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Conventional radar-based image reconstruction techniques fail when they are applied to heterogeneous breast tissue, since the
underlying in-breast relative permittivity is unknown or assumed to be constant.This results in a systematic error during the process
of image formation. A recent trend in microwave biomedical imaging is to extract the relative permittivity from the object under
test to improve the image reconstruction quality and thereby to enhance the diagnostic assessment. In this paper, we present a novel
radar-based methodology for microwave breast cancer detection in heterogeneous breast tissue integrating a 3D map of relative
permittivity as a priori information. This leads to a novel image reconstruction formulation where the delay-and-sum focusing
takes place in time rather than range domain. Results are shown for a heterogeneous dense (class-4) and a scattered fibroglandular
(class-2) numerical breast phantom using Bristol’s 31-element array configuration.

1. Introduction

Breast cancer is one of the most prominent types of cancer
in women with about 421,000 new cases being diagnosed in
the European Union each year [1]. It is the most commonly
diagnosed cancer and the leading cause of cancer death
in women worldwide [2]. Thanks to national screening
programs, a steady decline in breast cancer mortality can
be observed [3]. Despite being the golden standard, X-ray
mammography has severe limitations especially for screening
dense breasts [4]. Adding to that the fact that still one in eight
women suffers breast cancer, there is a need for new detection
methods that will improve breast cancer diagnostics and
treatment.

Microwave imaging (MWI) is an emerging imaging
modality since the radiation is of low-power and non-
ionizing and provides complementary information to that
obtained from X-ray mammography. A dielectric contrast at
microwave frequencies between healthy andmalignant breast
tissue has been measured on a clinical basis [5], although this
contrast is a function of the heterogeneity of human breast

tissue and becomes smaller when the breast consists mainly
of fibroglandular tissue.

In recent years, researchers improved the microwave
approach for breast assessment by means of hardware inno-
vations and new image reconstruction techniques [6]. Since
microwaves at typical power densities are harmless for
humans [7, 8], they can be employed not only for single
diagnostic measurements but also for monitoring purposes.
This has been demonstrated in [9] by controlling the healing
process of neoadjuvant chemotherapy, where the dielectric
tissue properties change over time. Another recent patient
study has been reported in [10] employing a monostatic
radar-based imaging system.

This work is motivated by the observation that con-
ventional radar-based beamforming methodologies provide
limited imaging capabilities in dielectrically heterogeneous
imaging scenarios. A severe problem for many imaging
algorithms related to microwave breast cancer detection (and
similar to ground-penetrating radar) is given by the fact that
the dielectric properties of the heterogeneous medium are
not known a priori. Hence, the propagation velocity of the
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microwave signals is an unknown parameter for the imaging
algorithm. This leads to the well-known effect that the signal
energy does not coherently add up at the location of the scat-
terer so that its localization is affected by errors. In order to
provide this information, researchers started to estimate the
average static in-breast relative permittivity using either time
of flight measurements [11] or transmission measurements
through the breast [12]. An alternative solution is given by a
time-domain inverse scattering technique that estimates the
spatially averaged frequency-dependent dielectric properties
of breast tissue [13].

In this paper, we will introduce a novel radar-based image
reconstruction technique that goes a step further. Assuming
a 3D permittivity model as prior information, we were able
to identify a tumor in heterogeneous dense breast tissue,
where conventional delay-and-sum imaging employing a
constant relative permittivity fails. Throughout this paper,
we postulate that the calibration is optimal in the sense that
the dominant reflections from the skin and antenna coupling
artifacts can be eliminated. This is a reasonable guess when
a differential imaging is performed using contrast agents
such as carbon nanotubes [14, 15] and bacterial microbots
[16]. Such a differential contrast imaging process ensures
an optimal calibration performing an initial scan of the
breast in a first step. Then, a contrast agent is applied, which
modifies the dielectric properties of the tumour target. After a
second scan, the residual signals from both scans are applied
to the imaging method, where the initial scan acts as the
calibration signal which mitigates the effects of skin and
healthy tissue scattering. Alternatively, rotational subtraction
can be employed for differential imaging as demonstrated in
[17].

