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Purpose: To derive fundamental limits on the effect of pulse pileup and quantum noise in photon
counting detectors on the signal to noise ratio (SNR) and noise variance of energy selective x-ray
imaging systems.
Methods: An idealized model of the response of counting detectors to pulse pileup is used. The
model assumes a nonparalyzable response and delta function pulse shape. The model is used to derive
analytical formulas for the noise and energy spectrum of the recorded photons with pulse pileup.
These formulas are first verified with a Monte Carlo simulation. They are then used with a method
introduced in a previous paper [R. E. Alvarez, “Near optimal energy selective x-ray imaging system
performance with simple detectors,” Med. Phys. 37, 822–841 (2010)] to compare the signal to noise
ratio with pileup to the ideal SNR with perfect energy resolution. Detectors studied include photon
counting detectors with pulse height analysis (PHA), detectors that simultaneously measure the
number of photons and the integrated energy (NQ detector), and conventional energy integrating and
photon counting detectors. The increase in the A-vector variance with dead time is also computed and
compared to the Monte Carlo results. A formula for the covariance of the NQ detector is developed.
The validity of the constant covariance approximation to the Cramèr–Rao lower bound (CRLB) for
larger counts is tested.
Results: The SNR becomes smaller than the conventional energy integrating detector (Q) SNR for
0.52, 0.65, and 0.78 expected number photons per dead time for counting (N), two, and four bin
PHA detectors, respectively. The NQ detector SNR is always larger than the N and Q SNR but
only marginally so for larger dead times. Its noise variance increases by a factor of approximately
3 and 5 for the A1 and A2 components as the dead time parameter increases from 0 to 0.8 photons
per dead time. With four bin PHA data, the increase in variance is approximately 2 and 4 times.
The constant covariance approximation to the CRLB is valid for larger counts such as those used in
medical imaging.
Conclusions: The SNR decreases rapidly as dead time increases. This decrease places stringent
limits on allowable dead times with the high count rates required for medical imaging systems.
The probability distribution of the idealized data with pileup is shown to be accurately described as
a multivariate normal for expected counts greater than those typically utilized in medical imaging
systems. The constant covariance approximation to the CRLB is also shown to be valid in this
case. A new formula for the covariance of the NQ detector with pileup is derived and validated.
C 2014 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4898102]
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1. INTRODUCTION

One of the most important advantages1,2 of photon counting
detectors for medical x-ray systems is their ability to provide
energy spectrum information with pulse height analysis
(PHA).3 However, the adoption of these detectors has been
limited because the current state-of-the-art response time, or
dead time, is large compared with the interphoton times of the
high count rates required for medical applications. The dead
time leads to pulse pileup3 that distorts the count signals and
the recorded energy. These distortions affect the performance
of energy selective systems and the purpose of this paper is to
derive fundamental limits on the effect of pileup on the signal
to noise ratio (SNR) and noise variance of these systems.

Photon counting detectors have a number of imperfections
that affect their use in medical imaging systems.1,2,4–9 This pa-
per focuses on the fundamental limitations of finite response
time and quantum noise. These are both fundamental limita-
tions that will be present in all detectors. The universal pres-
ence of quantum noise is well known but, due to the random
interaction times of photons with matter,10 there will always
be a nonzero probability that two or more interactions may
occur during the detector response time no matter how small.
These multiple interactions affect the signal and the noise and
we need methods to quantify their effects and to compare the
performance of different types of detectors.

In order to focus on the effects of finite response time, an
idealized model of photon counting detectors will be used. The

111909-1 Med. Phys. 41 (11), November 2014 0094-2405/2014/41(11)/111909/13/$30.00 © 2014 Am. Assoc. Phys. Med. 111909-1

http://dx.doi.org/10.1118/1.4898102
http://dx.doi.org/10.1118/1.4898102
http://dx.doi.org/10.1118/1.4898102
http://dx.doi.org/10.1118/1.4898102
http://dx.doi.org/10.1118/1.4898102
http://dx.doi.org/10.1118/1.4898102
http://dx.doi.org/10.1118/1.4898102
http://dx.doi.org/10.1118/1.4898102
http://dx.doi.org/10.1118/1.4898102
http://dx.doi.org/10.1118/1.4898102
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4898102&domain=pdf&date_stamp=2014-10-21


111909-2 Robert E. Alvarez: SNR with pileup 111909-2

model assumes a nonparalyzable response and delta function
pulse shape. With the nonparalyzable model, the dead time is
fixed and unaffected by the arrival of other photons during the
lock up period. The delta function pulse shape implies that the
recorded energy is the sum of the energies of the photons that
arrive during the dead time regardless of how close the arrival
time of additional photons to the end of the period.

The idealized model is used to derive analytical formulas
for the noise and energy spectrum of the recorded photons with
pulse pileup. These formulas are first verified with a Monte
Carlo simulation that compares the covariance of A-vector
noise to the Cramèr–Rao lower bound (CRLB). They are then
used with a method introduced in a previous paper11 to comp-
are the signal to noise ratio of systems using detectors with
pileup to the ideal Tapiovaara–Wagner12 SNR with perfect en-
ergy resolution. The method is applied to compute the SNR as
a function of dead time of several types of detectors including
photon counting detectors with pulse height analysis, detectors
that simultaneously measure the number of photons and the
integrated energy,13,14 called NQ detectors here, and conven-
tional energy integrating and photon counting detectors. The
increase in the A-vector variance with dead time is also com-
puted and compared to the Monte Carlo results.

Mathematical models of the statistical properties of the sig-
nals of photon counting detectors with pileup are described.
A new mathematical model for the covariance of NQ signals
with pileup is derived and validated with Monte Carlo simula-
tions. Methods to compute the CRLB are discussed. It is shown
that the constant covariance approximation to the CRLB intro-
duced in a previous paper15 also provides accurate results for
detectors with pulse pileup. The constant covariance model is
easier to compute and leads to simpler analytical formulas.

