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Abstract

Gene ontology (GO) and GO annotation are important resources for biological informa-
tion management and knowledge discovery, but the speed of manual annotation became
a major bottleneck of database curation. BioCreative IV GO annotation task aims to
evaluate the performance of system that automatically assigns GO terms to genes based
on the narrative sentences in biomedical literature. This article presents our work in this
task as well as the experimental results after the competition. For the evidence sentence
extraction subtask, we built a binary classifier to identify evidence sentences using refer-
ence distance estimator (RDE), a recently proposed semi-supervised learning method
that learns new features from around 10 million unlabeled sentences, achieving an F1 of
19.3% in exact match and 32.5% in relaxed match. In the post-submission experiment,
we obtained 22.1% and 35.7% F1 performance by incorporating bigram features in RDE
learning. In both development and test sets, RDE-based method achieved over 20% rela-
tive improvement on F1 and AUC performance against classical supervised learning
methods, e.g. support vector machine and logistic regression. For the GO term prediction
subtask, we developed an information retrieval-based method to retrieve the GO term
most relevant to each evidence sentence using a ranking function that combined cosine
similarity and the frequency of GO terms in documents, and a filtering method based on
high-level GO classes. The best performance of our submitted runs was 7.8% F1 and
22.2% hierarchy F1. We found that the incorporation of frequency information and hier-
archy filtering substantially improved the performance. In the post-submission evalu-
ation, we obtained a 10.6% F1 using a simpler setting. Overall, the experimental analysis
showed our approaches were robust in both the two tasks.
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Introduction

With the expansion of knowledge in biomedical domain,
the curation of databases for biological entities such as
genes, proteins, diseases and drugs, becomes increasingly
important for information management and knowledge
discovery. Ontology annotation, the semantic level of
knowledge representation, plays a key role in the database
construction. During the past decades, various ontology
resources such as gene ontology (GO) (1) and medical sub-
ject headings (MeSH) (2), have been developed and shown
great advantage to accelerate the process of biological and
medical research. Among these resources GO has the larg-
est number of concepts and records with an increasing
demand of update rate, but the assignment of GO annota-
tion of gene and gene products is a very time-consuming
process because there are millions of gene names men-
tioned in biomedical literature, and the database curators
(usually PhDs in biology) need to find evidence passages
for each gene from over 20 million PubMed articles as
well as assign one or more GO terms to each evidence pas-
sage from around 40 000 GO terms in the database
(http://archive.geneontology.org/latest-termdb/go_daily-

termdb.rdf-xml.gz). Therefore, GO annotation has be-
come a major bottleneck in database curation workflows.
Addressing the problem, during the past few years, re-
searchers have attempted to use the techniques of informa-
tion retrieval (IR) and machine learning for automatic GO
annotation so as to accelerate the process. Benchmark
data have been released for public evaluation since the
BioCreative I 2004 GO Annotation Task (3), and TREC
2004 Genomics Track Triage Task and GO Annotation
Task (4). In TREC Genomics Track 2004 (4), there were
two tasks: the first task was to retrieve articles for GO an-
notation, where the best performance was 27.9% F-score
and 65.1% normalized utility obtained by a logistic re-
gression with bag-of-words and MeSH features; the
second task was to classify each article into high-level GO
classes: molecular function, biological process or cellular
component, with the best F-score of 56.1% using a bag-
of-words-based KNN classifier. These two tasks were
both simplified version of GO annotation process, since
they did not assign exact GO terms to certain gene. In
BioCreative I challenge (3), the task was to assign GO
terms to genes mentioned in text, exactly the same as the
work of GO annotators. The evaluation was an IR-style
pooling method that generated gold standard only from
the predictions of the participants’ submitted results, and
the evaluation measure was Precision rather than mean
average precision (MAP) or recall, so that it was difficult
to compare the overall performance of different systems.
For example, some system achieved a precision of 34.2%,

but only submitted 41 results, and some system achieved
5.75% precision with 661 predictions submitted (5).
Nevertheless, based on the results it is no doubt that the
task was rather difficult and the state-of-the-art perform-
ance was far from the requirement of practical use.

The GO task in BioCreative IV 2013 (6) was the most
recent challenge evaluation for GO annotation which pro-
vided sentence-level annotated data and evaluation metric
for both precision and recall. There were two subtasks: evi-
dence passage extraction and GO term assignment, and
both of them were evaluated by precision, recall and F1
measure, which was the first complete public evaluation
study about the exact workflow of GO annotation. The
best performance of the first task was 27% exact F1 and
38.7% relaxed F1; the best performance of the second task
was 13.4% F1 and 33.8% hierarchy F1. Similar to
BioCreative I, these tasks were still considered as extremely
difficult ones with a large distance from database curators’
requirement. We think the difficulty lies in the following
aspects: (i) text classification for 40 000 classes is much
more difficult than binary classification task. It is even dif-
ficult for multiple human annotators to get the consistent
annotation result. (ii) The training examples were not fully
annotated. For example, in the first task there was no
clear definition of a true negative example at sentence level
(6). This means we only know for the given gene list which
GO annotation is from which evidence sentence but are
not sure if other sentences in the documents can also
provide evidence or not for the same genes or other genes
beyond the given list. (iii) A lot of annotations were based
on sentence-level classification, which was a harder task
than document classification because features from sen-
tence were sparser and more difficult to model. (iv) The
prior stages of GO annotation such as gene name recogni-
tion and normalization were also difficult tasks [around
80% state-of-the-art F1 score (7)]. Therefore, the errors
from each step could be accumulated, thus producing
a much worse overall performance than each individual
step.