A differential imagingmethod that exploits the variations
in the propagation velocity can also be found in the context
of guided-wave based structural health monitoring [18].
Here, the group velocity of the elastic waves changes as
a function of the thickness of the structure and, in case
of a fiber-reinforced material, as a function of propagation
direction. For an accurate damage localization, especially in
composite structures, the directional group velocity should
be integrated into the image reconstruction formulation. A
related application is acoustic emission testing, where the
source location of an acoustic event can be identified with
a higher accuracy as soon as a priori information about the
anisotropic structure is available [19]. Source localization is
also a fundamental problem in seismology, where the survey
region is often geologically complicated and anisotropic. A
recent review by Chouet and Matoza [20] discusses a variety
of seismic source localization methodologies.

The remainder of this paper is organized in the following
way. Section 2 presents the novel imaging technique for
general heterogeneous breast tissue that contains the solution
for homogeneous dielectric tissue as a special case. Besides
the mathematical theory, the numerical implementation will
be described. After that, Section 3 presents not only the
systemmodel, but also severalMWI results and a quantitative
comparison. This section contains a detailed analysis when
the permittivity map is affected by errors, that is, smoothing
the permittivity map by a nonlinear 3D median filter and

assigning a constant permittivity offset while keeping the
anatomical complexity. Conclusions are drawn in Section 4
along with aspects of future work.

2. Radar-Based Image Processing Integrating
A Priori Information

2.1. Mathematical Description. The first implementation of
confocal microwave imaging can be found in [21]. Since then
many image reconstruction techniques have been developed
for radar-based MWI such as the robust Capon beamformer
[22] or the coherence factor method [23]. All methodologies
share the assumption of an average relative permittivity 𝜀

𝑟
and

hence an average wave velocity 𝑐 = 𝑐/√𝜀
𝑟
in the propagating

medium. This allows a linear transformation of the time-
domain signals 𝑟(𝑡) to the range domain 𝑟(𝑠 = 𝑐𝑡) which is
used subsequently to form the 3D image.

In the following, we first consider conventional delay-
and-sum (DAS) imaging, presented, for example, in [23,
24], since a systematic extension of the DAS technique
will be derived subsequently. The DAS method determines
the bistatic distances as the sum of the distances from the
transmitter �⃗�

𝑖
to the point in the breast volume �⃗�

𝑃
and from

breast tissue voxel �⃗�
𝑃
to the receiver �⃗�

𝑗
. The corresponding

signal amplitude is interpolated from the range profiles
𝑟
𝑖𝑗
(𝑠) and assigned to the point in the breast. This can be

mathematically expressed as
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Here, 𝑁
𝑇
denotes the number of transmitting anten-

nas and 𝑁
𝑅

is the number of receiving antennas. Each
transmitter-receiver pair produces an ellipsoid with the
transmitter and the receiver at the focal points.The ellipsoids
intersect and constructively interfere at the location of the
scatterer as shown in Figure 1(a). Whenmultiple transmitter-
receiver contributions are considered, the position of the
scatterer can be determined from the resulting maximum
intensity. The DAS method benefits from a simple and effi-
cient numerical implementation that can be greatly acceler-
ated bymodern computing platforms such asmulticore CPU,
graphics processing units (GPU), or FPGAs [25]. However,
this procedure causes, as we have seen before, a systematic
error since the heterogeneity of the female breast and thus
the relative permittivity variation is generally not considered.

In this contribution, we propose the integration of a priori
information about the breast’s dielectric properties into the
image processing formalism by means of a known three-
dimensional permittivity model 𝑃(�⃗�, 𝑓). Therefore, each
voxel is not only defined by the three coordinates (𝑥, 𝑦, 𝑧)
but also by its additional relative permittivity 𝜀

𝑟
, that is,

the static dielectric constant at the known center frequency
of the excitation pulse. The special case of homogeneous
dielectric tissue is automatically included as a special case.
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Figure 1: (a) Homogeneous DAS processing leads to ellipsoids that intersect and constructively interfere at the position of the scatterer (here
three Tx-Rx pairs); (b) heterogeneous processing generates irregular surfaces crossing the location of the scatterer. Again three Tx-Rx pairs
are considered.

As a result of the spatially varying propagation velocity, the
aforementioned linear transformation cannot be performed
anymore. Hence, the image reconstruction needs to be
performed in time domain rather than range domain. This
leads to the time delay from the transmitting antenna to the
voxel 𝑡

𝑖𝑃
and from this voxel to the receiver 𝑡

𝑃𝑗
:
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Note that the geometric distances are the same as before,
but the underlying velocity depends on the location within
the breast �⃗� and the frequency𝑓. Hence, the intensity is given
by
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In contrast to the conventional DAS beamformer that
produces an ellipsoid for each transmitter-receiver pair based
on a constant propagation velocity, the general case of het-
erogeneous tissue generates irregularly shaped equipotential
surfaces within the breast region as shown in Figure 1(b).
Similarly, a summation over all transmitter-receiver combi-
nations leads to an intensity distribution, where the highest
intensity represents the tumour location. The shape of the
surfaces highly depends on the anatomical complexity of the
propagation medium and changes significantly from one Tx-
Rx pair to another.