2. METHODS

2.A. The Tapiovaara–Wagner optimal SNR with full
energy spectrum information

In order to compare the SNR of energy selective sys-
tems, we need to define an imaging task. The task used by
Tapiovaara and Wagner12 will also be used. The task, shown
in Fig. 1, is to decide from measurements of the spectrum of
the transmitted photons whether a feature is present or not.
Two measurements are made, the first in the background re-
gion and the second in a region that may or may not contain
the feature. The object is composed of two uniform materials,
background and feature, and has a constant thickness.

Tapiovaara and Wagner showed that with a quantum noise
limited detector with no pulse pileup, the SNR is

SNR2=

� �
Sb(E)−Sf (E)�D(E)w(E)dE

�2 �
Sb(E)+Sf (E)�D(E)w2(E)dE

,

where Sb(E) and Sf (E) are the mean spectra in the back-
ground and feature measurement regions at x-ray energy E,
D(E) is the fraction of the photons detected, and w(E) is a
weighting or coding function. They then showed that for an

F. 1. Imaging task for SNR computation. The object consists of a slab
of background material that may have an embedded feature. It is irradiated
with an energy spectrum Sincident(E) and the transmitted photons with en-
ergy spectrum ST (E) are measured by an energy selective detector in the
background region and in the region with the feature. The task is to decide
from the spectrum measurements whether the feature is present.

ideal detector that maximizes SNR, D(E)= 1 and

w(E)= Sb(E)−Sf (E)
Sb(E)+Sf (E) .

With these parameters, the optimal SNR is

SNR2
ideal=

 �
Sb(E)−Sf (E)�2
Sb(E)+Sf (E) dE.

If the feature is thin so t f
�
µ f (E)− µb(E)�≪ 1, then the

optimal SNR is

SNR2
ideal,Tapiovaara−Wagner=

t2
f

2


Sb(E)[δµ(E)]2dE,

where δµ(E)= µ f (E)− µb(E). We can gain some insight into
this expression by defining a normalized spectrum

Ŝb(E)= Sb(E)
Sb(E)dE

.

Then,

SNR2
ideal,Tapiovaara−Wagner= λ

t2
f

2

[δµ(E)]2
Sb
, (1)

where λ =


Sb(E)dE is the expected number of photons and[δµ(E)]2
Sb
=


Ŝb(E)[δµ(E)]2dE

is the effective value of the square of the difference of the
attenuation coefficients using the normalized energy spec-
trum as the weighting function.
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2.B. Linearized model for noise analysis

Applying the Alvarez–Macovski method16 to the Tapiova-
ara–Wagner imaging task, the x-ray attenuation coefficient
µ(r,E) at each point r in the object at photon energy E is
approximated as a linear combination of basis functions

µ(r,E)= a1(r) f1(E)+a2(r) f2(E). (2)

In this paper, two basis functions will be used, which is accu-
rate for ordinary body materials.15 Following the method intro-
duced in a previous paper,11 we can apply the decomposition
in Eq. (2) to the imaging task in Fig. 1 by letting the attenua-
tion coefficients of the background and feature materials be the
basis functions. Then, the vectors of the basis set coefficients,
a= [a1,a2]T , for the feature and background regions are

af =



1
0


, ab=



0
1


. (3)

Column vectors are used and the symbolT denotes a transpose.
We solve for the A-vector, the vector whose components

are line integrals of the basis coefficients Aj =


Patha j(r)ds
j = 1,2, by using measurements of the transmission of the ob-
ject with multiple spectra. With a photon counting detector,
the expected values of the measurements are

Nj =


gj(E)S(E)e−A1 f1(E)−A2 f2(E)dE j = 1, . . ., J, (4)

where S(E) is the spectrum transmitted through the object
and gj(E) are the effective spectra for the measurements. For
example, with ideal PHA, the gj(E) are rectangle functions
equal to 1 in each energy bin and 0 outside.

Because of the exponential relation of measurements to
the A-vector in Eq. (4), taking the logarithm approximately
linearizes it. Defining the logarithm of the measurements vec-
tor L with components

L j =−log


Nj

Nj(0)

,

where Nj(0) is the measurement with no object in the beam,
we can approximate the measurement for noise calculations
using the linear term of the Taylor’s series about the expected
value ⟨A⟩

δL(A)≈ ∂L
∂A

δA+ · ··. (5)

In Eq. (5), δL=L(⟨A⟩+δA)−L(⟨A⟩) and δA=A− ⟨A⟩ are
the deviations about the expected value.

2.C. Comparing the SNR of detectors

With the linearized model of Eq. (5) and assuming that the
noise probability distribution is multivariate normal, we can
apply statistical detection theory to analyze the performance
in the imaging task of Fig. 1. If the feature does not have high
attenuation so the covariance of the A-vector, CA, is approx-
imately the same in the background and feature regions, the
signal to noise ratio is

SNR2= (δA)TC−1
A δA. (6)

The use of the multivariate normal distribution is examined
in Appendix A and the constant covariance assumption is
discussed in Appendix B. The Appendices show that both of
these assumptions are justified for sufficiently large expected
number of photons. Since medical x-ray imaging systems for
material-selective applications typically use large number of
photons per measurement, the assumptions are justified for
the systems to be studied here.

The optimal SNR for any detector can be computed by
using the constant covariance CRLB for CA,17

CA=
�
MTC−1

L M
�−1

, (7)

where the notation ( )−1 denotes the matrix inverse and M
= ∂L/∂A is the gradient of the measurements as defined in
Eq. (5).

In Eq. (6), δA is the difference of the A-vectors of the
feature and background regions in Fig. 1

δA=Afeature+background−Abackground.