Since the entity recognition and normalization are clas-
sical tasks which have been worked on for many years, in
this study we focus on the two new components introduced
in BioCreative IV: evidence passage extraction (Subtask 1)
and GO term prediction (Subtask 2), which can be
separated from gene recognition/normalization for re-
search. The first task can be viewed as the preliminary step
of the second one, and they can all be treated as text classi-
fication for binary classes (Subtask 1) and for multiple
classes (Subtask 2). Actually binary text classification has
been one of the most extensively studied areas in IR,
machine learning and natural language processing, e.g. the
surveys (8)—(10). Therefore, on the one hand, a lot of
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previous works can be applied to this task, but on the other
hand, it becomes more challenging to develop innovative
approaches for further improvement. For text classifica-
tion, it seems to be a common belief that bag-of-words fea-
tures trained with supervised learning classifiers such as
support vector machine (SVM) (11) and logistic regression
(12) have created the state-of-the-art boundary and diffi-
cult to make big improvement if there are over thousands
of training examples available. From the result of the crit-
ical challenge evaluations of text classification (4, 13, 14),
it is difficult to find big improvement (e.g. over 10%)
against supervised learning with bag-of-words features,
although some domain specific methods, e.g. named entity
features (15-17) were reported to achieve 1-2% improve-
ment. Even though there might be big improvement for
some specific dataset, it would be still challenging to de-
velop a robust method for various datasets, just as if the
appearance of Naive Bayes, Logistic regression, SVM and
KNN lead to revolutionary progress over the previous
knowledge engineering-based approaches (8).

However, in the recent years, we noted that a novel
strategy showed the potential of such big progress. Li et al.
(18-20) developed a semi-supervised learning framework
called feature coupling generalization (FCG) that learned
new features from the co-occurrence of bag-of-words fea-
tures in a large number of unlabeled data and found that it
achieved over 5% improvement against the state-of-the-art
bag-of-words features and elaborately designed lexical
features in the challenging tasks of named entity recogni-
tion (7), relation extraction (21) and text classification
(13). Recently, Li (22) proposed a more simplified ap-
proach called reference distance estimator (RDE) based on
the FCG framework and gave a theoretical interpretation
of why it worked. The theoretical analysis indicated that it
improved performance because the method approximated
a classifier trained with unlabeled-scale labeled data as if
all the unlabeled data were correctly labeled. In the experi-
ment of 10 text classification tasks, it was shown that
RDE-based semi-supervised learning improved the AUC
performance by over 10% against SVM, logistic regression
other
approaches; using 5000 labeled examples plus 13 million

and some classical semi-supervised learning
unlabeled ones the performance of the new method was
close to the result of 13 million labeled examples. In this
work, we explore if the approach can be used to enhance
the performance of evidence sentence extraction, since in
biomedical domain there are huge amount of unlabeled
data available for RDE-based semi-supervised learning.
This is the first application of RDE to benchmark challeng-
ing data, which is the major innovation of this work.

The second task addresses the final goal of GO annota-

tion. The input data includes the evidence sentences and

the gene IDs; the output is the GO terms assigned to each
gene ID. It can be treated as the extension of the first task
to many more classes, while the major difference is that the
annotated sentences in BioCreative IV were not able to
cover all the GO terms, so it is not straightforward to
approach it as a classical text classification task due to the
large number of out-of-vocabulary labels. In this case, one
straightforward way is to use IR-based method which
retrieves GO terms relevant to the certain query sentences,
so that the GO terms out of the training data can also be
assigned to the sentences as long as we can calculate the
similarity between a sentence and a GO term. In this study,
we tried various methods for query sentence construction,
GO term representation, similarity function design, e.g.
language model (23), and cosine similarity. During the
experiment, we found that a small fraction of GO terms
appeared frequently in documents and a large fraction of
them appeared rarely. Therefore, similar to the idea of
Page Rank, our retrieval model gave higher weight to
the important (high-frequency) GO terms, and obtained
big improvement on the F-measure. To our best know-
ledge, this strategy was firstly used in the GO task. In
addition, to employ the annotated sentences to enhance the
performance for the second task, we designed a classifica-
tion task to predict high-level GO classes, since we found
that a certain number of GO terms above the second
level in GO concept hierarchy were included in the anno-
tated sentences. We used the classification result to prune
the result of IR so as to improve the precision of the
system.

The rest of article is organized as follows: in Section 2
we describe the methodology for the two tasks. In
Section 3, we present the experimental results. Finally, we
give the conclusion and future work in Section 4.

Methods

In this section, we describe our methods for the two tasks
evidence sentence extraction and GO term assignment re-
spectively. Since the first task is part of the second task, the
whole process can be described by the workflow in
Figure 1, including the steps of preprocessing, named entity
recognition/normalization, text classification, IR and hier-
archy filtering. We first extracted sentences from full text
articles, classified the sentence into evidence or non-
evidence, and then used IR and filtering methods to get the
final result of GO annotation. The submitted result for the
first task was a list of evidence sentences together with
Entrez Gene IDs mentioned in the sentences, and the result
for second task was the predicted GO terms with associ-
ated gene IDs.
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The annotated data provided in BioCreative IV (6) is a col-
lection of full-text articles in PubMed Central: 100 ones for
training, 50 for development and 50 for testing. The annota-

Figure 1. The framework of the GO annotation system.

