). TCVs had the 

highest mutation density (Figure S1F), consistent with their known aggressive behavior. 

Five BRAFV600E-mutant tumors with aggressive histologic features had higher mutation 

densities (Figures S1E,G).

Ten tumors with the highest mutation densities (> 1/Mb) were enriched for mutations 

associated with the APOBEC process (Roberts et al., 2013) (Mann-Whitney p=4×10-5), 

similar to bladder cancer (Cancer Genome Atlas Research, 2014).

The relatively large number of patients in this study and the low background mutation 

density provides the statistical power to detect significantly mutated genes (SMGs) in as low 

as 3% of cases (>90% power for 90% of genes) (Lawrence et al., 2014). MutSig (Lawrence 

et al., 2013) detected seven SMGs (q<0.1) (Figure 1C and Table S2) with four of the seven 

in <3% of patients. SMGs included the MAPK-related genes, BRAF, NRAS, HRAS and 

KRAS, which were virtually mutually exclusive (Figure 1C, Fisher's exact test p=1.1×10-5, 

MEMo (Ciriello et al., 2012) corrected p<0.01, Table S4A) in 300/402 (74.6%) patients. The 

248 (61.7%) BRAF mutations were mostly V600E substitution (Figures 1C and S2A and 

Table S3C). Somatic single nucleotide variants (SSNVs) were identified in 52 patients 

(12.9%) within codons 12 and 61 of RAS genes (Figures 1C and S2B and Table S3D). We 

observed strong associations between BRAF and RAS mutation status and histology, with 

BRAFV600E characterizing CT and TCV and RAS mutations characterizing FV (Figures 

1B,C and Table S3E). These observations confirm the critical role of MAPK pathway 

alterations in PTC and illustrate that having more than one mutation confers no clonal 

advantage.

MutSig also identified EIF1AX (eukaryotic translation initiation factor 1A, X-linked) as 

significantly mutated (q=5.3×10-8; Figure 1C and Table S3B). EIF1AX encodes a protein 

that mediates transfer of Met-tRNAf to 40S ribosomal subunits to form the 40S preinitiation 

complex for protein translation. Six (1.5%) mutations (Figure S2C) were identified in 

tumors lacking other known driver mutations (Fisher's exact test of EIF1AX vs. RAS/BRAF, 
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p=0.013) with one exception: one case with 3 driver mutations in KRAS, BRAF and EIF1AX; 

here the KRAS mutation was clonal (cancer cell fraction estimated at 100% with 95% CI 

[56-100%]), while EIF1AX and BRAF were subclonal at 76% [38-100%] and 53% [22-94%] 

cancer cell fractions, respectively (see Supplement). The near-mutual exclusivity of EIF1AX 

alterations with MAPK pathway mutations (Figure 1C), together with recurrent mutations in 

other tumors (Forbes et al., 2011; Martin et al., 2013), suggests that EIF1AX is a novel 

cancer gene in PTC.

The two remaining SMGs (PPM1D, CHEK2, Figures S2D,E) encode interacting proteins 

related to DNA repair (Oliva-Trastoy et al., 2007) and occurred concomitant with MAPK-

pathway driver mutations (Figure 1C). Germline PPM1D mutations are associated with 

breast and ovarian cancer predisposition and may impair p53 function (Kleiblova et al., 

2013). Although not statistically significant, there were 8 additional DNA repair-related 

mutations in 26 (6.5%) tumors, all mutually exclusive (Figure S3A, MEMo corrected 

p=0.24). Tumors carrying these mutations had a significantly higher median mutation 

density (Table S5A, Mann Whitney p=0.022), although not after age-adjustment (p=0.111), 

and were enriched with high-risk patients (Fisher's exact test p=0.018). These observations, 

together with our finding of a mutated network of FANCA-associated genes (see Integrated 

Analysis of Somatic Alterations), suggest that acquisition of a defect in DNA repair 

represents a mechanism for development of aggressive PTC.

We also observed alterations in other cancer genes, pathways and functional groups 

(chromatin remodeling, PI3K, WNT and tumor suppressor genes). Although not statistically 

significant, they are known to play a role in thyroid cancer pathogenesis and progression 

(Xing, 2013). We identified 93 mutations within 57 epigenetic regulatory genes in 80/402 

(20.0%) tumors, 9 of which possessed more than one mutation (Figure S3D). Mutations in 

MLL (1.7%), ARID1B (1.0%) and MLL3 (1%) were most frequent (Figures 1C and S3D). In 

the PI3K and PPARγ pathways, we observed 20 nearly mutually exclusive mutations in 

PTEN, AKT1/2, PAX8/PPARG (Figure S3E), representing 4.5% (18/402) of cases. 

Mutations of five WNT pathway-related genes were found in 6/402 (1.5%) tumors (Figure 

S3B), a lower frequency than reported for aggressive tumor types (Xing, 2013). Mutations 

of tumor suppressor genes (TP53, RB1, NF1/2, MEN1, PTEN) were identified in 15/402 

(3.7%) tumors (Figure S3C). In addition, two genes that may be tumor suppressors were 

near significance: (i) ZFHX3, a zinc finger homeobox transcription factor (Minamiya et al., 

2012), 7/402 (1.7%) tumors (q=0.79); and (ii) BDP1, which may regulate AKT signaling 

(Woiwode et al., 2008), in 5/402 (1.2%) tumors (q=0.58). Finally, mutations in thyroid-

related genes were infrequent: 11/402 (2.7%) mutations in thyroglobulin, 2/402 (0.5%) 

mutations in thyroid-stimulating hormone receptor (TSHR). No mutations in thyroid 

hormone receptor genes (TRHA and TRHB) were found.