With the parallel geometry, the A-vectors are Afeature+background
= ab(tb− t f )+aft f and Abackground= abtb, where ab and af are
the basis set coefficients of the background and feature mate-
rials given in Eq. (3). The difference of the A-vector is there-
fore

δA= t f (af−ab)= t f


1
−1


.

By using this result in Eq. (6), we can compare the SNR
derived with the basis function decomposition to the
Tapiovaara–Wagner optimal SNR in Eq. (1).

2.D. Models for pulse pileup

The x-ray photon counting detectors analyzed here have
two principal components: a sensor that interacts with x-ray
photons and produces a signal and a readout that analyzes
the signal. An example of a sensor is a high atomic number
semiconductor material. X-ray photons produce free charge
carriers in the material and it takes a finite time to collect
them. The readout electronics also require a finite time to
carry out their operations. These effects and others2,4 result
in a nonzero overall detector response time and there will be
errors if photons enter the sensor during the response time of
a first photon resulting in pulse pileup.

Pulse pileup is a complex phenomenon that affects both the
recorded counts and photon energies.2 These signals depend
on the pulse waveform and, due to the differing mobilities of
electrons and holes and many other factors, the waveform can
be complex with a peak and long tail.8,18 However, as has been
shown by the use of silicon with its excellent material prop-
erties as a sensor,1 as the properties of high atomic number
semiconductors improve, the pulse shapes approach an ideal
short time pulse. Therefore, idealized models will be empha-
sized here to derive fundamental limits.

Two general models have been developed to describe the
effect of pulse pileup on recorded counts,3 paralyzable and
nonparalyzable. The purpose of these models is to describe

Medical Physics, Vol. 41, No. 11, November 2014



111909-4 Robert E. Alvarez: SNR with pileup 111909-4

the signals as a function of count rate and not necessarily
the actual functioning of a detector. In both models, the total
response time is modeled using the dead time, τ, which is
defined to be the minimum time between two photons that
are recorded as separate events.3 The dead time combines the
contributions of both the sensor and readout response times.
In both models, the detector is assumed to start in a “live”
state. When a photon is absorbed, the detector is modeled as
entering a separate state where it does not count additional
photons. In the paralyzable model, the arrival of photons ex-
tends the time in the noncounting state. In the nonparalyzable
model, the time in the separate state is assumed to be fixed
and independent of the arrival of any other photons during the
dead time. Both models give similar recorded counts at low
interaction rates but give different results at high rates where
the probability of multiple interactions during the dead time
becomes significant. The nonparalyzable model will be used
in this paper. Measurements by Taguchi et al.8 indicate that
for the detectors they studied it is more accurate at higher
count rates. It also leads to simpler analytical results.19

The recorded energy with pileup will be modeled with an
idealization that assumes the pulse shape is a delta function
and the recorded energy is the integral of the pulses during
the dead time.9 With this approximation, the detector dead
time is modeled separately from pulse width and is not due to
overlapping pulses. The model also assumes that the photon
energy is converted completely and linearly into charge car-
riers so there are no losses due to Compton or Rayleigh scat-
tering and all K-fluorescence radiation is reabsorbed within
the sensor. All of the carriers are assumed to be collected
so there is no charge trapping or charge sharing with nearby
detectors. With these assumptions, the recorded energy is the
sum of the energies of the photons that arrive during the dead
time regardless of how close the arrival of a photon to the end
of the period.

The recorded energies are sum of several random quan-
tities including the random photon energies produced by the
x-ray source, the random number of charge carriers produced
by a photon of a given energy, electronic noise in the readout,
and others. An energy of the order of 10 electron-volts (eV)
is required to produce a charge carrier pair in common x-ray
sensors4 and diagnostic x-ray photon energies are of the order
of 105 eV, so an average, ⟨Ne⟩, 104 charge carrier pairs are
produced by each photon. Assuming the number of carriers is
Poisson distributed, it can be shown that the standard devia-
tion of the measured energy errors due to the random number
of charge carriers is ⟨E⟩/⟨Ne⟩, where ⟨E⟩ is the average
photon energy incident on the detector. With the large num-
ber of charge carriers produced, this is much less than the
standard deviation of the photon energies of a broad spectrum
source such as an x-ray tube that is almost universally used in
material-selective imaging.

Similarly, noise in modern electronics can be reduced so
its contribution to the standard deviation of the measured en-
ergy errors is also much less than the photon energy standard
deviation. The random factors can be modeled as statisti-
cally independent so the probability density function (PDF)
of the recorded photon energies is the convolution of their

individual PDF.20 Because the variances of the other factors
are much smaller, the overall PDF will be dominated by the
photon energy PDF. The overall recorded energy PDF will
therefore be modeled as depending only on the photon en-
ergy spectrum incident on the detector and the dead time as
described in Secs. 2.G and 2.H.

2.E. Photon count statistics with pileup

A widely used model10 for the number of photons N(t)
incident on the detector before time t is a Poisson counting
process. With this process, the random interevent times have
an exponential distribution. If tn is the time of event n, then
the probability that the next event time tn+1 is less than tn+δt
is

Prob(tn+1 < tn+δt)= 1−e−ρδt, δt ≥ 0, (8)

where, as defined in Sec. 2.D, ρ is the average rate of photon
arrivals. For small δt, this is approximately ρδt so the prob-
ability that one or more photons arrive during the response
time τ is greater than ρτ. For a nonzero τ, there is always
a nonzero probability that one or more photons arrive dur-
ing this time. For later use, note that21 the expected value of
the exponentially distributed interevent times is 1/ρ and the
variance is 1/ρ2.