2.2. Numerical Implementation. The numerical implemen-
tation starts with a spatial discretization of the volume of
interest as shown in Figure 2. Each voxel (𝑘 = 1 ⋅ ⋅ ⋅ 𝑁

𝑉
) is

correspondingly defined by its coordinates (𝑥
𝑘
, 𝑦
𝑘
, 𝑧
𝑘
) and

its relative permittivity 𝜀
𝑘
. The time delay for the wave

to travel from the transmitter to the current voxel, here
𝑃
1
(�⃗�
1
) and 𝑃

2
(�⃗�
2
), and from the voxel to the receiver is

calculated on an incremental basis. Therefore, 𝑁
𝑃
points

need to be defined on a straight line between the known
coordinates of the transmitter/receiver and the voxel. The
corresponding velocity at each of the 𝑁

𝑃
points needs to

be interpolated from the known 3D permittivity map. In
the proposed implementation, a dedicated interpns-scheme
is used that is a multidimensional simplex-based variant of
linear interpolation [26]. It is used here, since it produces
accurate and computationally efficient interpolation results.
Finally, the total time delay used in (3) can be determined
from incremental summation over all𝑁

𝑃
points
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Note that the velocity in the denominator of this equation
is the average velocity between two adjacent voxels on the
straight line. In the following, the dispersive nature of the
propagation velocity is not considered for simplicity reasons,
so that the expression for the propagation velocity simplifies
to 𝑐(𝑓(�⃗�

𝑛
, 𝑓
𝑐
)), where 𝑓

𝑐
is the carrier frequency of the

excitation pulse.
The numerical approach described here is general and

can be applied to any complicated breast tissue. This enables
the application of the method to women with dense breasts
and women where the breast consists mostly of fatty tissue.
This technique relies on the hypothesis that a permittivity
map of the breast will be available with the required accuracy
and that effective contrast agents can be applied. A dielectric
property map can potentially be obtained by a frequency
shift in the reflection signals that varies as a function of
the underlying tissue permittivity [27]. Assuming a dense
network of microwave antennas, this approach might be a
solution to measure 3D permittivity maps in the future on
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Figure 2: Bistatic geometry for time-delay estimation for the image reconstruction in heterogeneous breast tissue.The points on the straight
generally do not coincide with the underlying voxel grid so that interpolation is required.

a patient specific basis without additional sensor technology.
In addition, the above-mentioned methods [11–13] can be
applied here as well. Alternatively, a permittivitymodelmight
be extracted from a secondary modality such as ultrasound,
elastography, or thermoacoustic techniques. Therefore, clini-
cal studies are required that compare the diagnostic content
between microwaves and those three modalities.

3. Results

3.1. System Model. Finite difference time domain (FDTD)
models [28] of the breast were developed to examine the
performance of the proposed imaging technique. An FDTD
model is created on the 012304 (heterogeneously dense)
MRI-derived breast model, taken from the UWCEM breast
phantom repository at the University of Wisconsin, Madison
[29]. The intensity of each voxel in the MRI is estimated and
mapped to appropriate dielectric properties in the resultant
FDTDmodel [29]. All dielectric properties are based on stud-
ies by Lazebnik et al. [5, 30], whereas frequency-dependent
dispersion is not considered. The exterior of the breast is
modelled as a low-loss permittivity matching medium with
𝜖
𝑅
= 9 and 𝜎

𝑅
= 0.25 S/m.

The FDTD grid resolution (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) is 1mm for each
axis and the time step 𝑑𝑡 is defined as 𝑑𝑥/2𝑐, where 𝑐

is the speed of light in a vacuum. The boundary of the
FDTD domain is terminated using Mur absorbing boundary
conditions [31]. Thirty-one point sources are arranged in
Bristol’s 31-element array configuration [32], as shown in
Figure 3. Each element is excited in turn with a single cycle
sinusoid with a raised cosine envelope and centre frequency
of 2GHz. Upon illumination of the breast, the remaining
30 multistatic receivers register any back scattering from the
target. Due to reciprocity, this leads to a total number of
465 signals that are used for image reconstruction. A second
FDTD data set is obtained, containing the internal breast
tissues but omitting the tumour, to calibrate our initial scan
data and to model a contrast-aided differential approach.

