Abstract
We performed comparative Stark-effect experiments on spectral holes in a protein and a glass sample. The protein was protoporphyrin IX-substituted myoglobin in a glycerol/water solvent. The glass sample was a protoporphyrin IX-doped mixture of dimethylformamide/glycerol. As expected, in both cases the spectral holes varied linearly with the electric field. Yet, whereas in the protein the holes showed a clear splitting, they showed no splitting in the glass sample, irrespective of the chosen polarization of the laser. In both samples the hole broadened in the applied field. The magnitude of the broadening was about the same in both cases. The following conclusions were drawn. The absence of a splitting in the glass signals an effective global inversion symmetry of the chromophore, despite its low symmetry group. The dipole moment changes are random. In the protein the inversion symmetry is broken through the spatial correlation of the protein building blocks, leading to a molecular frame-fixed dipole moment difference and, hence, to the observed splitting. Despite these symmetry-breaking properties, the local structural randomness is of the same magnitude in the glass and in the protein, as is obvious from the broadening. The distinct difference in the Stark pattern shows that the range of the relevant chromophore interactions is confined to typical dimensions of the protein.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
- Friedrich J., Gafert J., Zollfrank J., Vanderkooi J., Fidy J. Spectral hole burning and selection of conformational substates in chromoproteins. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1029–1033. doi: 10.1073/pnas.91.3.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iben IE, Braunstein D, Doster W, Frauenfelder H, Hong MK, Johnson JB, Luck S, Ormos P, Schulte A, Steinbach PJ. Glassy behavior of a protein. Phys Rev Lett. 1989 Apr 17;62(16):1916–1919. doi: 10.1103/PhysRevLett.62.1916. [DOI] [PubMed] [Google Scholar]
- Mathies R., Stryer L. Retinal has a highly dipolar vertically excited singlet state: implications for vision. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2169–2173. doi: 10.1073/pnas.73.7.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nadler W., Stein D. L. Biological transport processes and space dimension. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6750–6754. doi: 10.1073/pnas.88.15.6750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Overkamp M., Twilfer H., Gersonde K. Conformation-controlled trans-effect of the proximal histidine in haemoglobins. An electron spin resonance study of monomeric nitrosyl-57Fe-haemoglobins. Z Naturforsch C. 1976 Sep-Oct;31(9-10):524–533. doi: 10.1515/znc-1976-9-1009. [DOI] [PubMed] [Google Scholar]
- Parak F., Hartmann H., Aumann K. D., Reuscher H., Rennekamp G., Bartunik H., Steigemann W. Low temperature X-ray investigation of structural distributions in myoglobin. Eur Biophys J. 1987;15(4):237–249. doi: 10.1007/BF00577072. [DOI] [PubMed] [Google Scholar]
- Parak F., Knapp E. W. A consistent picture of protein dynamics. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7088–7092. doi: 10.1073/pnas.81.22.7088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen B. F., Stock A. M., Ringe D., Petsko G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature. 1992 Jun 4;357(6377):423–424. doi: 10.1038/357423a0. [DOI] [PubMed] [Google Scholar]
- Yang I, I, Anderson AC. Specific heat of melanin at temperatures below 3 K. Phys Rev B Condens Matter. 1986 Aug 15;34(4):2942–2944. doi: 10.1103/physrevb.34.2942. [DOI] [PubMed] [Google Scholar]
- Zollfrank J., Friedrich J., Vanderkooi J. M., Fidy J. Conformational relaxation of a low-temperature protein as probed by photochemical hole burning. Horseradish peroxidase. Biophys J. 1991 Feb;59(2):305–312. doi: 10.1016/S0006-3495(91)82224-X. [DOI] [PMC free article] [PubMed] [Google Scholar]