Dataset and preprocessing

tion was at the level of passage that was defined as either
one or multiple sentences. The passages that indicated GO
evidence were annotated as evidence passages, and for each
evidence passage GO terms and associated Entrez Gene IDs
were annotated. In the preprocessing stage, we split the sen-
tences if the current token ended with a <.’ the next token
was a whitespace and the next 2 token was not a lowercase
letter. We removed all the sentences in the ‘References’ sec-
tion, since no annotation was found in this section. For this
task the generation of examples for machine learning was
not straightforward. First, the flexible length of passage
made it difficult to detect the boundary of passages. Second,
the sentences were not fully labeled, that is, in the annota-
tion guideline (6) there was no clear definition of a true
negative example, so that noise would be introduced into
both training and evaluation procedures. Since the sentence
classification itself was already a difficult task, for simplicity
we just considered each example as a sentence that con-
tained at least one gene in the given list rather than merged
sentences to generate passages.

Gene name recognition and normalization

Gene named entity recognition and normalization are the
important preprimary steps of biomedical text mining and
have been studied for many years, and evaluated in many
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benchmark datasets, such as JNLPBA (24) and BioCreative
challenges (7, 25, 26). The best F1 measures were less than
90% for the two tasks, respectively, which means the com-
bination of the two steps tends to achieve an F1 under 80%,
still a challenging problem. In the GO task, to make re-
searchers focus on the text classification task only, the
Entrez Gene IDs associated with each article were given in
the training, development and test sets, and for test set the
gene mentions exactly the same as those appearing in text
were also given. Using this way the task organizers aimed to
simplify the process of gene recognition and normalization
to some extent, but systems were still required to develop
these components, because: (i) for the non-evidence sen-
tences, gene names and IDs were not annotated; (ii) the
exact location of gene mention was not given, so we also
needed to do entity recognition/normalization if we wanted
to use gene information as features. For the training and de-
velopment sets since the gene names provided were not
exactly the same as the those in text, we applied a state-of-
the-art gene named entity recognizer (19) with the best per-
formance of 89.1% F1 on the BioCreative Il Gene Mention
dataset (7). Interestingly, this tagger was also developed
based on the FCG semi-supervised feature learning strategy
(18). After gene name recognition, we linked each recog-
nized gene name to its Entrez Gene ID in the database, and
we ignored the gene names with the IDs that could not be
found the ID list of annotated article, since they were either
not the focusing genes in the annotation data, or incorrect
recognition results. For the test set, we just used a dictionary
match for both named entity recognition and normalization
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because the gene information are exactly the same as those
in the texts, although some of the names could not be found
in the text in our experiment. After preprocessing and
named entity recognition, we selected the sentences with the
gene IDs in the annotated data as the positive (evidence) and
negative (non-evidence) examples for the next text classifica-
tion module.

Text classification

The corpus statistics of the examples for text classification
were listed in Table 1. There were 8285 labeled examples
(965 4+ 665 44255 4+ 2400 in Table 1) in training and devel-
opment data, which was not a small corpus comparing to
the bench mark data, e.g. 20 news groups (http:/qwone.
com/~jason/20Newsgroups/) and TREC Genomics Track
(http://ir.ohsu.edu/genomics/). The positive examples were
defined as evidence sentences in the gold standard; the nega-
tive ones were the sentences with the gene names but not
annotated in the gold standard. As is discussed in the intro-
duction, since the true negative sentences were not fully
annotated in the gold standard, there could be noise in both
training and evaluation. In the following we will present our
approaches for feature and classifier design.

Features

Since this task addresses the classification of sentences
which are usually much shorter than paragraphs or the
whole articles, the bag-of-words features from a local sen-
tence tend to have high risk of data sparseness (18), which
could result in a biased representation for low-frequency
and degrade the
Therefore, we tried to use two ways to enrich the represen-

words classification performance.
tation: one was to use bag-of-words features from the
context paragraph; another was to use RDE-based semi-
supervised learning to learn high-level features from large
unlabeled data. Totally we have eight types of features
listed in Table 2, so that we can investigate the contribu-
tion of different strategies. As can be seen, the dimension
of features was greatly reduced using RDE-based features,
resulting in a semantic style representation. The detailed
method for generating RDE features will be presented in
the following section.

Classifier

As described in the introduction section, in this work we
used RDE-based semi-supervised method (22) to learn new
features from unlabeled data and investigate whether it

could improve performance of evidence sentence

Table 1. Corpus statistics of the binary classification task

Training  Development — Test
data data
Number of positive examples 965 665 5494
Number of negative examples 4255 2400

classification. RDE is a simple linear classifier in the
form of:

fir) =D (P(r | j) = P(r))x; (1)

where x; is the ith example represented by a Boolean vector
of xjj, j is the index of feature, and 7 is called a reference
feature. The probability of P(r | j) — P(r) can be directly
estimated from unlabeled data, as long as 7 is not the gold
standard label. In the work (22), we showed in theory that
if 7 is discriminative to the class label and highly independ-
ent with other features, the performance of RDE tends to
be close to a classifier trained with infinite labeled data.
The experiment on 10 text classification tasks showed that
combining multiple RDEs from different reference features
using only 50 00 labeled examples performed as well as a
Naive Bayes classifier trained with 13 million labeled ex-
amples in many tasks. Therefore, the application of RDE
to the GO sentence classification can be straightforward,
since it is also a text classification task.