With pulse pileup, we can describe the recorded counts as
a renewal process where the interevent times are not neces-
sarily exponentially distributed as in the Poisson process.
Suppose the expected value and variance of the interevent
times are µ and σ and N(t) is the number of photons that
have arrived by time t. The central limit theorem of renewal
processes22 states that, for counting times much greater than
the mean interevent time, we can standardize N(t) so that the
distribution of

N(t)− t/µ

σ


t/µ3
→N (0,1) (9)

approaches a normal distribution with zero mean and unit
variance. This theorem is reasonable since if t is much greater
than the mean interevent time, N(t) depends on the sum of a
large number of random interevent times.

Applying the theorem to the nonparalyzable case with
dead time τ, the mean interevent time of the recorded pho-
tons increases to µpileup= (1/ρ)+τ. Since τ is constant, the
variance is unchanged σ2

pileup= 1/ρ2. From Eq. (9), for count-
ing times substantially larger than 1/ρ, the mean and variance
with pileup approach the following limiting values:

⟨Nrec(t)⟩→ t/µpileup=
λ

1+η
, (10)

Var(Nrec(t))→σ2
pileupt/µ

3
pileup=

λ

(1+η)3 , (11)

where λ = ρt is the expected number of photons incident on
the detector during the measurement time and η = ρτ is the
expected number during the dead time. With η greater than
zero, the statistics are no longer Poisson since the expected
value and the variance are different.
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2.F. Statistics of NQ detectors with pileup

The NQ detector simultaneously measures the count N
and the integrated energy Q of the photons. Alvarez11 showed
that the covariance with no pulse pileup is

CNQ,no pileup= λ



1 ⟨E⟩
⟨E⟩ 


E2�

,

where ⟨E⟩ and


E2� are the effective values of the photon

energy and its square using the normalized spectrum as the
weighting function. The expected value of the photon counts
is ⟨N⟩= λ and the expected value of the integrated energy is
⟨Q⟩= λ⟨E⟩.

With the delta function pulse shape model, the integrated
energy is unaffected by pulse pileup. The expected value and
variance of the recorded photon counts with pulse pileup are
given by Eqs. (10) and (11) of Sec. 2.E. Appendix C shows
that the covariance of the recorded counts and integrated en-
ergy is

cov(Nrec,Q)= λ⟨E⟩
(1+η)2 .

Summarizing these results, the covariance matrix of the NQ
detector with pileup is

CNQ,pileup= λ



1

(1+η)3
⟨E⟩

(1+η)2
⟨E⟩

(1+η)2


E2�



.

2.G. Distribution of PHA data with no pileup

An idealized photon counting detector with PHA divides
the energy axis into energy bins and counts the photons
whose energies fall within each bin. If energy bin k is the
region from Ek to Ek+1, then the expected number of photons
for bin k is ⟨Nk⟩= λPk, where the bin fraction is

Pk =

 Ek+1

Ek

p(E)dE. (12)

The photon energy PDF p(E) in Eq. (12) is the normalized
spectrum

p(E)= S(E)
s(E)dE

, (13)

where S(E) is the spectrum transmitted through the object.
If the energy bins are nonoverlapping, we can model the bin
counts as independent Poisson random variables with param-
eters ⟨Nk⟩. The covariance matrix of the counts is then diag-
onal with elements ⟨Nk⟩= λPk.

2.H. PHA with pileup

The derivation of Wang et al.9 for the statistics with the
nonparalyzable model and delta function pulse shape can be
summarized as follows. First, the results of Frey et al.23 are

used to show that the PDF of the recorded energies is

prec(E)=
∞
k=0

ηk

k!
e−η


p(k)∗ p


, (14)

where
�
p(k)∗ p

�
is the kth order convolution of the PDF of

the incident photon energies p(E) computed from the energy
spectrum with Eq. (13) and, by definition,

�
p(0)∗ p

�
= p. The

spectrum of the recorded energies is λprec(E), where λ is
the expected number of photons incident on the detector dur-
ing the measurement time. Wang et al. then showed that the
recorded bin probabilities with pileup are

Prec,k =

 Ek+1

Ek

prec(E)dE. (15)

Using Eq. (10), the expected value of the bin counts with
pileup is



Nrec,k

�
= ⟨Nrec⟩Prec,k =

λPrec,k

1+η
.

Wang et al. then show that the variance is

var(Nrec,k)= ⟨Nrec⟩Prec,k+ (var(Nrec)− ⟨Nrec⟩)P2
rec,k

and the covariance is

cov(Nrec, j, Nrec,k) j,k = Prec, jPrec,k (var(Nrec)− ⟨Nrec⟩). (16)

With pileup, the covariance matrix is no longer diagonal.
Using Eqs. (10) and (11), the nonPoisson factor, D = var
(Nrec)− ⟨Nrec⟩, in Eq. (16) is negative for nonzero dead time.
Therefore, the recorded bin counts are negatively correlated
and not Poisson distributed. The nonPoisson factor approaches
zero as the dead time and therefore η approach zero.

2.I. Statistics of logarithm data

We can derive the expected value, variance, and covari-
ance of the logarithm signals from the linear results for well
behaved random variables, such as those considered here.11 If
the probability of a zero value is negligible or a constant is
added to the data to prevent this condition, the statistics of log
data are

⟨log(X)⟩= log(⟨X⟩),
var(log(X))= var(X)

⟨X⟩2 ,

cov(log(X),log(Y))= cov(X,Y)
⟨X⟩⟨Y⟩ . (17)

2.J. The SNR with pulse pileup

Equation (6) is a fundamental definition of SNR based
on detection theory and can be applied to data with pulse
pileup. Appendix C shows that, with pulse pileup, the con-
stant covariance CRLB, Eq. (7), is an accurate approxi-
mation to the full CRLB, Eq. (B1). Substituting the constant
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covariance CRLB for the A-vector covariance, CA, in the
definition of SNR,

SNR2= (δA)T �MTC−1
L M

�
δA. (18)

To use Eq. (18) with nonzero dead time, we need to develop
methods to compute the measurement covariance CL and the
gradient matrix M. Formulas for the measurement covari-
ance, CL, with pileup are derived in Secs. 2.F and 2.H and
summarized in Tables I and II.