We identified TERT promoter mutations in 36 (9.4%) of 384 informative tumors, with 27 

(7.0%) C228T, 1 (0.3%) C228A and 8 (2.1%) C250T substitutions. These mutations were 

present in PTCs of all histological types. TERT promoter mutations had modest association 

with mutation drivers (Fisher's exact test p=0.029) and arm-level somatic copy number 

alterations (p=0.023), but not BRAF mutations or gene fusions. They showed strong 

associations with older age, MACIS scores (Kruskal-Wallis test p=2.6×10-9, and 
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p=1.3×10-11, Figure 2B, respectively), and high risk of recurrence (Fisher's exact test 

p=7×10-8, Figure 2A), within the entire cohort, and these associations remained within the 

BRAFV600E tumors. Finally, TERT promoter mutations occurred in less-differentiated PTCs 

(lower TDS values, see Signaling and Differentiation) (Kruskal-Wallis test p=4.2×10-5, 

Figure2C). These associations are consistent with published results (Melo et al., 2014; Xing 

et al., 2014) and suggest that molecular diagnostic assessment of TERT promoter mutations 

may be used to identify high risk patients.

A recent report suggested that BRAFV600E mutations in PTC are often present only in a 

small subset of the cancer cells (Guerra et al., 2012), information relevant to therapeutic 

application of BRAF-inhibitors. To address this issue, we used the ABSOLUTE package 

(Carter et al., 2012) to estimate the cancer cell fraction (CCF) of mutations in BRAF, NRAS, 

HRAS, KRAS and EIF1AX (see Supplement). In our study, all of these driver mutations were 

present in the majority of tumor cells (Figure 2D), i.e. they are largely clonal. Our results 

instead confirm other studies showing homogeneous cancer cell immunohistochemical 

staining with BRAFV600E-specific antibodies (Ghossein et al., 2013).

We performed targeted sequencing validation experiments on a subset of 318 tumors at 333 

mutated sites. Two hundred sixty-four of 265 (99.6%) of mutations in driver genes were 

confirmed. We also carried out targeted validation on a random set of 54 mutations, of 

which 49 (91%) were confirmed, for an overall validation rate of 96%.

Gene Fusions

Chromosomal rearrangements and translocations contribute to PTC pathogenesis (Xing, 

2013). We identified both known and novel fusions, including new partners of previously 

described fusions, in 74 (15.3%) of 484 informative cases, based on multiple platforms 

(Figure 3). Fusions were mutually exclusive with each other and with BRAF, RAS and 

EIF1AX mutations (Fisher's exact test p=4.9×10-43; Figures 1C,D and Figure S3F). Fusion-

positive tumors were associated with younger age of diagnosis (Wilcoxon ranksum test 

p=0.005), but not with risk of recurrence (Fisher's exact test p=0.55) or age-corrected 

mutation density (ranksum test p=0.341, Table S5A).

RET fusions were most frequent (33/484, 6.8%) (Table S5B and Figure S3F); however, less 

frequent than previously reported in sporadic or radiation-associated PTC (Ricarte-Filho et 

al., 2013). We identified four novel unique RET fusions that preserved the kinase domain 

(Figure 3A and Table S5B).

Fusions involving BRAF have been identified in PTC (Ciampi et al., 2005) and other 

cancers. In melanoma these events define a molecular subclass with distinct response to 

MEK inhibition (Hutchinson et al., 2013). In our cohort, we identified 13/484 (2.7%) BRAF 

fusions with diverse gene partners (Figure 3A and Table S5B); three tumors exhibited the 

SND1/BRAF gene fusion seen in a gastric cancer cell line (Lee et al., 2012). Some fusions 

supported BRAF signaling with expression and conservation of its kinase domain (MKRN1/

BRAF), while others suggested an alternative activating mechanism. Six of nine BRAF 

fusions were validated by independent PCR experiments, while PCR evidence for the other 

three was inconclusive. These diverse fusions, together with the BRAF point mutations and 
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indels described above, illustrate the various possible mechanisms of activating BRAF and 

highlight its oncogenic importance in PTC.

We identified PAX8/PPARG fusions in 4/484 (0.8%) tumors. Originally found in follicular 

carcinomas (Kroll et al., 2000), PAX8/PPARG translocations have been reported with low 

frequency in PTC, especially FV. ETV6/NTRK3 and RBPMS/NTRK3 fusions were 

uncovered in 6/484 (1.2%) tumors. These fusions are more prevalent in radiation-induced 

thyroid cancers but have lower prevalence in sporadic PTC (Ricarte-Filho et al., 2013). 

THADA fusions were identified in 6/484 (1.2%) tumors. Fusions involving ALK presented 

in 4/484 (0.8%) tumors, including EML4/ALK (Figure 3A), which is observed in lung 

adenocarcinomas and rare thyroid cancers (Kelly et al., 2014), suggesting opportunities for 

targeted inhibition of ALK. In addition, two cases had FGFR2 fusions and two cases had 

non-recurrent fusions of MET and LTK (Table S4B).

Somatic Copy Number Alterations

Somatic copy number alterations (SCNAs) were identified in 135 (27.2%) of 495 

informative tumors. These 135 cases were significantly enriched in cases with no driver 

mutation or fusion (Fisher's exact test p=4.4×10-4; Figures 1C,D,E), suggesting that SCNAs 

may also drive PTC. Arm-level alterations occurred significantly more frequently in FV than 

in CT subtypes (Figure S4A) (FDR<0.1, p<0.008), providing evidence for a close 

relationship between FV and follicular neoplasms (in which SCNAs are more common 

(Wreesmann et al., 2004a)).