In the previous work, we introduced a simple algorithm
(22) that generated & RDEs from both labeled and un-
labeled data and used the decision score of each RDE as
the feature of a Logistic regression. The step processes of
the semi-supervised algorithm are:

1. Rank candidate reference features by ‘I(l—r)lzl_P(j)

(| Pl()f()’i;y(),) — 1]) in ascending order and select top k refer-

ence features.

2. Construct & RDEs with the selected reference features
in Step 1.

3. For each RDE remove the original features with
| prey — 11 > ¢

4. Build a classifier using the decision score of each pruned
RDE as a feature, and train the classifier with labeled
examples.

Where I(r) = %W, which is closely related to the
precision of the reference feature 7 in distinguishing the class
iu ; P(j.r)
y from yltreezium] I Step 1, the other part ZIP(])(\ 015G
—1]) reflects the expectation of the dependency of the refer-
ence features with other features, since the term | % —1]

measures the deviation of the mutual information between
feature j and 7 against the fully independent case. The
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Table 2. The number of different types of features for the evidence sentence classification task

Bag-of-words  Bag-of-words from

Bag-of-bigrams  Bag-of- bigrams from sentence

from sentence  sentence and paragraph  from sentence and paragraph
Original lexical 65538 92 408 176 921 347123
features
Features from 200 200 200 200

RDEs

The first row is the corpus statistics from labeled data. The second row is the final feature set derived from the 200 RDEs.

* 51: Expressionof clec-67 is controlled by ELT-2.
* 52: To shed light on the dynamic properties of Mtor, we used FRAP.

Original features:

-ﬂ-_

51 1
52 0 1 0 0

New features:

Reference festure

l w(.r) =

0 0 0

P(j,r)

PGy T

Reference festure

Fa

e ) AT |

51 Wi(Expression, (Fig.)+ W(of, (Fig.)+ W (clec67, (Fig.)..=1.2 21

S2 W(To, (Fig.)+ W(shed, (Fig.)+ W(light, (Fig.)..=0.9 16

Figure 2. An example of RDE-based feature transformation for GO evidence sentence classification. S1 and S2 are two sentences. The example shows
the part of original Boolean features, Reference features and new features generated by RDE semi-supervised learning.

estimation of I(r) can be done by counting on labeled data

and Z P(j ()’P

data [see detalls in (22)]. This method encourages the selec-

— 1) can be obtained from unlabeled

tion of reference features with high precision in predicting
the class y and independence with other features. In the GO
evidence extraction task, e.g. the word features such as
(‘Fig. and ‘observed’ are the top ranked reference features
(Figure 2), since these features are good indicators of GO
evidence sentences as well as relatively independent with
other features. The algorithm converts original features to
an enriched feature set with lower dimension (Figure 2).
We found that the combination of these new features in a
Logistic regression classifier achieved much better perform-
ance than original features. For clarity in the experiment, we
defined SuRDE as the supervised RDE where the reference
feature was the class label in the labeled training data, and
SeRDE as the semi-supervised learning algorithm described
above. These two methods were also compared in our previ-
ous work (22).

Rather than just applying the same algorithm, in this
work we tried different methods for reference feature and
the target classifier selection. The algorithm for reference
feature selection in the work (22) was only based on the
performance of individual RDE rather than the whole fea-
ture set. It is well known that in ensemble learning the
combination of weak but complementary features could
perform much better than the ensemble of strong but over-
lapping features. There is still no theory to suggest the opti-
mal reference feature selection for the ensemble method.
Also logistic regression may not be the optimal one for
combining different RDEs. Therefore, in the experiment,
we compared different strategies for reference feature se-
lection, e.g. Chi-square, and frequency-based ranking, and
different classifiers for RDE ensemble such as SVM and
random forest. We also combined classifiers with different
features to make further improvement.

Our unlabeled data included around 10 million sen-
tences in a subset of full text articles from the journal
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Figure 3. Distribution of GO terms appearing in biomedical literature.

Science, Nature, PNAS, PLOS Genetics, Genome
Research, RNA and NAR. These full texts were down-
loaded under the license of the library of University of
Massachusetts Medical School. Since we only sampled the
‘gene sentences’ in labeled data, to be consistent for the un-
labeled data we also used the gene mention recognizer (19)
to get the 10 million sentences that contained gene names.
Since the training of RDE can be done by counting (22), it
is very efficient to work on terabyte-scale unlabeled data.
To our best knowledge, there are very few semi-supervised
learning methods that can handle such scale of unlabeled
data (27).

After text classification, we got predicted evidence sen-
tences. In order to generate the result for Subtask 1, the fol-
lowing step was to link the evidence sentences to the
candidate gene IDs, since the official evaluation required
specific gene for a given evidence sentences. We used a
straightforward method: if the gene appeared in the
evidence sentence, the sentence and gene ID would be
submitted as the final result. Actually, there could be some
error during the linking process (See also the section of
error analysis). For example, although a gene appears a
sentence, it could not be the focusing gene in that sentence.
In this work, we did not consider that case in our
method, but we think it will be an interesting topic for fu-
ture study.

Information retrieval

The IR-based method aimed to search the candidate rele-
vant GO terms for a certain sentence. In the method, each
positive sentence in Subtask 1 was treated as a query, and
the GO term most relevant to the sentence was returned as
the candidate predictions. The task is a little different from
traditional document retrieval, since the GO terms are usu-
ally much shorter than a document, and there is concept
hierarchy relationship between the GO terms. We tried to
use different ways to represent GO terms including the
words in the term, the synonyms and the narrative

sentences in the description. We also tried to used Indri
(23), a state-of-the-art IR toolkit of language model.
However, we found that the simplest method based on co-
sine similarity worked best for this task. Therefore, this
simple approach was employed in the submitted runs and
the following experiments.

