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Abstract
Hepatocellular carcinoma (HCC) is one of the leading 
causes of cancer-related death worldwide. It is associ-
ated with a poor prognosis and has limited treatment 
options. Sorafenib, a multi-targeted kinase inhibitor, 
is the only available systemic agent for treatment of 
HCC that improves overall survival for patients with 
advanced stage disease; unfortunately, an effective 
second-line agent for the treatment of progressive or 
sorafenib-resistant HCC has yet to be identified. This re-
view focuses on components of the mammalian target 
of rapamycin (mTOR) pathway, its role in HCC patho-
genesis, and dual mTOR inhibition as a therapeutic op-
tion with potential efficacy in advanced HCC. There are 
several important upstream and downstream signals in 
the mTOR pathway, and alternative tumor-promoting 
pathways are known to exist beyond mTORC1 inhibi-

tion in HCC. This review analyzes the relationships of 
the upstream and downstream regulators of mTORC1 
and mTORC2 signaling; it also provides a comprehen-
sive global picture of the interaction between mTORC1 
and mTORC2 which demonstrates the pre-clinical rel-
evance of the mTOR pathway in HCC pathogenesis and 
progression. Finally, it provides scientific rationale for 
dual mTORC1 and mTORC2 inhibition in the treatment 
of HCC. Clinical trials utilizing mTORC1 inhibitors and 
dual mTOR inhibitors in HCC are discussed as well. The 
mTOR pathway is comprised of two main components, 
mTORC1 and mTORC2; each has a unique role in the 
pathogenesis and progression of HCC. In phase Ⅲ 
studies, mTORC1 inhibitors demonstrate anti-tumor ac-
tivity in advanced HCC, but dual mTOR (mTORC1 and 
mTORC2) inhibition has greater therapeutic potential in 
HCC treatment which warrants further clinical investiga-
tion.
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Core tip: Advanced hepatocellular carcinoma (HCC) 
has a poor prognosis with limited therapeutic options. 
The mammalian target of rapamycin (mTOR) pathway 
(regulated by mTORC1 and mTORC2) is implicated in 
HCC pathogenesis. This review examines pre-clinical 
and clinical data demonstrating that mTORC1 inhibition 
effectively prevents HCC recurrence post-liver trans-
plantation, and also has a modest anti-tumor effect in 
advanced HCC. The rationale and preclinical data for 
utilizing dual mTOR (mTORC1 and mTORC2) inhibition 
in HCC is also reviewed; a current phase Ⅰ clinical trial 
to investigate the efficacy of dual mTOR inhibitors is 
briefly discussed. mTOR pathway inhibition has thera-
peutic potential in the treatment of advanced HCC. 
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most com-
mon cancer diagnosed world-wide, with 250000 to 
500000 cases diagnosed per year, and it is the third lead-
ing cause of  cancer-related death in the world[1]. In the 
United States, the incidence of  HCC has nearly tripled 
over the past 3 decades, with approximately 20000 new 
cases diagnosed annually, largely owing to the growing 
incidence of  chronic Hepatitis C-related cirrhosis. HCC 
is associated with a poor prognosis, with 5-year survival 
rate persistently less than 10%. It is potentially curable by 
surgery or liver transplantation if  detected early. Unfor-
tunately, over 85% of  cases are diagnosed at late stages 
when surgical intervention is no longer a viable option. 
The only available systemic treatment is a multi-targeted 
kinase inhibitor, sorafenib. In randomized, placebo-
controlled phase Ⅲ clinical trials, sorafenib modestly 
improves overall survival (OS) for patients with interme-
diate to advanced stage HCC[2,3]. An effective second-line 
agent for those with sorafenib failure or intolerance has 
yet to be identified. This has led to an ongoing search for 
molecular pathways and novel compounds for the treat-
ment of  advanced HCC.

Mammalian target of  rapamycin (mTOR) is a ser-
ine/threonine protein kinase downstream of  the pho-
phoinositide-3-kinase (PI3K)-related kinase family. It is a 
central regulator of  various oncogenic processes including 
cell growth, proliferation, metabolism, and angiogenesis. 
There is growing evidence to suggest that mTOR deregu-
lation plays a significant role in hepatocellular carcinogen-
esis. Pre-clinical data indicates that deregulated expression 
of  mTOR pathway effectors is present in 40%-50% of  
HCCs, and activation of  the mTOR pathway is associ-
ated with less differentiated tumors, earlier tumor recur-
rence, and worse survival outcomes[4]. Our review focuses 
on components and functions of  the mTOR pathway 
and its potential role in the treatment of  advanced HCC.