Unsupervised clustering of chromosomal arm-level alterations defined 4 distinct classes 

(Figure S4B). The largest class (72.9%) lacked significant gains or losses (SCNA-quiet), 

reflecting the highly differentiated nature of PTC; this group was not enriched for any 

particular genotype or histologic type. A second class (9.9%) was characterized by an 

isolated loss of 22q (SCNA-22q-del), a region that includes NF2 and CHEK2 and reported to 

be lost with significant frequency in PTC (Kjellman et al., 2001). Seventy tumors had 22q 

loss and 5 tumors possessed CHEK2 mutations, with 4 cases containing both mutations 

(p=0.0035). The SCNA-22q-del cohort contained few TCV and was enriched for FV 

(p<0.05) (Figure S4C). This result suggests that loss of CHEK2 and/or the NF2 tumor 

suppressor may be important in PTC, particularly in the FV subtype. A third class (14.8%) 

was characterized by a few SCNA events and gain of 1q (SCNA-low-1q-amp), was enriched 

for TCV (p<0.0001) and BRAF mutations (p<0.05) (Figure S4C), and was associated with 

significantly higher MACIS scores (p <0.0001) (Figure S4D), risk profiles (Figure S4E), and 

tumor stage (Figure S4F), consistent with reports of 1q gains in aggressive PTC 

(Wreesmann et al., 2004b). The final and smallest class (2.4%) was defined by a higher 

frequency of focal gains and losses (SCNA-high).

We found few significantly recurring focal alterations using GISTIC2 (Mermel et al., 2011). 

In 5/13 tumors with BRAF fusions, we detected by SNP-array the resulting focal alterations 

at 7q34. Five tumors with 10q23.31 deletions lacked PTEN expression (Figure S4G). We 

also found single case amplifications containing oncogenic driver genes (e.g. FGFR3). 

Together, these results, in the context of SSNVs and fusions, suggest that SCNAs may 

represent both tumor-initiating and progression-related events in PTC.
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Integrated Analyses of Somatic Alterations

Next we sought to identify additional genes that may harbor driver mutations (point 

mutations, fusions or copy-number changes) that did not meet significance, by searching 

within protein-protein interaction networks for subnetworks enriched with frequently 

mutated genes. To this end, we applied the HotNet2 algorithm (Leiserson et al., submitted) 

and identified 17 significantly mutated subnetworks (p<0.004, Table S5C and Figure S5A). 

As expected, the largest subnetwork (16 genes) included four known members of the MAPK 

signaling pathway (BRAF and three RAS genes) and 12 additional genes (Figure S5B). Some 

of these additional genes (e.g. RAP1GAP) displayed mutations that were mutually exclusive 

with BRAF (SSNVs, indels and fusions) and RAS, and may represent additional MAPK 

drivers. Other mutated genes in this subnetwork (e.g. PIK3CA) overlapped with BRAFV600E 

and may alter the biology of these cancers by activating PI3K signaling, a hypothesis that 

requires validation.

Other HotNet2 subnetworks significantly overlapped with known pathways (Table S5C and 

Figures S5C-E). Identification of the ECM-receptor interactions pathway is consistent with 

the role of ECM microenvironment in PTC (Nucera et al., 2011). The finding of a FANCA-

associated protein complex subnetwork provides additional evidence for DNA repair 

playing a role in PTC.

We used network-based stratification (NBS) (Hofree et al., 2013) to discover three somatic 

mutation-based PTC subtypes (NBS1-3, Figures S6A-C). As expected, a strong association 

with histologic subtype was found, with a significant association between NBS1 and FV 

histology (Figure S6B(b), Fisher's exact test p<2×10-16). The subtypes were also 

significantly associated with lymph node status, extrathyroidal extension, stage and risk of 

recurrence (Figure S6B(a,c-e), Fisher's exact test p=4.4×10-4, 3.1×10-7, 3.8×10-3, 8.2×10-6, 

respectively), as well as other molecular characteristics (Figure S6C). In order to identify 

somatic events that characterize each subnetwork, we applied the HotNet algorithm to each 

NBS subtype (Figure S6D and Table S5D). Subtype NBS1 was associated with 

perturbations in RAS, PTEN, PPARG and TSHR. Subtype NBS2 was associated with 

alterations in RET and related genes such as NTRK3. Subtype NBS3 appears to be 

predominantly BRAFV600E-associated. These results confirm three broad classes of PTC 

determined by the common drivers.

We also looked for the presence of viral pathogens in PTC using two independent methods 

to assess the RNA-seq data: PathSeq (Kostic et al., 2011) and BioBloom Tools (Chu et al., 

2014). We identified two tumors with hepatitis B virus (HBV) and one tumor with human 

papillomavirus 45 (HPV45) at relative frequencies exceeding 0.1 viral reads per million 

human reads (RPM) for PathSeq and 0.2 RPM for BBT (see Supplement and Tables S4G-I), 

indicating that viral pathogens are unlikely significant contributors to PTC pathogenesis.

‘Dark Matter’ Summary

Starting with 402 cases with informative exome DNA sequence data, we examined tumors 

that lacked apparent driver mutations, so-called ‘dark matter’ samples, for the presence of 

novel potential driver alterations. SSNVs involving drivers accounted for 299 (73.6%) cases. 
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Mutually exclusive fusions increased the number of cases with drivers to 358 (89.0%). 