Furthermore, in the experiment, we found the frequency
of GO terms had a big impact on the performance of
ranking, since the occurrence of GO term in documents
followed a power law distribution, where a small fraction
of GO terms appeared frequently in a lot of documents,
and most GO terms appeared rarely (Figure 3). Therefore,
if we give higher weight to the important GO terms
(high-frequency terms), the F-score tend to be much better,
just similar to the idea of Page Rank algorithm in
Web search, which prefers the important pages linked by a
lot of other pages. Our ranking function is:

GORank(sentence, GO term)

#of Common words in sentence and GO term

 /#of words in sentence\/#of words in GO term
log(count(GO term))

where the first part is the cosine similarity of the sentence
and GO term, and count(GO term) is the number of docu-
ments related to the GO term in the Gene Ontology
Annotation (GOA) databases (http://www.geneontology.
org/GO.downloads.annotations.shtml). In the GORank
function, both lexical similarity and frequency of GO
terms are considered. In the experiment, all the words were
lowercased, since we found it worked a little better. The
current format of the GORank function was obtained
through many experiments where we found this type of
combination performed better than the weighted linear
combination or the formula with unlogged counts.

Hierarchy filtering

Using the fully unsupervised manner, we were able to get a
ranked list of GO terms for each sentence, but the anno-
tated sentences were not employed. One of the major mo-
tivations of the challenge to investigate how much the
annotated data can help to improve the performance of
GO annotation. In order to make use of the information in
the annotated sentences to improve the performance, after
the ranking, we built a classifier for 12 high-level GO
classes trained on labeled sentences to prune the result.
Since there are around 40 000 GO terms in the GO data-
base and only around 500 terms in the training data, it is
difficult to build a classifier for the whole vocabulary of
GO terms, but it is much easier to build a classifier for
high-level GO terms, since the vocabulary becomes much
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smaller when moving to the root of the Ontology concept
tree. According to the database (http://archive.geneontol
ogy.org/latest-termdb/go_daily-termdb.rdf-xml.gz), there
are three GO terms (i.e. Cellular component, Biological
process and Molecular function) in the first level, and 60
terms in the second level, of which 11 most frequent terms
in training data were used to build 12 binary classifiers
(one for ‘other’ class) to assign the most relevant terms. We
define a filtering threshold 7 as the number of 7 most rele-
vant high-level GO classes to the sentence determined by
the classifiers. If the highest ranked GO term by GORank
is in the 7 classes, it will be selected as a positive result. In
the contest, supervised RDE was used, since we did not
have time to test the semi-supervised method before sub-
mission. In the future, we will consider the application of
semi-supervised RDE in both hierarchy filtering and classi-
fication for high-frequency GO terms, e.g. the top 2000
terms in the global annotation.

Results

In this section, we present the experimental results for the
two subtasks, respectively. For Subtask 1, we investigate
the performance of different features and classifiers, the
impact of reference feature selection and unlabeled data.
For Subtask 2, we compared the performance of different
query and GO term representation methods, retrieval mod-
els and methods for hierarchy filtering. Table 3 describes
the methods used in our submitted runs.

Results for Subtask 1

Table 4 shows the performance of different methods on the
test set using the official evaluation measures. The baseline
was a simple rule-based method that treated all the gene
sentences as evidence sentences, achieving the highest recall
but lowest precision. However, since the relaxed recall is
only 65% but not 100%, it can be inferred that the named
entity recognition and normalization tasks accounted for a
significant proportion of errors. Using different classifiers
trained on the annotated corpus, Precision and F1 im-
proved while recall decreased. It is promising to see that all
the runs based on RDE achieved better F1 than SVM (11)
and logistic regression (12), and the incorporation of RDE
produced significant improvement on Flcomparing the
performance of Logistic regression (F1 17.4% and 28.6%)
with the best run with RDE (F1 22.1% and 35.7%), which
justified the success of the application of RDE to this task.
The combination (Result 11) of RDEs with unigram
features (Result 8), bigram features (Result 9) and super-
vised logistic regression (Result 3) improved the perform-
ance against the best individual ones, indicating the

semi-supervised framework was able to incorporate rich
feature set to enhance the performance. Note that for
Result 11 in Table 4 we just used the mean of the decision
scores of the individual classifiers as the combination
score, so there was little risk of overfitting caused by classi-
fier ensemble. The classification thresholds of all the classi-
fiers were tuned based on the F1 measures on the
development set, so at this level the comparison was fair.
The reason for the better performance here than the sub-
mitted runs is that we used more reference features (200
vs. 110 in submission), the incorporation of bigram fea-
tures and the combination method.

Since the evaluation takes into account many other fac-
tors such as gene normalization and gene-sentence linking,
we cannot see clearly the performance of the text classifica-
tion task itself in Table 4. Therefore, we showed the result
of the binary classification task in Table 5, where it is clear
to see the improvement of RDE against the other machine
learning approaches. The significant improvement in AUC
indicates a more robust result than F1, since AUC is in-
sensitive to the threshold selection. The comparison of the
performance in Tables 4 and 35, reveals that due to the
introduction of more training data, there is bigger im-
provement on the test set for supervised classifiers in both
F1 measures, in particular for SVM and Logistic regres-
sion, while Semi-supervised RDE showed much more ro-
bust performance on the two different sets.