MTOR PATHWAY
Components of mammalian target of rapamycin 
complexes
The PI3K/AKT/mTOR signaling pathway- also known 
as the “mTOR pathway”- contains two important com-
ponents: mTOR complex 1 (mTORC1) and mTOR 
complex 2 (mTORC2) (Figure 1). They are multiprotein 
complexes, comprised of  both shared and unique com-
ponents.

The mTOR kinase- also known as “mTOR”- is one 
of  three components which is present in both mTORC1 
and mTOR2; mammalian lethal with SEC13 protein 9 

(mLST8) and DEP domain-containing mTOR-interacting 
protein (DEPTOR) are two other proteins that are com-
mon to both mTORC1 and mTORC2. mLST8 interacts 
directly with mTOR to enhance its kinase activity, particu-
larly within mTORC2 (its effect within mTORC1 is not 
clearly understood)[5]. DEPTOR prevents substrate binding 
to mTORC1 and mTORC2, which leads to inhibition of  
mTORC1 and mTORC2 activity[6,7]. 

mTORC1, which is sensitive to the effects of  rapamy-
cin, has two unique proteins: regulatory-associated protein 
of  mTOR (RAPTOR) and 40 kDa Pro-rich AKT substrate 
(PRAS40; also known as AKT1S1). RAPTOR serves as a 
binding platform where substrates are presented to mTOR 
for subsequent activation of  mTORC1[8]. Conversely, 
PRAS40, like DEPTOR, is a direct inhibitor of  mTORC1 
substrate binding which hinders mTORC1 activity[9]. 

Specific to mTORC2 are rapamycin-insensitive com-
panion of  mTOR (RICTOR), mammalian stress-activated 
map kinase-interacting protein 1 (mSIN1; also known as 
MAPKAP1) and protein observed with RICTOR (PRO-
TOR) (Figure 1)[10]. There is some evidence that RICTOR 
contributes to the structural foundation of  mTORC2; in 
the absence of  RICTOR, mTORC2 becomes inactive[7]. 
The functions of  mSIN1 and PROTOR remain unclear.

Functions and regulations of mTORC1 and mTORC2 
mTORC1: mTORC1 expression is driven by stimulants 
such as energy status, physiologic stress, and growth 
factors. Specifically, in the presence of  growth factors, 
insulin receptor substrate 1 (IRS1) activates PI3K. PI3K 
phosphorylates the second messenger called phospha-
tidylinositol (4,5)-biphosphate (PIP-2), which becomes 
phosphatidylinositol (3,4,5)-triphosphate (PIP-3) upon 
phosphorylation. PIP-3 then promotes the phosphoryla-
tion of  serine/threonine protein kinase (PKB/AKT) at 
protein residue Thr308 by 3-phosphoinositide-dependent 
protein kinase-1 (PDK1). Further downstream signaling 
through the effector tuberous sclerosis 1-tuberous sclero-
sis 2 complex (TSC1-TSC2) ultimately leads to the activa-
tion of  mTORC1. 

Activated mTORC1 phosphorylates its two down-
stream targets, 70S ribosomal protein S6 kinase (S6K1) 
and the eukaryotic initiation factor 4E binding protein 
1 (4E-BP1). S6K1 and 4E-BP1 are major regulators of  
protein translation; they also drive cell proliferation, an-
giogenesis, and autophagy[11].

Under normal physiologic conditions, 4E-BP1 binds 
to the eukaryotic initiation factor 4E (eIF4E) to arrest 
protein translation. However, when 4E-BP1 is phosphor-
ylated by mTORC1, its binding to eIF4E is interrupted, 
and this allows protein translation to occur. Concomi-
tantly, phosphorylation of  S6K1 by mTORC1 also results 
in protein translation; however, it also creates a negative 
feedback loop whereby the phosphorylated S6K1 attenu-
ates PI3K signaling by suppressing IRS1 activity, leading 
to mTORC1 inhibition. Interestingly, mTORC1 inhibi-
tion by rapamycin and its analogues disrupts S6K1-medi-
ated feedback inhibition of  PI3K signaling, which allows 
for increased PKB/AKT phosphorylation (Figure 2). 