Three mutually exclusive focal deletions (2 PTEN and 1 BRAF) brought the number of cases 

to 361 (89.8%). Mutually exclusive arm-level SCNAs were present in 27 additional cases, 

which were mostly FV. Although we cannot pinpoint the driving genes, if we assume that 

some of these SCNAs indeed act as drivers, the total number of cases with apparent drivers 

increased to 96.5%, leaving 14 (3.5%) as ‘dark matter’ cases. By reviewing events in these 

cases, we observed additional potential drivers such as APC, ATM, NF1, and SPOP, 

mutations of chromatin remodeling genes (e.g. MLL) and potential gene fusions (Table 

S5E). Including these events and considering arm-level SCNAs as drivers, we have 

identified putative cancer drivers in 397/402 PTCs (98.8%).

Signaling and Differentiation

PTC is a MAPK-driven cancer that has two mutually exclusive drivers with distinct 

signaling consequences: BRAFV600E and mutated RAS. Tumors driven by BRAFV600E do 

not respond to the negative feedback from ERK to RAF (since it signals as a monomer), 

resulting in high MAPK-signaling (Pratilas et al., 2009). Conversely, tumors driven by RAS 

and RTK fusions signal via RAF dimers that respond to ERK feedback, resulting in lower 

MAPK-signaling. This differential signaling results in profound phenotypic differences. For 

example, expression of genes responsible for iodine uptake and metabolism are greatly 

reduced in BRAFV600E tumors, in contrast to the “RAF-dimer” tumors in which expression 

of these genes is largely preserved (Durante et al., 2007). These observations, together with 

the relatively low number of other genomic alterations, allow for a clear view of the 

signaling and transcriptional outputs of these two primary drivers. The distinct profile of 

expression of genes involved in thyroid hormone biosynthesis that we observed between 

BRAFV600E and RAS-driven tumors is recapitulated closely in mouse PTC models induced 

by knock-in mutations of BrafV600E or HrasG12V (Charles et al., 2011; Franco et al., 2011), 

suggesting that these arise as a consequence of the constitutive activation of these drivers.

To explore these relationships across our cohort, we developed a BRAFV600E-RAS score 

(BRS) to quantify the extent to which the gene expression profile of a given tumor 

resembles either the BRAFV600E- or RAS-mutant profiles. Using 391 samples with both 

exome and RNA sequencing data, we compared BRAFV600E-mutated and RAS-mutated 

tumors to derive a 71-gene signature. Correlations with this signature were used to derive a 

continuous measure (-1 to +1) with BRAFV600E-like (BVL) PTCs being negative and RAS-

like (RL) PTCs positive (see Supplement). As expected, this signature showed strong 

separation of the BRAFV600E- and RAS-mutant tumors (Figures S7A,B).

We then used the BRS as a reference continuous scale from most BVL to most RL to 

interrogate the signaling consequences of the other, less common, mutations (Figures 4A,B). 

All BRAF mutations other than BRAFV600E exhibited RL behavior, including one 

BRAFK601E, a splice-site mutation and three indels. This is consistent with previous 

observations that BRAFK601E occurs in FV tumors that are mostly RL-PTCs (Park et al., 

2013). All of the BRAF fusions were BVL. Four of the six EIF1AX mutations were RL, one 

neutral and one weakly BVL. All of the PAX8/PPARG fusions were RL, consistent with 

Agrawal et al. Page 9

Cell. Author manuscript; available in PMC 2015 October 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



their prevalence in follicular-patterned tumors. Nearly all of the RET fusions were weakly 

BVL and the NTRK1/3 and ALK fusions were largely neutral.

Next, we focused on thyroid differentiation, which plays a central role in thyroid cancer. We 

summarized the expression levels of 16 thyroid metabolism and function genes (Table S5F), 

which were highly correlated across our cohort, and produced a single metric, designated the 

Thyroid Differentiation Score (TDS). The TDS and BRS measures were highly correlated 

across all tumors (Spearman = 0.78, P=3.1×10-80), despite being derived from different gene 

sets. This correlation was mainly driven by RL-PTCs having relatively high TDS values. 

The BRAFV600E PTC cohort, considered a homogeneous group in numerous studies, showed 

a wide range of TDS values (Figure 5), and maintained the TDS and BRS correlation, albeit 

to a lesser degree (Spearman = 0.38, p=3.0×10-9, Figures 4,5 and S7C-E). To gain insights 

regarding the observed TDS variation, we identified other genes whose expression levels 

correlated with TDS across all tumors and within the BRAFV600E cohort. We discovered that 

the TDS was associated with global expression changes, significantly correlated and anti-

correlated with thousands of genes in both cohorts (Figures S7F,G). We obtained similar 

observations using previously reported DNA microarray data (Giordano et al., 2005) (Figure 

S7H). Next, to test whether differences in the TDS within the BRAFV600E-mutant cohort 

were associated with subtle architectural changes, we histologically graded the tumors 

(Figure S7I) and showed that TDS was indeed correlated with grade (Kruskal-Wallis test 

p=4×10-6, Figure S7J). TDS also correlated with risk (p=2×10-5) and MACIS (Spearman 

correlation p=1.3×10-6) but only weakly with tumor purity (p=1.5×10-3) (Figure S7J), 

indicating that the observed differences in TDS and global expression levels were not 

strongly influenced by variations in levels of tumor stroma or lymphocyte infiltration. These 

results support the validity of the TDS and BRS and illustrate that, while independently 

derived, these measures reflect similar biological properties that are profoundly reflected by 

gene expression in PTC.