In Table 6, we compared the performance of different
classifiers for the RDE-based features. In our experiment,
we found that logistic regression and Random Forest were
the two of the best classifiers for the RDE features.
Logistic regression achieved the best F1 score for unigram
features and Random Forest achieved better overall per-
formance for bigram features. In the previous work (18),
we also found similar cases where the new features ob-
tained by feature co-occurrence worked better with non-
linear classifier such as SVM with RBF kernel, since they
have much lower dimension (e.g. 200 for all the runs in
Table 6 feature space just like a semantic level representa-
tion. Here we found that the RDE features with Random
forest showed better accuracy and efficiency than other
non-linear classifier such as SVM with non-linear kernel.
Random Forest (28) is one of state-of-the-art non-linear
classifiers which utilizes repeatedly random feature discret-
ization and conjunction to generate high-order discrimina-
tive and diverse features for learning. On the one hand, it
is encouraging to see the good results obtained by RDE, es-
pecially for the big improvement on bigram features using
Random Forest, which shed light on the methodology to
exploit high-order features which were not utilized well in
classical methods for IR and NLP due to data sparseness.
On the other hand, we see the potential for further


http://archive.geneontology.org/latest-termdb/go_daily-termdb.rdf-xml.gz
http://archive.geneontology.org/latest-termdb/go_daily-termdb.rdf-xml.gz
3
,
relavent
,
[
]
L
[
]
L
L
[
]
,
[
]

Database, Vol. 2014, Article ID bau113 Page 9 of 13

Table 3. Method description of submitted runs

Subtask Run ID Method description

1 Run 1 RDE, 110 reference features, Logistic Regression, classification threshold =0.16

1 Run 2 RDE, 110 reference features, Logistic Regression, classification threshold =0.18

1 Run 3 RDE, 110 reference features, Logistic Regression, classification threshold =0.14

2 Run 1 GO Rank, Hierarchy filtering, GO terms with the count over 2000 in the GOA database for ranking. classification
threshold (Subtask1) = 0, filtering threshold =6

2 Run 2 GO Rank, Hierarchy filtering, GO terms with the count over 500 in the GOA database for ranking, classification
threshold (Subtask1) =0, filtering threshold =8

2 Run 3 GO Rank, Hierarchy filtering, GO terms with the count over 2000 in the GOA database for ranking, classification

threshold (Subtask1) =0.16, filtering threshold =2

In the table, ‘classification threshold’ is the threshold of the Logistic regression classifier with 110 RDE features. The ‘filtering threshold’ is the number of 7
most relevant high-level GO classes to the sentence determined by the classifiers. If the highest ranked GO term by GORank is in the 7 classes, it will be selected
as a positive result.

Table 4. Comparison of different methods on test set of Subtask 1

1D Method Precision Recall F1 Precision Recall F1
(exact) (%) (exact) (%) (exact) (%) (relaxed) (%) (relaxed) (%) (relaxed) (%)
1 NER, no classifier (baseline) 9 39 14.7 15.2 65.5 24.6
2 SVM (words) 11.1 36.3 17 18.4 60.3 28.2
3 Logistic (words) 11.8 33 17.4 19.4 54.3 28.6
4 SuRDE (words) 12.8 32.6 18.4 20.4 51.9 29.3
5 SeRDE (Run 1) 14.6 28.6 19.3 23.9 46.9 31.7
6 SeRDE (Run 2, our 15.3 25.9 19.3 (+31.3%) 25.8 43.7 32.5 (+32.1%)
best submission)

7 SeRDE (Run 3) 14 31.1 19.3 22.6 50.3 31.2
8 SeRDE (200 refs, words) 16.7 24.5 19.9 27.7 40.6 32.9

SeRDE (200 refs, bigrams) 171 23.6 19.8 27.5 38 31.9
10 849 18.3 24.3 20.9 29.8 39.7 341
11 3+8+9 18.6 27 22.1(+50.3%) 30.1 43.7 35.7 (+45.1%)

‘NER, no classifier’ is the method that uses all the gene sentences as evidence sentences. SURDE and SeRDE are the supervised and semi-supervised RDEs
defined in (22). All the classifiers were trained with the labeled examples in training and development sets in Table 1. Logistic regression was used to integrate
RDE features from Method 5 to 8. Random forest was used in Method 9. The ensemble Method 10 (8+9) used the mean of the decision scores of the individual
classifiers (Methods 8 and 9) as the combination score. Method 11 was the combination of Methods 3, 8 and 9 in the same way.

Table 5. Comparison of different methods on development set of Subtask 1

F1 (binary) (%) AUC (binary) (%) F1 (exact) (%) F1 (relaxed) (%)

NER, no classifier - - 14.6 22.8
SVM (baseline) 38.4 62 14.9 23.4
Logistic 36 61 15.4 23.7
SuRDE 45.2 71 17.9 27.4
SeRDE (200 refs, words) 49.2 74.6 18.7 29.6
SeRDE (200 refs, bigrams) 48.8 74.2 18.5 29.7
SeRDE (200 refs, words + bigrams) 50.2 76.5 19.2 30.7

F1 (exact) and F1 (relaxed) are the official evaluation measures. The F1 (binary) and AUC (binary) are the performance
on the binary sentence classification task defined in ‘Method’ and Table 1.