November 27, 2014|Volume 6|Issue 11|WJH|www.wjgnet.com

Ashworth RE et al . mTOR inhibition in hepatocellular carcinoma 

777



Furthermore, rapamycin-induced inhibition of  mTORC1 
leads to an accumulation of  phosphorylated AKT which 
can then activate downstream effectors of  alternative 
pathways to inhibit apoptosis and promote cell prolifera-
tion[12]. 

mTORC2: Similar to mTORC1, mTORC2 activity is 
also promoted by growth factors. The upstream regula-
tory mechanisms specific to mTORC2 are poorly under-
stood; however, its role in the phosphorylation of  PKB/
AKT has been well-characterized. The full activation 
of  PKB/AKT requires two steps of  phosphorylation: 
first, at protein residue Thr308 by PDK1, and second, 
at residue Ser473 by mTORC2[13]. Therefore, mTORC2 
indirectly promotes mTORC1 activity through activa-
tion of  PKB/AKT (Figure 2). Another less understood 
function of  mTORC2 involves the regulation of  actin 
cytoskeleton organization. Unlike the inhibitory effects 
on mTORC1, the effects of  rapamycin and its analogues 
on mTORC2 are minimal[14].

Constitutive upstream regulators of the mTOR pathway: 
PTEN and TSC1-TSC2 complex
Phosphatase and tensin homologue on chromosome 10 
gene (PTEN) is a multiphosphatase tumor suppressor 
located on human chromosome 10q23.3. It blocks the 
downstream activity of  PI3K-AKT signaling by degrad-
ing PIP-3[11]. Inhibition of  PIP-3 by PTEN prevents 
activation of  PKB/AKT which leads to the down-regu-
lation of  mTORC1 activity (Figure 2). In the absence of  
PTEN, activation of  mTORC1 is unbridled and hepato-
cellular carcinogenesis occurs. Watanabe et al[15] showed 
high incidence of  HCC (66%) in PTEN-deficient mice at 
the end of  an 80-wk period. Wang et al[16] demonstrated 
that decreased PTEN protein expression in HCC tissue 
samples compared to paired surrounding tissue samples 
was associated with higher tumor pathologic grade, TNM 
stage, and more frequent incidence of  metastasis.

The TSC1 and TSC2 proteins (also known as ha-
martin and tuberin, respectively) are regulators of  cell 
proliferation which have been implicated in HCC carci-
nogenesis. In its active form, the TSC1-TSC2 complex 
inhibits mTORC1 activation. Specifically, TSC2 acts as a 

GTPase-activating protein (GAP) which degrades gua-
nosine triphosphate (GTP) and prevents its binding with 
Rheb, a GTP-binding protein. As a result, Rheb’s ability 
to inhibit FKBP38, a negative regular mTORC1, is dis-
abled and mTORC1 is inhibited. However, Akt-mediated 
phosphorylation deactivates the TSC1-TSC2 complex by 
decreasing its GAP-activity towards Rheb, which permits 
Rheb-GTP binding[17]. In turn, Rheb carries out its usual 
function of  inhibiting FKBP38, and mTORC1 activa-
tion occurs (Figure 2)[17,18]. In fact, loss of  either TSC1 
or TSC2 promotes autonomous activation of  mTORC1. 
Using liver-specific TSC1 knockout mice, Menon et al[19] 
demonstrated that chronic activation of  mTORC1 in the 
absence of  TSC1 induced hepatocyte damage, indepen-
dent of  hepatic steatosis, which leads to the spontaneous 
development of  HCC. 

It is important to note that PTEN and TSC1-TSC2 
complex also function as integrating hubs for the regula-
tion of  mTOR via alternative signaling pathways. For ex-
ample, the Src family kinases (SFKs) and the Wnt protein 
of  the Wnt/β-catenin pathway are direct upstream regu-
lators of  PTEN and TSC1-TSC2 complex, respectively. 
Studies of  breast cancer cell lines have shown that SFKs 
phosphorylate PTEN to inhibit its function[20], which then 
promotes mTORC1 activation. Conversely, the stimula-
tion of  Wnt prevents TSC2 phosphorylation through 
inhibition of  GSKβ3, a protein constituent of  Wnt/
β-catenin pathway, thus inhibiting mTORC1 activation[17].