Although the TDS was correlated with many genes, among the most correlated were several 

genes with cancer relevance (TFF3, KIT, PVRL4 and FHL1, q=8.02×10-30, 5.62×10-29, 

4.08×10-13 and 7.52×10-115, respectively, Figures 5 and S7F-G). Among miRs with cancer 

relevance, miR-21, miR-146b and miR-204 were highly correlated with the TDS (Figure 5 

and Figures S7F-G), with miR-21 being the most negatively correlated miR in both the 

entire and BRAFV600E cohorts. miR-21 and miR-146b are oncogenic miRs in several tumor 

types (Di Leva et al., 2014) and miR-204 is down-regulated in several tumors types and may 

be a tumor suppressor (Imam et al., 2012). We subsequently identified variable expression 

of these miRs in distinct miR clusters with different TDS and BRS values (see Molecular 

Classification).

Our data demonstrate significant gene expression variation across the BRAFV600E cohort, 

which may account for the range of differentiation observed and may explain the uncertainty 

regarding the prognostic and predictive power of BRAFV600E mutation (Xing et al., 2013). 

Dedifferentiation likely plays a role in dampening responses to RAI therapy and is 

consistent with observations that RAI-refractory metastases are enriched for BRAFV600E 

mutants (Sabra et al., 2013). Although other factors are likely involved, our results support 

the view that potent constitutive activation of the MAPK transcriptional output by oncogenic 
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BRAFV600E downregulates the expression of genes involved in iodine metabolism 

(Chakravarty et al., 2011; Franco et al., 2011). Of note, the loss of differentiation within the 

BRAFV600E cohort is likely smaller than that observed in histologically aggressive thyroid 

cancers.

An integrated view of our TDS analysis (Figure 5) summarizes how RL-PTCs result in 

highly differentiated tumors enriched for follicular histology with distinct gene expression 

and DNA methylation patterns. Conversely, BVL-PTCs result in predominantly less 

differentiated tumors enriched for classical and tall cell histology, with distinct gene 

expression and DNA methylation patterns. Further assessment of BRS and TDS might be 

useful in the setting of a clinical trial and even pathology practice using 

immunohistochemistry.

To better understand the downstream signaling effects of the main driver events 

(BRAFV600E, RAS), we examined mRNA expression, protein and phosphoprotein levels of 

various signaling pathways. We used a 52-gene signature derived by inhibiting MEK in a 

BRAFV600E melanoma cell line (Pratilas et al., 2009) to assess the ERK (and MAPK) 

activation level. BRS was highly correlated to ERK activation level (i.e. ERK score, see 

Supplement); BVL-PTCs showed over-activation of the pathway (Figure S8A), and 

increased expression of DUSP genes (Figure 6). Note that, although the two scores are 

highly correlated, they were derived independently and have no genes in common. In wild-

type cells, ERK induces a negative feedback on effectors upstream in the pathway, resulting 

in impairment of RAF dimerization. Because BRAFV600E signals as a monomer, it is 

insensitive to feedback leading to ERK over-activation (Poulikakos et al., 2010).

RET fusions consistently had BVL phenotype, high MAPK activity and were associated 

with low pS338-CRAF and pS299-ARAF (Figure S8B), consistent with preferential 

signaling via BRAF homodimers (Mitsutake et al., 2006). RL-PTCs had concurrent 

activation of PI3K/AKT and MAPK signaling, the latter mostly through c-RAF 

phosphorylation (Figure 6). Despite having lower MAPK activity than BVL-PTCs, RL-

PTCs showed significantly higher phosphorylation of p90RSK, a direct ERK substrate. 

Activation of p90RSK was associated with robust inhibition of TSC2, a distinguishing 

hallmark of the two functional classes, and likely to induce mTOR. Elevated p90RSK in the 

RL-PTCs was also associated with phosphorylation of its substrate BAD, and with 

concurrent BCL2 over-expression, leading to anti-apoptotic signaling (Figure 6 and Table 

S4B). Finally, we used TieDIE (Paull et al., 2013) to assess differential pathway activation 

between BVL-PTC and RL-PTC (see Supplement). This approach identified the small 

GTPase RHEB, a known regulator of mTOR activity (Groenewoud and Zwartkruis, 2013), 

as a contributing factor to the differences observed between BVL-PTC and RL-PTC (Figure 

S8C, Table S4F and Data File S1). These findings confirm many of the known signaling 

changes induced by BRAFV600E and RAS mutations in PTC, provide a framework for 

MAPK downstream activity in tumors with other driver alterations, and importantly shed 

new light on the role of p90RSK as a crucial crossroad for MAPK, mTOR and BCL2 

signaling in RAS-driven tumors.

Agrawal et al. Page 11

Cell. Author manuscript; available in PMC 2015 October 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Molecular Classification

The comprehensive and multiplatform molecular data and large sample size in this study 

provide an opportunity to derive and refine the classification of PTC into molecular subtypes 

and associate them with clinically relevant parameters. To this end, we leveraged the BRS 

and TDS measures to inform the relationships between tumor cluster, histology, genotype, 

signaling and differentiation.

Applying unsupervised clustering methods to four genomic datasets yielded a different 

number of subtypes for each dataset: five for mRNA expression, six for miR expression, 

four for DNA methylation and four for protein expression (Figures S9A-D). All clustering 

results were consistent with two meta-clusters that separated the BRAFV600E-driven tumors 

(BVL-PTCs) from ones with RAS mutations (RL-PTCs), recapitulating the BRS-partitioning 

and association with histological subtypes (Figures 4 and S9A). We used Stratome× (Streit 

et al., 2014) to visually highlight these relationships (see THCA publication page); in 

particular, the significant distinction between BVL-PTCs and RL-PTCs that is evident in 

each of the molecular datasets (Table S5G). We also applied SuperCluster (see Supplement) 

to the four genomic datasets, which supported the overarching separation of BVL-PTCs and 

RL-PTCs (Figure S9E).