improvement that there is still the gap between the current In Figure 4, we analyzed the impact of reference feature
bigram result and its upper bound, e.g. the semi-perfect  selection. We compared different strategies for reference
classifier defined in the work (22), since the performance feature selection including the metric obtained by theory
of bigram is still lower than unigram but intuitively bigram (22), and the chi-square method used in previous wok (18),
should perform better. and the most naive method—the frequency-based method
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which just selects top 200 high-frequent features as the ref-
erence features. In the experiment, we found the frequency
of the reference features was a very important factor to
achieve good performance, and were surprised to see that
frequency-based reference features worked almost as well
as other supervised methods. We have the following rea-
sons for that: (i) independence is a very important factor in
reference selection (22) and high-frequent words tend to be
independent with all the other words. (ii) The joint prob-
ability of high frequency features can be estimated more
accurately than low frequency features, even given a large
amount of unlabeled data. Also according to our analysis
there were very few highly indicative word features in this
task, so the labeled data could not help much to the refer-
ence feature selection. It is also promising to see from

Table 6. Comparison of different features and classifiers on

test set

Classifier for  Original features F1 F1

RDE features (exact) (relaxed)

(%) (%)

Logistic Sentence, words 18.8 31.1

Random Sentence, words 19.3 32.6
Forest

Logistic Sentence, bigrams 19.2 31

Random Sentence, bigrams 19.5 32.8
Forest

Logistic Sentence + Paragraph, words 19.9 32.9

Random Sentence + Paragraph, words 19.4 32.4
Forest

Logistic Sentence + Paragraph, bigrams  19.6 30.6

Random Sentence + Paragraph, bigrams  19.8 31.9
Forest

Figure 4 the ensemble of reference features improved the
performance increasingly with more reference features
incorporated.

We also observed the impact of the scale of the un-
labeled data for this task (Figure 5). It is interesting to see
these unlabeled data becomes a valuable resource for ma-
chine learning and the RDE-based semi-supervised learning
scaled well for the big data. We believe it will play a very
important role in the future for big data mining due to the
great scalability.

Results for Subtask 2

Tables 7 and 8 show the performance of various methods
on the test and development data in Subtask 2. As can be
seen, cosine similarity performs much better than Indri, a
classical language model-based method, on exact perform-
ance but inferior on hierarchy performance. The incorpor-
ation of definition for GO term representation decreases
almost all the performance. The possible reason for these
different results from traditional IR task is that the Indri
could work well for the document-level retrieval but for
the much shorter documents and representation based on
narrative description will introduce noise for the retrieval.
It is interesting to see that GORank outperformed both co-
sine similarity and Indri on most of the performance meas-
ures. Methods that incorporate the frequency of GO terms
(i.e. frequency-based filtering and GORank) achieve sig-
nificant improvement. Run 3 achieved the best perform-
ance on exact precision and F-score on the test set.
Hierarchy filtering improved the precision and F-score in
both development data and test data. The simple method
that used GORank and hierarchy filtering achieved the
best overall performance on test set, but not the best on
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Figure 4. the relation between the number of reference features and F1 on Subtask 1.0nly the unigram word features were considered in the experi-
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development set, so this run was not submitted for the offi-
cial evaluation.

Error analysis

Since there are multiple components in the GO annotation
system (Figure 1), it is important to know the error distri-
bution in each step. In the error analysis stage, we investi-
gated the distribution of error types in different steps via
observing the performance change after incorporation of
gold standard. For some steps, e.g. named entity recogni-
tion, evidence extraction, we replaced the predicted result
by the gold standard to investigate the impact of each step.
In Table 9, the first row is the baseline with the best per-
formance in the two subtasks. When the gold standard
gene sentences were mixed with the candidate sentence set,
there is around 10% absolute improvement for Subtask 1,
indicating that the impact of entity recognition and

34
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Figure 5. Performance varied with number of unlabeled data. The refer-
ence features are the bound-based reference features in section 2.3.2
and Figure 4. classifiers for RDE features are Logistic Regression (for
unigrams) and random forest (for bigrams).

normalization is at least 10%. Note that our system first
identified sentences with gene names (S) and then classified
them into positives (Sp) and negatives (Sn). The first row in
Table 9 was not to replace all the gene sentences (S) by the
gold standard sentences (G) but to ‘Add the gold standard
evidence sentences (G) to the gene sentences (S) to be clas-
sified’. Therefore, the final merged set (S+G) includes all
the negative instances (S7), which accounted for the 46%
relaxed F1 rather than 100% in Table 9. Since the set G
can be viewed as part of gold standard for gene name rec-
ognition/normalization, the method actually added some
gold standard to the gene sentences recognized by the sys-
tem. It was difficult to know the exact impact of entity rec-
ognition and normalization, since there was no complete
entity annotation in BioCreative IV GO corpus. Another
7% improvement on relaxed Flin Subtask 1 was obtained
by replacing gene IDs by the same IDs in the evaluation,
since some errors occurred when linking the gene IDs and
evidence sentences. For example, the mention of gene in
the sentence does not necessarily mean the sentence de-
scribes the evidence of this gene. The Method 4 in Table 9
used the gold standard result of Subtask 1 as the input of
Subtask 2, and yielded around 10% absolute improvement
on Subtask 2. In the last analysis method, we can see that if
the high frequency GO terms are correctly predicted, the
micro F1 for Subtask 2 can be greatly improved to over
60%. This result also supports our attempt of incorporat-
ing frequency information into the IR model to enhance
GO annotation. From the analysis, we can conclude the
large proportion of error lied in the classification for the
most frequent classes, e.g. around 500 ones with the fre-
quency higher than 2000, and gene named entity recogni-
tion/normalization. Therefore, these two steps should be
our research focus in the future.