The gradient matrix is defined as M= ∂L
∂A . With pileup, the

count rate and therefore the effective spectrum change as A
changes. To compute the gradient in this case, we approxi-
mate the derivative from the first difference

M̂=
∆L
∆A

.

To compute ∆L, we first compute the spectra through the
object with attenuation A and then with A+∆A. The trans-
mitted spectra are not affected by pileup since they occur
before the measurement. These transmitted spectra are then
used to compute the expected values of the measurements
with pileup using the formulas in Sec. 2.H. The entries of the
matrix M̂ are the ratios of the elements of ∆L with pileup for
each component of ∆A.

2.K. Monte Carlo simulation of A-vector covariance
with pileup

A Monte Carlo simulation was used to validate the for-
mulas listed in Tables I and II. The simulation compared the
covariance of A-vector values computed from random mea-
surement data to the Cramèr–Rao lower bound. The CRLB
was computed from the full CRLB in Eq. (B1) using the
formulas summarized in Tables I and II. The covariance of
the A-vector data was computed from random Monte Carlo
data generated with a method that did not depend on the
formulas so agreement is an indication of the formulas’ va-
lidity. Although not shown here due to space constraints, the

individual formulas were also verified using the Monte Carlo
data.

The random measurement data were computed with the
nonparalyzable, delta function pulse shape model described
in Sec. 2.D. The computation started by generating random
interphoton times and the energies for photons incident on
the detector. The random interphoton times were generated
using the inverse cumulative transform method.24 For the
exponentially distributed interphoton times of the Poisson
process, the inverse cumulative distribution function is the
negative of the logarithm so

δtpulse=−


1
ρ


log(rand),

where ρ is the expected value of the rate of photons incident
on the detector, and rand is a uniform (0,1) random num-
ber generator. The photon arrival times are computed as the
cumulative sum of the interphoton times.

The random energies of the photons were derived from the
energy spectrum of the photons transmitted through the ob-
ject without pileup. The spectrum incident on the object was
a 120 kV x-ray tube spectrum computed using the TASMIP
model.25 The spectrum of the photons transmitted through the
object and incident on the detector was computed using atten-
uation coefficients computed from the XCOM tabulation26 by
piecewise continuous log–log interpolation between absorp-
tion edges. The object was assumed to be 20 gm/cm2 soft
tissue background with a 0.2 gm/cm2 cortical bone compo-
sition feature. The materials’ atomic compositions were from
ICRU Report 44.27 Perfect geometry was assumed with no
scatter and the detector was assumed to absorb all photons
incident on it. The cumulative distribution function was the
cumulative sum of the normalized photon energy spectrum,
Eq. (13). The inverse cumulative distribution was computed
by linear interpolation.

The recorded counts and energies were computed from the
random photon arrival times and energies with the following

T I. NQ formulas.

No pileup With pileup

ρ = photon rate λ = ρTintegrate F =
⟨E2⟩
⟨E⟩2 η = ρτdeadtime

Detector Mean Variance Mean Variance

Q λ ⟨E⟩ λ


E2� λ ⟨E⟩ λ



E2�

log(Q) log (λ ⟨E⟩) 1
λ F log (λ ⟨E⟩) 1

λ F

N λ λ λ
1+η

λ

(1+η)3

log(N ) log (λ) 1
λ log


λ

(1+η)


1
λ(1+η)

Cov(N,Q) λ



1 ⟨E⟩
⟨E⟩ 

E2
 λ



1

(1 + η)3
⟨E⟩

(1 + η)2
⟨E⟩

(1 + η)2

E2




Cov(log N, logQ) 1
λ



1 1
1 F


1

λ(1+η)


1 1
1 F (1 + η)


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T II. PHA formulas.

No pileup
λ =


S(E)dE {0 < E1 < . . . < Enbins} With pileup

Photon number spectrum S(E) Srec(E) = λprec(E)
Normalized spectrum p(E) = S(E)/λ prec(E) = ∞

k=0
ηk

k ! e
−η


p(k ) ∗ p


Bin probabilities Pk =

 Ek
Ek−1

p(E)dE Prec,k =
 Ek
Ek−1

prec(E)dE
Expected total counts ⟨N ⟩ = λ ⟨Nrec⟩ = λ

1+η
Variance total counts var(N ) = λ var(Nrec) = λ

(1+η)3
Nonpoisson factor D = 0 D = var(Nrec) − ⟨Nrec⟩
Expected bin counts ⟨Nk⟩ = λPk



Nrec,k

�
= ⟨Nrec⟩ Prec,k

Variance bin counts var(Nk) = λPk var(Nrec,k) = ⟨Nrec⟩ Prec,k + DP2
rec,k

Covariance bin counts 0 cov(N j, Nk) j,k = Prec, jPrec,kD

algorithm. The first photon time started the process. Addi-
tional photons with times from the first photon time to that
time plus the dead time did not increment the count but did
increment the recorded energy. The next photon with time
greater than the first photon time plus dead time triggered an-
other recorded count. The recorded energy was computed as
with the first photon. The process was repeated for all photon
times less than or equal to the integration time of the detector.

The number of recorded events and their energies were the
signals for the NQ detector with pulse pileup. The PHA sig-
nals with pileup were computed from the recorded energies
as the number of events with recorded energy falling within
predefined energy bins.