Next, we focused on the internal structure reported by different data types for these two 

meta-clusters. The RL-PTC group was associated with a single cluster in all datasets except 

DNA methylation (described below). Overall, this group was characterized by FV histology, 

relatively low risk of recurrence, distinct mRNA expression profiles with lower expression 

of immune response genes, higher expression of miR-182-5p and miR-183-5p, low levels of 

fibronectin, VHL and CHK2 proteins and high expression of claudin-7, TIGAR and BRCA2 

proteins (Figures 7, S9B and S9D). RL tumors were highly differentiated and associated 

with younger patients. The DNA methylation data partitioned these tumors into two clusters: 

the larger, termed Meth-follicular showed few methylation changes compared to normal 

thyroid, while the other, termed the Meth-CpG Island cluster, was characterized by 

hypermethylation of a large number of CpG sites in islands and shores (Figure S9C). The 

significance of this distinction is unclear, although the Meth-CpG Island cluster tended to 

have high tumor purity with less lymphocyte infiltration and stromal cells (Figure S9C(d)).

The different datasets partitioned the BVL-PTC group into different numbers of subtypes 

(from 2 based on DNA methylation data to 5 based on miR data), which did not overlap 

with each other such as to form a fully consistent lower level partitioning of BVL-PTCs 

(Figures 4 and S9). Regardless of which dataset was used, the clusters were significantly 

different based on parameters like proportions of driver mutations and gene fusions, 

mutational densities, histological and risk profiles, age, BRS and TDS values (Table S5G). 

The most striking relationship between subtypes was that mRNA-cluster 5 was nearly fully 

embedded within miR-cluster 6 (86/106 mRNA-cluster 5 tumors were part of the 144 tumors 

in miR-cluster 6; Fisher's exact test p=1.3×10-36). This mRNA cluster, which we termed tall 

cell-like, contained most of the TCV tumors (74%), had the highest frequency of BRAFV600E 

mutations (78%), and the lowest BRS and TDS values (i.e. the strongest BVL phenotype 

and least differentiated). Since the tall cell-like cluster was associated with more advanced 
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stage (see THCA publication page) and higher risk (Table S5G), this may be clinically 

relevant. We again used Stratome× to highlight the relationships between mRNA and miR 

clusters with recurrence risk and histology (see THCA publication page). The tall cell-like 

cluster was also identified by SuperCluster (Figure S9E).

Integrated miR Analysis

Given the increased role of miRs in determining cancer phenotype, we further examined the 

association between miR expression, molecular subtypes and clinical parameters. In addition 

to miR-182 and miR-183 in the RL-PTC group, several other cancer-relevant miRs were 

relatively abundant in other miR clusters (Figures 7 and S9B). These included oncomiRs 

(miR-21 and miR-146b) and tumor suppressor miRs (let-7 family, miR-204, and miR-375). 

OncomiRs miR-221 and miR-222 were reported to play a role in PTC aggressiveness 

(Mardente et al., 2012) and, in our data, were associated with less differentiated tumors 

(Figures 7 and S10D(b)).

We focused integrative analysis on miR-21, miR-146b, and miR-204 because they were 

epigenetically regulated, correlated with BRS and TDS, and/or differentially expressed 

between PTCs and normal thyroid, as well as between clusters derived from miRNA-seq 

data (Figures S9B and S10A,B,F). miR-21 expression correlated with highly variable DNA 

methylation (Figure S10C), defined the tall cell-like mRNA and DNA methylation Meth-

classical-1 clusters, and was highly correlated with low BRS and TDS values (Figures 7 and 

S10D). miR-21 is a regulator of several cancer-related genes (Di Leva et al., 2014). In our 

data, using Regulome Explorer's pairwise associations, its expression was anti-correlated 

with expression of cancer-promoting genes and regulators of apoptosis (e.g. PDCD4) 

(Figure S10E). PDCD4 is a miR-21 target gene reported to function as a tumor suppressor in 

diverse tumors (Zhu et al., 2008). These observations raise the possibility that increased 

miR-21 expression via epigenetic dysregulation may contribute to the clinically aggressive 

nature of this BVL-PTC sub-cluster and may partly explain the aggressive nature of TCV.

miR-146b expression exhibited similar patterns of differential expression and correlations to 

DNA methylation, BRS, and TDS (Figures 7 and S10C-D), and likely influenced expression 

of, for example, IRAK1, KIT and TRAF6 (Figure S10E). These results are consistent with 

observations that miR-146b is associated with risk of recurrence and promotes cell 

migration and invasion (Chou et al., 2013).

miR-204 expression, while less influenced by DNA methylation, was preferentially lost in 

miR clusters 5 and 6, the two BVL-PTC sub-clusters with the lowest BRS and TDS values 

(Figures 7 and S9B). This is consistent with data from other tumors, i.e. miR-204 functions 

as a tumor suppressor and high levels suppress cell migration, invasion and EMT (Qiu et al., 

2013). These results suggest that loss of miR-204 may also contribute to aggressive PTCs 

with BRAFV600E mutations. Collectively, our results are consistent with prior studies and 

suggest that miRs may regulate fundamental aspects of the PTC phenotype, i.e. signaling, 

differentiation, invasion and metastasis, by fine-tuning gene expression.
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Discussion