CLINICAL EXPERIENCE OF MTOR 
INHIBITION IN HCC
mTORC1 inhibitor in the prevention of  HCC recurrence 
post liver transplantation

Within the past decade, the role of  mTOR inhibition 
in the prevention of  HCC recurrence has been examined 
more thoroughly in the post-liver transplantation patient 
population. Recurrence is a major cause of  morbidity and 
mortality among these patients, and the recurrence risk is 
markedly influenced by explant pathology such as poor 
tumor differentiation and the presence of  microvascular 
invasion[21].

The traditional immunosuppressants used to prevent 
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Figure 1  Mammalian target of rapamycin complex 1, Mammalian target of rapamycin complex 2 and their associated proteins. mTOR: Mammalian target of 
rapamycin; DEPTOR: DEP domain-containing mTOR-interacting protein; mLST8: Mammalian lethal with SEC13 protein 9; RAPTOR: Regulatory-associated protein 
of mTOR; PRAS40: 40 kDa Pro-rich AKT substrate; RICTOR: Rapamycin-insensitive companion of mTOR; mSIN1: Mammalian stress-activated map kinase-interacting 
protein 1; PROTOR: Protein observed with RICTOR.
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Because of  this promising data, a prospective, ran-
domized international clinical trial (the “SiLVER trial”) 
has been developed to assess the role of  sirolimus in 
HCC-free patient survival in liver transplantation recipi-
ents with a pre-transplant diagnosis of  HCC; the primary 
endpoint is RFS with a planned 5-year follow-up[28].

mTORC1 inhibitor in advanced HCC
Recently, single-arm phase Ⅰ/Ⅱ studies have shown that 
everolimus (a second-generation mTORC1 inhibitor), 
has single-agent activity in de novo or recurrent advanced 
HCC. In a cohort of  36 patients, everolimus hindered 
disease progression in patients with advanced HCC when 
used at maximum tolerated dose of  70 mg weekly[29]. In a 
subsequent phase Ⅰ/Ⅱ study by Zhu et al[30], 28 patients 
with advanced HCC tolerated everolimus at the dose of  
10 mg daily. The median progression free survival was 3.8 
mo, suggesting a modest antitumor effect of  everolimus 
in advanced HCC[31].

This study led to the global phase Ⅲ randomized 
EVOLVE-1 trial, where everolimus was compared to 
placebo in patients with advanced HCC who discontin-
ued sorafenib due to disease progression or drug intoler-
ance. This trial unfortunately showed no OS benefit for 

liver allograft rejection are calcineurin inhibitors (CNIs) 
such as tacrolimus and cyclosporine. They have been 
implicated in tumorogenesis both in vitro and in vivo[22,23]. 
In contrast, mTOR inhibitors are capable of  effective 
immunosuppression (by blocking interleukin-2-mediated 
acute graft rejection) and concomitant prevention of  
hepatocellular tumorogenesis (through potent inhibition 
of  angiogenesis). These two reasons make them attrac-
tive immunosuppresants for post-liver transplantation 
patients with a pre-transplant diagnosis of  HCC[24].

In retrospective and non-randomized prospective anal-
yses, post-liver transplantation HCC patients treated with 
sirolimus (a rapamycin analogue which selectively inhibits 
mTORC1) showed decrease in HCC recurrences[25]. In a 
study of  70 post-liver transplantation HCC patients treated 
with sirolimus-based immunosuppression, Toso et al[26] 
demonstrated an absolute decrease in recurrence rates by 
6% (Milan criteria) and 14% (beyond Milan criteria) com-
pared to studies not using sirolimus. A recent meta-analy-
sis in patients with HCC who underwent liver transplanta-
tion indicated that sirolimus-treated patients demonstrated 
longer 5-year relapse-free survival (RFS) and 5-year OS 
rates (79%-80% and 80%, respectively) compared to CNI-
treated patients (54%-60%; 59%-62%, respectively)[27].
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IRS1