The random L-vector values were computed from the nega-
tive of the logarithm of the recorded data divided by the ex-
pected value of the data with no object in the beam. The ex-
pected values of the counts were sufficiently large so that no
zero values of random data occurred. The L data were then
used to compute the A-vectors using a linear maximum likeli-
hood estimator

ÂMLE=

�
MTC−1

L M
�−1MTC−1

L


L. (19)

The rationale and derivation of this estimator are discussed
in a previous paper.15 It is used here because the maximum
likelihood estimator is known to be asymptotically efficient.28

That is, it achieves the CRLB for sufficiently large photon
counts. Although an approximation, the simplicity of the
linear estimator allows a straightforward validation of the
theoretical formulas.

The M and CL matrices with pileup depend on the energy
spectrum as discussed in Sec. 2.J. They were computed us-
ing the transmitted energy spectrum in the background-only
region of the object in Fig. 1. The feature was assumed to
be thin and the random variations small so the parameters M
and CL did not change substantially in the background plus
feature region. To test this assumption, the random measure-
ments for comparison to the CRLB were computed using the
spectrum in the background plus feature region. With these
assumptions, the factor in brackets in Eq. (19) is a constant
matrix so the MLE is implemented as a matrix multiplication.

The sample covariance of the A-vectors was computed
with 5000 trials for each of three values of the dead time

parameter η, 0, 0.25, and 0.5 counts per dead time and ex-
pected number of photons incident on the detector from 500
to 2500.

2.L. Effect of pulse pileup on signal to noise ratio

The effect of pulse pileup on SNR was computed for
five detector types: photon counting (N), energy integrat-
ing (Q), simultaneous photon counting and integrated en-
ergy (NQ), and photon counting with two and four bin PHA
(PHA2, PHA4). The SNR for each detector was normalized
by dividing by the ideal Tapiovaara–Wagner SNR, discussed
in Sec. 2.A, and plotted as a function of the dead time param-
eter η for fixed object thickness. The dead time parameter
was varied by modifying the dead time while keeping the
spectrum incident on the detector fixed.

The SNR was computed from the definition in Eq. (6) us-
ing the formulas in Tables I and II. The spectra transmitted
through the object in Fig. 1 were computed as discussed
in Sec. 2.K with an 80 kV tube spectrum. The object was
composed of 9.5 gm/cm2 soft-tissue background material
and 0.5 gm/cm2 cortical bone feature.

The performance of the detectors with PHA is affected
by the energy bins. For the initial simulations, the bins were
fixed and set to values optimized for zero dead time. An
additional simulation was performed with four bin PHA de-
tector where the bins were optimized for each value of η. The
bins were optimized in a two step procedure by first exhaus-
tively searching the SNR of all permutations of bin widths
that summed to the incident spectrum energy range in 2 keV
increments and then searching the bin widths within 2 keV of
the initial optimum in 1 keV increments.

3. RESULTS

3.A. Monte Carlo covariance compared to CRLB

Figure 2 shows the Monte Carlo A-vector sample covari-
ance compared to the CRLB for NQ and PHA detectors as
described in Sec. 2.K. The results were compared for three
values of the dead time parameter η and five values of the
number of photons incident on the detector as shown in the
figure.
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F. 2. Monte Carlo validation of theoretical formulas for noise and spectrum
with pileup in Tables I and II. The graphs compare the A-vector sample
covariance to the CRLB for NQ and detectors with PHA. A-vectors were
computed from random measurement data as described in Sec. 2.K for three
values of the dead time parameter η, 0, 0.25, and 0.5 counts per dead time,
as a function of the expected number of photons incident on the detector.
The individual points are the Monte Carlo values while the solid lines are
the theoretical CRLB. The top panels are the A1 and A2 variances of the NQ
detector. The bottom panels are for four bin PHA. The scales are logarithmic.

3.B. SNR vs dead time

Figure 3 shows the SNR as a function of the expected
number of photons incident on the detector per dead time, η.
For each detector, the SNR is normalized by dividing by the
ideal, complete spectrum information SNR. As discussed in
Sec. 2.D, the integrated energy is assumed to be unaffected
by pulse pileup so its SNR is constant.

Table III lists the values of η so the SNR of the detectors is
equal to the SNR of the energy integrating detector.

3.C. Increase in A-vector variance with dead time

The data from the Monte Carlo simulation described in
Sec. 2.K can be used to compute the increase in the A-vector

F. 3. SNR vs dead time for different detectors. The SNR is normalized by
dividing by the optimal, full energy information SNR. The horizontal axis is
the average number of photons incident on the detector per dead time, η. The
detectors are conventional energy integrating (Q), photon counting (N), and
counting with two and four bin PHA (PHA2, PHA4). An 80 kV x-ray tube
spectrum is incident on the 10 cm thick, soft tissue object.

noise variance as dead time increases. The results are shown
in Fig. 4.

3.D. Effect of optimal PHA bins on SNR

Figure 5 shows the effect of optimizing PHA bins on the
SNR of a detector with four bin PHA. Plotted in the top panel
is the SNR with bins optimized for each dead time individ-
ually and with fixed bins optimized for zero dead time. Also
plotted for comparison is the SNR of a conventional, energy
integrating detector. The inset table shows the values of η so
the SNR of the PHA detector is equal to energy integrating
SNR. The bottom panel shows the optimal interbin energies
as a function of η.

4. DISCUSSION

The results in Fig. 3 show that the SNR decreases rapidly
as the expected number of incident photons per dead time,η,
increases. The decrease in SNR depends on the type of de-
tector. The NQ detector drops more rapidly than the counting
and PHA detectors while the energy integrating detector SNR
is constant. Interestingly, the NQ SNR is always greater than
or equal to the photon counting or energy integrating detec-
tors since it utilizes both of these signals simultaneously.

For large enough η, the SNR of the PHA and photon count-
ing systems becomes smaller than that of a conventional en-
ergy integrating detector. Table III shows that the values of η
where the SNR drops below that of the conventional detector

T III. Values of η so SNR = SNRQ.