This study illustrates the dominant role and mutually exclusive nature of driving somatic 

genetic alterations, be they SSNVs, indels, or fusions, in the MAPK and PI3K pathways in 

PTC. The relative low overall density of somatic mutations may be the biological basis for 

the indolent clinical behavior of PTC. We discovered new driver mutations in PTC, either 

entirely novel in this cancer (EIF1AX) or novel alterations of known drivers (RET, BRAF 

and ALK fusions). As a result of these discoveries, the ‘dark matter’ of the PTC genome has 

been reduced substantially from ∼25% to less than 4%, which should have profound 

consequences for preoperative cancer diagnosis in thyroid nodules. Molecular testing of 

mutation hotspots, rearrangements and gene expression using fine-needle aspiration 

specimens has become an effective diagnostic tool to more precisely select patients for 

thyroid surgery (Alexander et al., 2012; Nikiforov et al., 2011), thereby reducing the number 

of thyroidectomies done for benign nodules and tumors (Nikiforov et al., 2013), and 

determining the extent of initial thyroid surgery (i.e. lobectomy vs. total thyroidectomy) 

(Yip et al., 2014). Through these advances, molecular diagnostics has improved the care of 

patients with thyroid nodules and cancer. Our expansion of the PTC somatic genetic 

landscape has the potential to even further enhance the care of these patients. This study also 

offers conclusive evidence that mutated BRAF and other driving mutations are clonal events 

present in the majority of cells within tumors and identified novel fusion partners of 

oncogenes (e.g. RET, BRAF, ALK), expanding the biological basis for targeted therapy.

Beyond the driver mutations, we discovered individual genes (CHEK2, ATM, TERT) and 

sets of functionally related genes (chromatin-remodeling) with alterations or expression 

patterns (miR-21 and miR-146b) that define clinically-relevant subclasses and may 

contribute to loss of differentiation and tumor progression. Specifically, increased 

expression of miR-21 was associated with a known aggressive form of PTC (tall cell 

variant) and may be a critical event in its pathogenesis. Similarly, TERT promoter mutations 

identified a subset of aggressive, less differentiated PTCs, consistent with recent reports 

(Melo et al., 2014; Xing et al., 2014). Our study also indicates that BRAFV600E PTC 

represents a diverse group of tumors, consisting of at least four molecular subtypes, with 

variable degrees of thyroid differentiation. Collectively, our results suggest that BRAFV600E 

PTC should not be considered a homogeneous group in clinical studies and that future 

studies should include molecular components designed to capture the breadth of genetic 

diversity among PTCs.

We demonstrate striking signaling differences in RAS- and BRAFV600E-driven PTCs. In 

particular, BVL-PTCs signal preferentially through MAPK while RL-PTCs signal through 

both MAPK and PI3K. The relative simplicity of the PTC genome, with dominant mutually 

exclusive driving events, together with the large cohort and comprehensive data analyzed in 

this study enabled us to clearly dissect these signaling differences.

Our overarching conclusion is that RL-PTCs and BVL-PTCs are fundamentally different in 

their genomic, epigenomic and proteomic profiles. This is consistent with their known 

histological differences and the published literature. However, the breadth and depth of our 

integrative findings have wide implications for basic pathobiology, tumor classification 
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schemes, traditional and targeted therapies. This view is supported by recent data suggesting 

differential response to a MEK inhibitor related to thyroid cancer genotype (Ho et al., 2013). 

We feel, based on the strength of our multidimensional genomic findings, that a pathologic 

reclassification of follicular-patterned thyroid lesions is justified. There was a time when 

follicular-patterned PTCs (i.e. RL-PTCs) were classified as follicular carcinomas. Perhaps 

the time has come to revise the classification of thyroid cancer to reunite the FV of PTC 

with follicular carcinomas. Moreover, a refined classification scheme that more accurately 

reflects the genotypic and phenotypic differences between and within RL and BVL PTCs 

would lead to more precise surgical and medical therapy, especially as thyroid cancer 

therapy enters the realm of precision medicine.

Methods summary

Tumor and normal thyroid samples were obtained from patients with approval from local 

Institutional Review Boards. DNA, RNA and protein were purified and distributed 

throughout the TCGA network. In total, 496 primary tumors and 8 metastatic tumors with 

associated clinicopathologic data were assayed on at least one molecular profiling platform. 

Platforms included exome and whole genome DNA sequencing, RNA sequencing, miRNA 

sequencing, SNP arrays, DNA methylation arrays, and reverse phase protein arrays. 

Integrated multi-platform analyses were performed. The data and analysis results can be 

explored through the Broad Institute GDAC portal (http://dx.doi.org/10.7908/C17P8WZG) 

and FireBrowse portal (http://firebrowse.org/?cohort=THCA), Memorial Sloan Kettering 

Cancer Center cBioPortal (http://www.cbioportal.org/public-portal/study.do?

cancer_study_id=thca_tcga), TieDIE (http://sysbiowiki.soe.ucsc.edu/tiedie), MBatch batch 

effects assessor (http://bioinformatics.mdanderson.org/tcgambatch/), Regulome Explorer 

(http://explorer.cancerregulome.org/) and Next-Generation Clustered Heat Maps (http://

bioinformatics.mdanderson.org/TCGA/NGCHMPortal/). See also the Supplement and the 