Table 7. Performance of different methods on the test set of Subtask 2

Method Precision Recall F1 Precision Recall F1

(exact) (exact) (exact) (hierarchy) (hierarchy) (hierarchy)
Indri (baseline) 1% 3% 1.5% 9.9% 33.1% 15.2%
Indri + definition 0.8% 3% 1.3% 8.5% 34.7% 13.7%
Cosine 2.4% 7.6% 3.6% 7.2% 40.6% 12.2%
GORank 5.9% 14.3% 8.4% 13.5% 31.8% 19%
GORank + hierarchy 10.6% 10.6% 10.6% (+606.7%) 21.6% 21.2% 21.4%
Cosine + Frequency 4.6% 9.8% 6.2% 15.1% 28.4% 19.7%
GORank + frequency 5.5% 10.7% 7.3% 17.4% 27.5% 21.3%
GORank + frequency + hierarchy (Run 3) 9.5% 6.7% 7.8% 27.8% 16.1% 20.4%
GORank + frequency + hierarchy (Run 1) 52% 11.2% 7.1% 17% 32% 22.2% (+46%)
GORank + frequency + hierarchy (Run 2) 4.9% 14.3% 7.3 12.7% 36.8% 18.8%

‘Indri’ is a language model-based method (23). ‘Definition’ means appending the definition of GO terms to expand the text representation. ‘Cosine’ is the simi-

larity function in the first part of Formula (2). ‘Frequency’ is to limit GO vocabulary to the high-frequency GO terms (Table 3). ‘Hierarchy’ is the high-level GO

class-based filtering.
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Conclusion

We present the application of RDE-based semi-supervised
learning to the first subtask, and GORank with RDE-based
filtering for the second subtask. Our novel methods lead to
big improvement on F1 measure and robustness against
the classical text classification and IR methods on the two
subtasks. For the first task, it is very promising to see that
over 20% improvement introduced by reference distance
learning from unlabeled data, which indicates the great
potential for the next revolutionary progress in text classi-
fication, natural language processing and IR. The most
encouraging thing is that the high-order features, e.g.
bigrams can be utilized well to achieve good performance,
and we believe there is great potential for exploiting more
types of high-order word features, since data sparseness,
the major barrier of using high order features can be over-
come by RDE to a certain extent. In the future we will con-
tinue to develop machine learning methods as well
applications based on this idea.

Table 8. Performance of different methods on the develop-
ment set of Subtask 2

Method F1 F1
(exact) (hierarchy)
Indri (baseline) 1.3% 11.8%
GORank 5.9% 17.3% (+46.6%)
GORank + hierarchy 6.6% 16%
GORank + frequency + hierarchy  5.9% 12.7%
(Run 3)
GORank + frequency + hierarchy  6.9% 16.3%
(Run 1)
GORank + frequency + Hierarchy 6.9% 16.4%
(Run 2) (+430.8%)

The second subtask seems more difficult because of the
large vocabulary of classes. There are also similar problems
in the image annotation where the performance of thou-
sands of classes tends to be much lower than the binary
classification. We think that no matter using text classifica-
tion or IR technique, the representation of text and GO
terms plays a central part. We will try to apply RDE-based
semi-supervised learning to this task since it learns repre-
sentation towards the optimal one in theory. For the labels
not in the annotated data, if we are able to find some good
(accurate and independent) reference features using exter-
nal resources, we may achieve equally well performance as
supervise learning. The challenge lies in collecting fully or
semi-annotated data for all the 40k classes, since the pro-
portion of rare classes in the GO vocabulary is large
(Figure 3), and the number of annotated sentences is lim-
ited. However, one good news is that due to the power law
class distribution (Figure 3), the big class vocabulary
would not hurt much the micro level evaluation metric,
e.g. the F-score used in official evaluation. Therefore, the
classification for the minority of classes (e.g. around 500
high-frequency classes in the experiment) can be viewed as
a goal not very far from the final goal (classification for
40k classes). It is much more efficient to try various super-
vised or semi-supervised methods to improve the perform-
ance on the 500 classes than 40k classes. It is reasonable
that if we want to get big improvement on the micro F1
measure, we must solve the classification problem for high-
frequency classes first as an important preliminary step.
One simple specific way to do this is to build a supervised
classifier for the small amount of high frequency classes
(e.g. 500 classes) and then use IR method for the rest of
classes (e.g. 38 000 GO terms). Another potential aspect
for further improvement is the incorporation of the infor-
mation of certain genes, since the gene information is the
heart of the GO annotation and various types of gene

Table 9. Performance analysis via incorporation of gold standard in different steps

Analysis method

F1 F1 F1 F1

(exact, Task 1) (relaxed, Task 1) (exact, Task 2) (hierarchy, Task 2)

(%) (%) (%) (%)
1 Baseline, Result 11 in Table 3 (Subtask 1), Result 5 in Table 6 22.1 35.7 10.6 21.4
(Subtask 2)
2 Add the gold standard evidence sentences to the gene sentences to 31.8 46.2 12.5 24.9
be classified
3 Based on Result 2, replace all the gene IDs by the same ID for 36 53.4 12.5 24.9
Subtask1
4 Use the gold standard of Subtask 1 as the input of Subtask 2 100 100 19.6 33.1
5 Replace the final result by the gold standard of Subtask 2 only for 100 100 61.2 65.4

the terms with the frequency over 2000 in GO annotation
databases
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information in the databases, e.g. existing annotation or

genotype data can be used as additional features for ma-

chine learning.
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