N 0.52
PHA2 0.65
PHA4 0.78
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F. 4. The increase in the A-vector noise variance with dead time for NQ
and four bin PHA detectors. The solid lines are the theoretical CRLB variance
and the individual symbols are the Monte Carlo simulation values. The NQ
variances are always larger than the PHA4 variances and the ratio increases
with dead time.

range from approximately 0.5 to 0.8 photons per dead time.
Above these values, the energy selective data have become
sufficiently degraded that they do not provide a SNR advantage
over the conventional detector. These thresholds understate the
effects of pileup since most of the decrease in SNR occurs at
smaller values of η.

The decrease in SNR implies a stringent limit on the dead
time for the count rates found in medical x-ray systems. For
example, a count rate of more than 108 counts/s can occur
with a 1 mm2 detector in low attenuation regions of abdom-
inal CT scans.7 With this rate, the maximum dead time for η
less than one is 10 ns. The body transmission in abdominal
scans can be 10−2 or smaller so the allowable dead time in the
center of the abdomen is inverse proportionally longer. It may
be possible to develop algorithms that compensate for the
pileup errors in the unobstructed and low attenuation parts of
the body while utilizing the more accurate data from higher
attenuation regions directly.

F. 5. SNR with optimal vs fixed bins. Shown in the top panel is the
normalized SNR as a function of η for a counting detector with four bin PHA
with optimal energy bins for every η compared with fixed bins optimized for
η = 0. Also shown for reference is the SNR of a conventional energy integrat-
ing detector and a table of the values where the SNR of the PHA detector is
equal to the conventional detector SNR. The bottom panel shows the optimal
interbin energies.

Another way to measure the effect of pulse pileup is its
effect on the A-vector noise variance. Figure 4 shows that,
with the NQ detector, the noise variance increases by factors
of approximately 3 and 5 for the A1 and A2 components as
η increases from 0 to 0.8 photons per dead time. With four
bin PHA data, the increase is approximately 2 and 4 times.
The NQ variance increases more rapidly than that of the PHA
detector.

Figure 5 shows the increase in the SNR with optimal PHA
bins for each value of the dead time parameter. Although ad-
justing the bins for each η is physically unrealistic since the
object attenuation and therefore the incident photon count rate
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is unknown before the measurement, the difference in the fixed
vs optimal PHA bins SNR gives insight on the effect of the bin
selection. The results show that there is an improvement with
the value of η for SNR equal to the energy integrating SNR
increasing from 0.78 to 1.31. However, the increased SNR oc-
curs principally at larger values of η where it has already been
substantially degraded. The figure also shows that the optimal
interbin energies increase as η increases. This is reasonable
as the recorded energies increase with pileup since they may
include the energies of more than one photon.

With the idealized model, we can derive analytic formulas
for the noise and spectrum with pileup, which are summa-
rized in Tables I and II. The validity of the formulas was tested
with the Monte Carlo simulation described in Sec. 2.K. For the
test, the covariance of A-vector data computed from random
NQ and PHA measurement data was compared to the CRLB
derived from the theoretical formulas. Figure 2 shows that the
Monte Carlo covariance and the CRLB agree well for the tested
values of η and incident photon counts.

The model used in this paper focuses on the fundamental
effects of pileup and quantum noise. Other defects occurring in
photon counting detectors2,4 such as incomplete photon energy
measurement due to K radiation escape and Compton scatter-
ing, charge sharing and trapping, polarization, and other effects
degrade the signals even further so the results presented tend
to be an upper limit on the performance of energy selective
systems. Postprocessing algorithms2 may be able to compen-
sate for detector defects but advances will most probably be
limited by improvements in detector technology that reduce
the defects and dead time.

Appendix A shows that the multivariate normal distribution
is acceptable for counts above approximately 3000 for loga-
rithm data. The number of counts required increases as the
number of PHA bins increases indicating that the number of
counts per bin affects the distribution. Experimental tests of
the probability distribution of integrated energy signals from
commercial CT scanners are described by Wang et al.29 and
Whiting et al.30 They show that normal model is accurate for
large photon numbers. Wang et al.29 showed that, as expected,
the data failed the Shapiro–Wilk normality test for highly
attenuating regions with low photon counts. However, in those
cases, they found that the normal distribution still described the
experimental data better than alternatives including the Pois-
son.

As shown in Appendix B, the CRLB with pileup is well
approximated by the constant covariance formula in Eq. (7) for
counts greater than 100. Since counts greater than this number
are required in material-selective medical applications, the use
of the constant covariance formula is justified to analyze these
systems. The constant covariance formula is relatively simple
to compute and is also useful to derive closed form analytical
results.

The formula for the covariance of NQ detector data with
pileup derived in Appendix C agrees well with Monte Carlo
simulated data. The results show that the positive correla-
tion of the two quantities decreases rapidly as dead time
increases. This correlation is important for energy selective

processing and the decrease leads to the rapid decrease in
SNR with pileup.

5. CONCLUSION

An idealized model of photon counting detectors is intro-
duced that focuses on the fundamental effects of pileup and
quantum noise in energy selective x-ray imaging systems.
The model is used to compare the effects of pileup on SNR
with different types of detectors. The SNR values were
compared with the ideal full spectrum SNR and also with the
SNR of conventional photon counting and energy integrating
detectors. In all detectors, the SNR decreases rapidly as dead
time increases. It becomes less than the SNR of a conven-
tional energy integrating detector for values of the number
of incident photons per dead time less than 1. This decrease
places stringent limits on allowable dead times with the high
count rates required for medical imaging systems. The prob-
ability distribution of the idealized data with pileup is shown
to be accurately described as a multivariate normal for ex-
pected counts greater than those typically utilized in material-
selective medical imaging systems. The constant covariance
approximation to the CRLB is also shown to be valid in this
case. A new formula for the covariance of the NQ detector
with pileup is derived and validated.