THCA publication page (https://tcga-data.nci.nih.gov/docs/publications/thca_2014/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Landscape of Genomic Alterations in 402 Papillary Thyroid Carcinomas
(A) Mutation density (mutations/Mb) across the cohort. (B) Tumor purity, patient age, 

gender, history of radiation exposure, risk of recurrence, MACIS score, histological type, 

and BRS score. (C) Number and frequency of recurrent mutations in genes (left) ranked by 

MutSig significance (right), gene-sample matrix of mutations (middle) with TERT promoter 

mutations (bottom). (D) Number and frequency of fusion events (left), gene-sample matrix 

of fusions across the cohort (middle). (E) Number and frequency of SCNAs (left), 

chromosome-sample matrix of SCNAs across the cohort (middle) with focal deletions in 

BRAF and PTEN (bottom), GISTIC2 significance (right). (F) Driving variant types across 

the cohort. Samples were sorted by driving variant type with dark matter on the left. See also 

Figures S1, S2, S3, S4 and Tables S1, S2, S3, S4A, and S5A,B,E.
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Figure 2. TERT Promoter Mutations and Clonality Assessment of Driver Mutations
(A-C) Association of TERT promoter mutations with (A) risk of recurrence, (B) MACIS 

score, and (C) thyroid differentiation score (TDS). See also Table S2.

(D) Mutation cancer cell fraction distribution. The majority of all mutations, including 

driver mutations BRAF, NRAS, HRAS, KRAS, and EIF1AX, have a calculated cancer cell 

fraction close to 1.0, indicating their presence all tumor cells.
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Figure 3. Candidate “Driver” Gene Fusions in Papillary Thyroid Carcinoma
(A) RNA expression fusion plots for representative novel candidate genes involving RET, 

BRAF, ALK, NTRK3 and LTK fusions. Each gene in the fusion plot is drawn 5′ to 3′, exon 

specific relative expression data is represented with low (blue) and high expression (red), 

and the kinase domain is mapped with a green box. The pairs of numbers across the links 

indicate the number of split reads and paired-end supporting reads from RNA-seq. (B) 

Circos plots (http://circos.ca) of RET, BRAF and NTRK3 fusions. Red links represent 

recurrent fusions, black non-recurrent. See also Figures S3F and Table S5B.
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Figure 4. The BRAFV600E-RAS Score
(A) Thyroid samples (n=391) were ranked by BRAFV600E-RAS score (BRS), with 

BRAFV600E-like and RAS-like samples having negative (-1 to 0) and positive scores (0 to 1), 

respectively. The BRAFV600E-RAS score is strongly associated with: (B) driver mutation 

status; (C) thyroid differentiation score (TDS); (D) single data-type clusters and (E) 

histology and follicular fraction. The RAS-like samples (normalized score > 0, in red on the 

top bar) consistently emerged as a distinct subgroup characterized by a higher TDS. See also 

Figures S6 and S7A, B and Tables S2 and S4B.

Agrawal et al. Page 25

Cell. Author manuscript; available in PMC 2015 October 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. Role of Thyroid Differentiation in Papillary Thyroid Carcinomas
Thyroid Differentiation Score (TDS) across the cohort with tumors sorted by driver 

mutation and TDS. Below TDS are the BRAFV600E-RAS score (BRS), ERK signature, 

histological type, MACIS score, risk of recurrence, driver mutations, gene expression data 

for nine thyroid genes used to derive the TDS (TG, TPO, SLC26A4 (pendrin), SLC5A5 (Na/I 

symporter), SLC5A8 (apical iodide transporter), DIO1, DIO2, DUOX1, DUOX2), four 

selected mRNAs correlated to TDS, and three selected miRs correlated to TDS. Featured 

mRNA (except for 16 thyroid genes) and miRNA genes were selected based on Spearman 

correlation to TDS in the BRAFV600E cohort (*) and the full cohort (**) (see Supplement). 

See also Figures S7C-J and Table S5F.
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Figure 6. Downstream Signaling of BVL and RL PTCs
(A) MAPK and PI3K pathways are differentially activated in the BVL and RL PTCs.

(B) BRAFV600E-mutated cases show robust activation of MAPK signaling resulting in 

higher output of the ERK transcriptional program, represented in particular by DUSP 

(DUSP4, 5 and 6) mRNAs. This may be due to insensitivity of BRAFV600E to ERK 

inhibitory feedback. By contrast, RAS-like tumors activated both MAPK and PI3K/AKT 

signaling, as shown by higher pAKT levels in these tumors. The mechanism by which RAS-

like tumors activated MAPK signaling was distinct from that of BRAFV600E tumors, as they 

had higher CRAF phosphorylation, consistent with engagement of RAF dimers. 

Paradoxically, RL-PTCs had higher phosphorylation of the ERK substrate p90RSK, which 

was associated with mTOR activation, likely through phosphorylation and consequent 

inhibition of TSC2. RL-PTCs also showed activation of an anti-apoptotic program, 

characterized by S112-BAD phosphorylation (a target of P90RSK) and BCL2 over-

expression. See also Figures S8 and Tables S4B,F.
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Figure 7. Unsupervised clusters for miRNA-seq data
Heatmap showing discriminatory miRs (5p or 3p mature strands) with the largest 6% of 

metagene matrix scores (see Supplement), as well as miR-204-5p, 221-3p and 222-3p, 

which were highlighted in correlations to BRS and TDS scores (see Figure S10D). The 

scalebar shows log2 normalized (reads-per-million, RPM), median-centered miR abundance. 

miR names in red are discussed in the text. Gray vertical lines in the clinical information 

tracks mark samples without clinical data, and in the mutation tracks gray lines identify 

samples without sequence data. See also Figures S9, S10 and Tables S4C,D,E, 5G, 6.
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