PI3K

PKB/AKT PKB/AKT
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Figure 2  The PI3K/AKT/mTOR pathway. IRS1: Insulin receptor subsrate 1; PI3K: Phophoinositide-3-kinase; PIP-2: Phosphatidylinositol (4,5)-biphosphate; PIP-3: 
Phosphatidylinositol (3,4,5)-triphosphate; PTEN: Phosphatase and tensin homologue on chromosome 10 gene; PDK1: Phosphoinositide-dependent protein kinase-1;  
PKB/AKT: Serine/threonine protein kinase; TSC1-TSC2: Tuberous sclerosis 1-tuberous sclerosis 2 complex; 4EBP1: Eukaryotic initiation factor 4E binding protein 1; 
eIF4E: Eukaryotic initiation factor 4E; S6K1: 70S ribosomal protein S6 kinase; SFKs: SRC family kinases.
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everolimus in the salvage setting of  advanced HCC[32]. 
As discussed in section 2 (b) of  this review, mTORC1 
and mTORC2 are two complementary components 
of  the mTOR pathway: when mTORC1 is inhibited, 
mTORC2 is upregulated. This increase in mTORC2 ac-
tivity generates a surplus of  phosphorylated PKB/AKT 
which, despite mTORC1 inhibition, inhibits apoptosis 
and promotes cell proliferation via alternative pathways 
(Figure 2)[33]. This phenomenon may partially explain the 
unsatisfactory efficacy of  everolimus demonstrated in the 
EVOLVE-1 trial, and suggests a potential mechanism 
for drug resistance against mTORC1 inhibitors in HCC. 
Given this theory, dual mTORC1 and mTORC2 inhibi-
tion has become an attractive pharmacologic target with 
therapeutic potential in advanced HCC treatment.

The safety of  everolimus in combination with 
sorafenib has also been evaluated for the treatment of  
advanced HCC, as it posed the opportunity to target two 
major pathways involved in HCC pathogenesis. However, 
phase I studies demonstrated intolerable toxicities with this 
combination, rendering it infeasible as a therapeutic op-
tion[34,35].

POTENTIAL OF DUAL MTOR INHIBITION 
IN HCC
Pre-clinical studies using second generation mTOR in-
hibitors (i.e., Pp242, OSI027, AZD8055) in HCC cell 
lines and xenograft models have demonstrated enhanced 
antitumor efficacy of  dual mTORC1/2 targeting[36-38]. 
Specifically, CC-223 (CC0482223) is a potent selective 
inhibitor of  both mTORC1 and mTORC2 that impedes 
tumor resistance by inhibiting AKT phosphorylation. In 
multiple tumor cell lines, substrates of  both mTORC1 
and mTORC2 (p-S6RP and pAKT Ser473, respectively) 
were inhibited by CC-223, whereas rapamycin was a suc-
cessful inhibitor of  its downstream target p-S6RP only.

The therapeutic potential of  CC-223 is being tested 
in a phase I trial of  patients with refractory malignancies 
including HCC. Twenty-seven HCC patients have been 
enrolled as of  June 2013; 93% of  them previously received 
sorafenib. With 45 mg daily dosing of  CC-223, 11% of  
patients exhibited a partial response, and 33% of  patients 
maintained stable disease[39]. Due to this encouraging data, 
a cohort expansion of  CC-223 in HCC patients is ongoing.

FUTURE DIRECTIONS IN MTOR 
INHIBITION FOR HCC
HCC undergoes constant mutational changes throughout 
its carcinogenesis and progression; therefore, combina-
tion therapy may be of  interest. The possibility of  non-
overlapping pathway inhibition can be considered. For 
instance, sorafenib and dual mTOR inhibition could be 
a potentially effective strategy. In addition, epigenetic 
modification through methylation contributes to therapy 
resistance in many tumor types and HCC is no excep-

tion[40]. Dual mTOR inhibition combined with demethyl-
ating agents could also be a valid scientific approach[41]. 

Dramatic advances in the treatment of  HCC have 
been achieved with improvement in the understanding 
of  the biology of  HCC pathogenesis and progression. 
The mTOR pathway is clearly critical to the progression 
of  HCC. We anticipate that future data on single-agent 
dual mTOR inhibitors and combination strategies utiliz-
ing mTORC dual inhibition with other novel agents will 
contribute to the advances in HCC treatment.
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