3.2. Image Reconstruction Examples. Figure 4 illustrates the
permittivity distribution in the heterogeneous dense breast.

A tumour with a diameter of 4mm is placed at the location
(0.104, 0.088, 0.074)m. In a first step, the conventional
DAS algorithm is used for image reconstruction. Here, the
underlying average relative permittivity, that is, the static
mean value of relative permittivity within the heterogeneous
breast of 𝜀

𝑟
≈ 17.19, is determined from the in-breast area

including the skin layer as shown in Figures 5(a)–5(c). The
permittivity outside the breast is equal to 𝜖

𝑅
= 9 so that

only the permittivity variation inside the breast is subject
to the present investigation. The average velocity is the best
possible assumption that can be made for the conventional
image processing. It can be seen from Figures 5(d)–5(f) that
conventional DAS imaging is not able to resolve the tumour.
From this observation it can be concluded that in the case of
a heterogeneous breast and perfect calibration it is generally
not possible to have a precise tumour localization assuming
homogeneous conditions.

Next, we consider the proposed heterogeneous time-
domain image reconstruction technique, where the 3D per-
mittivity map shown in Figure 4 has been exploited as
prior information. As a result, Figure 6 demonstrates a clear
focusing in all three dimensions. The signal to clutter ratio
(SCR) that determines the ratio between the maximum and
minimum detectable feature of the image is defined here
as the intensity level on dB scale. A remarkable SCR of
approximately 20 dB can be observed. This result proves that
the time domain image reconstruction technique enables
a precise tumour localization when the effects related to
imperfect calibration are neglected.

In order to visualize the differences between the homoge-
neous and heterogeneous image processing, Figure 7 shows
the contribution of a single transmitter-receiver pair. The
heterogeneous processing is shown in Figure 7(a) that leads
to an irregularly shaped equipotential surface within the
breast region. Outside the hemisphere where the antennas are
located, the relative permittivity is constant which produces,
as expected, an ellipsoidal contour there. On the other hand,
the homogeneous processing of the same signals using the
average relative permittivity of the in-breast tissue projects
the large signal amplitudes not at the location of the tumour,
compare Figure 7(b), so that its localization fails. For an
accurate localization of the tumour, it is therefore important
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Figure 3: 31-element multistatic array of point sources.
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Figure 4: Heterogeneous dense numerical breast phantom with a tumour diameter of 4mm at (0.104, 0.088, 0.074)m.

to minimize the uncertainty related to the biological tissue
by accounting for locally changing propagation velocity. In
conclusion, this example illustrates the systematic error that
occurs through the homogeneity assumption, which leads
in this example to the fact that no meaningful tumour
localization result can be obtained.

Now, that we have found that a priori information about
the dielectric properties is required for the detection of the
tumour in heterogeneous dense breasts, the question is how
good this model needs to be for accurate tumour imaging.
To study this effect, we first consider a global bias in relative
permittivity of (−1), leading to ambiguous tumour detection
results shown in Figure 8. Further, we have used a nonlinear
3D median filter to smooth out anatomical details. The
updated permittivitymap is shown in Figures 9(a)–9(c). Note

that due to the smoothing process the skin layer has been
removed. The imaging result is presented in Figures 9(d)–
9(f), where additional peaks can be observed in 𝑦-𝑧-plane
and 𝑥-𝑦-plane making the diagnostic result ambiguous, too.

3.3. Quantitative Comparison Using Peak-to-Mean Ratio.
Since a processing of the data with the conventional DAS
method does not lead to a digital focusing, the following
quantitative comparison is limited to the case of variants from
the heterogeneous processing fromSection 3.2.Therefore, the
normalized peak-to-mean ratio is considered with the results
shown in Table 1. The peak energy is the maximum pixel
energy in a 3D spatial window around the known center point
of the tumour, whereas the mean energy is the mean value
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Figure 5: (a)–(c) Homogeneous map of relative permittivity, where the permittivity of the breast tissue is defined as the average in-breast
permittivity of the heterogeneous breast shown in Figure 4. (d)–(f) Tumour localization fails when employing the average in-breast relative
permittivity. The tumour position is indicated with a red circle.