APPENDIX A: PROBABILITY DISTRIBUTION
OF PHOTON COUNT DATA WITH PILEUP

The probability distribution of the logarithm x-ray photon
count and integrated energy data without pileup is usually mo-
deled as a multivariate normal if the mean counts are suffi-
ciently large. The statistics with pulse pileup are sufficiently
different from standard counting statistics that a quantitative
test of this assumption with pileup data is useful. Monte Carlo
data generated, as described in Sec. 2.K, were tested with
Royston’s31 multivariate extension of the Shapiro–Wilk test.32

The Royston multivariate algorithm is applicable for samples
up to approximately 2000. The  function roystest,33

which is based on Royston’s algorithm, was used with random
samples of photon count and energy integral data with pileup.

The Royston algorithm is a hypothesis test and the results
are themselves random variables since they depend on the ra-
ndom data. In order to smooth the random results, they were
averaged over a set of 50 Monte Carlo trials with 1000 sam-
ples of measurement data and plotted as a function of the mean
number of photons for several values of the dead time param-
eter η. Figure 6 shows typical results where a 1 is assigned to
the positive result that the distribution is normal and a 0 to the
negative result.

In general, we would expect that the data have a non-normal
distribution for smaller mean counts and a more normal distri-
bution for larger counts. Therefore, the hypothesis test aver-
ages would be near zero for small counts and near one for large
counts. To estimate the minimum number of photons required
for a normal distribution, a sigmoid function was fit to the
average hypothesis test data and the minimum counts was the
number where the sigmoid passes through 0.5. Figure 7 shows
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F. 6. Results of tests for multivariate normal for four bin PHA data for
several values of the expected incident counts per dead time parameter, η,
as a function of the number of photons per measurement. The y-axis is the
probability that the distribution is normal. The points are the average of five
trials and the error bars are the expected error. The solid line is the best fit
sigmoid curve.

the minimum counts to accept the normal hypothesis as a func-
tion of the dead time parameter, η, for several detector types.

APPENDIX B: THE CONSTANT COVARIANCE
APPROXIMATION TO THE CRLB WITH PULSE
PILEUP

Kay17 shows that the CRLB with a multivariate normal
distribution is the inverse of the Fisher information matrix
whose i, j element is

[I(A)]i j =

∂L(A)
∂Ai

T
C−1

L


∂L(A)
∂Aj



+
1
2

tr

C−1

L
∂CL

∂Ai
C−1

L
∂CL

∂Aj


. (B1)

A previous paper15 showed that with no pileup the first term
in Eq. (B1) becomes much larger than the second as the
photon count increases. This term corresponds to a constant
covariance and leads to Eq. (7) as the CRLB.

F. 7. Minimum counts to accept the normal hypothesis. The left panel is
for linear data and the right panel is for logarithm data. The detector types are
two and four bin pulse height analysis, PHA2 and PHA4, and simultaneous
photon counts and integrated energy, NQ. The data show random fluctuations
about the fitted smooth curves.

Evaluating the derivative terms in Eq. (B1) for the case
with pileup as described in Sec. 2.J, we can compute the
fractional error

frac.err.=

�
CA,CRLB−CA,CRLB,const cov

�
�
CA,CRLB

� (B2)

using the constant covariance approximation to the CRLB
with pileup. The symbol ∥ ∥ denotes a matrix norm. The re-
sults in Fig. 8 show that the error is also negligible for the
photon counts typically used with material-selective medical
x-ray imaging systems.

APPENDIX C: THE NQ COVARIANCE WITH PILEUP

For any two random variables, the covariance is

cov(Nrec,Q)= ⟨NrecQ⟩− ⟨Nrec⟩⟨Q⟩. (C1)

The expected value of the product in Eq. (C1) can be evalu-
ated with conditional expectation

⟨NrecQ⟩= 
Nrec


Q|Nrec=nrec

��
nrec

. (C2)

Since Q is the sum of the energy of the incident photons



Q|Nrec=n

�
=

⟨N |nnrec⟩
k=1

Ek, (C3)

where ⟨N |nrec⟩ is the expected value of the number of inci-
dent photons given that nrec are recorded. Inverting Eq. (10)
for λ = ρt = N ,

⟨N |nrec⟩= (1+η)nrec. (C4)
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F. 8. CRLB error using constant covariance formula CA,CRLB
=


MTC−1

L M

. The fractional error given by Eq. (B2) is plotted as a function

of the mean number of counts for four values of the dead time parameter η.
The top panel shows the error with three bin PHA while the bottom panel is
for the NQ detector.

Since the Ek are independent and identically distributed, the
expected value of Eq. (C3) is




Q|Nrec=nrec

��
= ⟨N |nrec⟩⟨E⟩= (1+η)nrec⟨E⟩.

F. 9. Covariance and correlation of NQ detector data with pulse pileup. The
Monte Carlo data are the individual points and the theoretical formulas are
the solid lines. Note that the data are positively correlated but the correlation
decreases as η increases.

Using this in Eq. (C2),

⟨NrecQ⟩= (1+η)
N2
rec
�⟨E⟩. (C5)

We can use the general formula Var(X)= 
X2�− ⟨X⟩2 and
Eqs. (10) and (11) to show that



N2

rec
�
= var(Nrec)+ ⟨Nrec⟩2

=
λ

(1+η)3 +
λ2

(1+η)2 . (C6)

Substituting in Eq. (C5) and using the result in Eq. (C1)

cov(Nrec,Q)= λ⟨E⟩
(1+η)2 . (C7)

Equation (C7) was validated with 10 000 random NQ data
values generated as described in Sec. 2.K. The results in
Fig. 9 show that the theoretical formula accurately describes
the covariance of the simulated data.
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