Table 1: Evaluation of the reconstruction performance via normal-
ized peak-to-mean ratio.

Description Normalized peak-to-mean ratio
𝑥
𝑁𝑜=1

0.939
𝑥
𝑁𝑜=3

1
𝑥
𝑁𝑜=5

0.775
𝑥
𝑁𝑜=7

0.739
𝑥
𝑁𝑜=9

0.762
𝑥
𝑁𝑜=1,𝐵=+1

0.529

of the energy in the remaining 3D domain outside the 3D
spatial window.This ratio can be used to quantify the focusing
performance where a higher value stands for better focusing
quality.The values are normalized with respect to the highest
peak-to-mean value.

Based on this definition and a radius of 6mm for
the spatial window, that is, three times the radius of the
tumour, the proposed heterogeneous processing with the
true permittivity map as a priori information produces the

best overall results. Table 1 reveals a good focusing for the
true permittivity with a median filter of 𝑁

𝑜
= 1. Slightly

better focusing can be obtained in this case when the filter
order is increased to 𝑁

𝑜
= 3. Further increasing the filter

order and biasing the permittivity by (−1) reduce the focusing
performance.

3.4. Comparison of Beamforming Techniques. In this section
we will compare the performance of the proposed method
with respect tomore recent image reconstruction techniques,
namely, the coherence factor method [33] and the channel-
ranked beamformer [34]. Figure 10(a) shows the permittivity
map of a class-2 numerical breast phantom with a reduced
tissue complexity compared to the above-mentioned class-4
phantom in Figure 4. Figures 10(b)–10(d) show the imaging
results of a planar slice for the proposedmethod, the channel-
ranked beamformer, and the coherence factor method. The
localization error, that is, the Euclidean distance between
the known center of the tumour in 3D and the location of
the maximum intensity, for the proposed method is 5.0mm
and increases for the channel-ranked beamformer and the
coherence factor method to 13.1mm. It can be concluded
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Figure 6: Time-domain DAS processing incorporating the true map of relative permittivity for accurate tumour localization.
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Figure 7: (a) Heterogeneous signal processing of Tx: 6 and Rx: 26 (black circles) leads to irregularly shaped equipotential surfaces within the
breast region. Outside the hemisphere where the antennas are located (dashed line), the relative permittivity is constant which produces an
ellipsoidal shape there. (b) Quasi-homogeneous processing of the same signals using the average relative permittivity of the in-breast tissue
projects the large signal amplitudes not at the location of the tumour so that its localization fails. This example illustrates the systematic error
that occurs through the homogeneity assumption.

from this case study that the heterogeneous processing
outperforms the two other reconstruction methods.

4. Conclusions

In this paper, a novel time-domain beamforming approach
is proposed for radar-based tumour localization in dielec-
trically heterogeneous imaging scenarios. A special focus is
on microwave breast cancer imaging in heterogeneous dense
breast tissue using a multistatic radar with 31 transmitters
and receivers. It was found that conventional delay-and-sum
imaging, which assumes constant permittivity of the whole

breast, is not able to resolve the tumour even in the case of
perfect calibration and assuming the best possible average
permittivity of the breast tissue. If we integrate the 3Dpermit-
tivity map as prior information in the image reconstruction
method, which can be obtained from coexisting imaging
modalities, we are able to resolve the tumour with a high
signal to clutter ratio of approximately 20 dB. Further, we
biased and smoothed the 3D permittivity map which leads in
both cases to ambiguous tumor localization results. From that
observation it can be concluded that the integration of prior
information for tumour localization is of major importance,
especially for microwave imaging of heterogeneous dense
breasts.
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Figure 8: Keeping the anatomical complexity of the original breast geometry and employing a global bias in relative permittivity of (−1) leads
to ambiguous tumour detection results in 𝑦-𝑧-plane and 𝑥-𝑦-plane.
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Figure 9: (a)–(c) Smoothed 3D map of relative permittivity using a 3D median filter of𝑁
𝑜
= 7. (d)–(f) Additional peaks can be observed in

𝑦-𝑧-plane and 𝑥-𝑦-plane making the diagnostic result ambiguous.
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Figure 10: Class-2 numerical breast phantom (here 𝑥-𝑦-plane) with a 4mm tumour located at (0.148, 0.078, 0.097)m. (a) Map of relative
permittivity, (b) image reconstruction result for the proposed method, (c) channel-ranked beamformer, and (d) coherence factor method.
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