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The F-box protein Skp2 mediates c-Myc ubiquitylation by

binding to the MB2 domain. However, the turnover of c-

Myc is largely dependent on phosphorylation of threonine-

58 and serine-62 in MB1, residues that are often mutated in

cancer. We now show that the F-box protein Fbw7 interacts

with and thereby destabilizes c-Myc in a manner depen-

dent on phosphorylation of MB1. Whereas wild-type Fbw7

promoted c-Myc turnover in cells, an Fbw7 mutant lacking

the F-box domain delayed it. Furthermore, depletion of

Fbw7 by RNA interference increased both the abundance

and transactivation activity of c-Myc. Accumulation of c-

Myc was also apparent in mouse Fbw7�/� embryonic stem

cells. These observations suggest that two F-box proteins,

Fbw7 and Skp2, differentially regulate c-Myc stability by

targeting MB1 and MB2, respectively.
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Introduction

The oncoprotein c-Myc, a basic helix–loop–helix/leucine zip-

per (bHLH/Zip)-type transcription factor, is a master regulator

of cell proliferation. c-Myc forms a heterodimer with the

bHLH/Zip protein Max, and this complex binds to the

CACGTG sequence, known as the E-box motif (Grandori

et al, 2000), present in target genes, such as those for lactate

dehydrogenase (LDH) and heat shock protein 60 (Hsp60), and

thereby activates their transcription. The transcription of

other genes, including those for cyclin D1 and carboxy-

peptidase D, is repressed by the c-Myc–Max complex or by

c-Myc alone (Philipp et al, 1994; Guo et al, 2000). These

positive and negative effects on gene transcription are thought

to contribute to the promotion of cell proliferation by c-Myc.

Whereas Max is expressed constitutively, the expression of

c-Myc is transient and is directly related to the proliferative

potential of cells. Whereas c-Myc is virtually undetectable in

quiescent cells, its expression is rapidly induced as cells enter

the G1 phase of the cell cycle in response to stimulation with

serum or specific mitogens. The abundance of c-Myc subse-

quently decreases gradually to a low steady-state level at

which it remains for as long as the cells continue to proliferate.

The expression level of c-Myc is increased in many malignant

tumors as a result of amplification or mutation of the c-Myc

gene. Given that many c-MYC mutations affect the stability of

c-Myc (Bahram et al, 2000; Grandori et al, 2000), its turnover

is thought to be a critical determinant of carcinogenesis.

The half-life of c-Myc is extremely short (B30 min) in

proliferating cells (Hann and Eisenman, 1984), and the

protein has been shown to undergo ubiquitylation and de-

gradation by the proteasome (Ciechanover et al, 1991;

Salghetti et al, 1999). The region of c-Myc that signals its

ubiquitylation (the degron) overlaps with the transactivation

domain (TAD) (Salghetti et al, 2000). Two highly conserved

sequence elements, Myc box 1 (MB1) and MB2, in the TAD

have been implicated not only in the proteolysis of c-Myc but

also in its transactivation and oncogenic activities (Flinn et al,

1998; Grandori et al, 2000). In particular, phosphorylation of

Thr-58 and Ser-62 in MB1 is an important determinant of c-

Myc stability (Lutterbach and Hann, 1994; Sears et al, 1999,

2000). Consistent with their effect on c-Myc stability, these

two residues are frequently mutated in various tumors

(Bahram et al, 2000). Phosphorylation of Thr-58 appears to

be both mediated by glycogen synthase kinase 3 (GSK3) and

dependent on the prior phosphorylation of Ser-62, which is

likely mediated by the Ras–ERK (extracellular signal-regu-

lated kinase) pathway. Whereas phosphorylation of Ser-62

alone seems to stabilize c-Myc, subsequent phosphorylation

of Thr-58 promotes c-Myc ubiquitylation and degradation

(Sears et al, 1999, 2000).

The ubiquitin ligase (E3) component of the enzyme cas-

cade that mediates ubiquitin–protein conjugation is respon-

sible for target specificity (Hershko and Ciechanover, 1998).

Two E3s, the SCF complex and the anaphase-promoting

complex or cyclosome (APC/C), are thought to regulate cell

cycle progression predominantly at G1–S and M–G1 phases,

respectively (Elledge and Harper, 1998; Zachariae and

Nasmyth, 1999). The SCF complex consists of four compo-

nents: the invariable subunits Skp1, Cul1 (also known as

Cdc53) and Rbx1 (Roc1, Hrt1) and a variable F-box protein

that serves as a receptor for target proteins and thereby

determines target specificity (Elledge and Harper, 1998;

Kamura et al, 1999; Ohta et al, 1999; Seol et al, 1999).

Among the many F-box proteins that have been identified,

Skp2 and Fbw7 have been well characterized and shown

to control the abundance of proteins important in cell cycle
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regulation. Skp2, which contains leucine-rich repeats in

addition to its F box, ubiquitylates various cell cycle regula-

tors, including p27Kip1 (Carrano et al, 1999; Sutterluty et al,

1999; Nakayama et al, 2000), p21Cip1 (Bornstein et al, 2003),

and p57Kip2 (Kamura et al, 2003) as well as free cyclin E

(Nakayama et al, 2000), E2F-1 (Marti et al, 1999), Orc1

(Mendez et al, 2002), B-Myb (Charrasse et al, 2000), Rb-

related protein p130 (Tedesco et al, 2002), and Cdt1 (Li et al,

2003). Fbw7 (hCdc4, Sel-10, hAgo) contains WD40 repeats in

addition to its F box and ubiquitylates cyclin E (Koepp et al,

2001; Moberg et al, 2001; Strohmaier et al, 2001), Notch1, and

Notch4 (Gupta-Rossi et al, 2001; Oberg et al, 2001).

We and others recently showed that Skp2 binds to c-Myc

via its MB2 and HLH-Zip domains and thereby mediates its

ubiquitylation and degradation. Skp2 also increases the

transactivation activity of c-Myc, suggesting that Skp2 is a

transcriptional cofactor (Kim et al, 2003; von der Lehr et al,

2003). Given that Skp2 is itself an oncoprotein with growth-

promoting properties (Gstaiger et al, 2001; Latres et al, 2001),

we hypothesized the existence of another regulator that

controls c-Myc stability in a manner dependent on the

phosphorylation of Thr-58 and Ser-62. We now show that

Fbw7 interacts with and promotes the degradation of c-Myc

in such a manner. Furthermore, suppression of Fbw7 by RNA

interference (RNAi) resulted in stabilization of c-Myc as well

as consequent transcriptional activation of its target genes

and promotion of cell proliferation. These results suggest that

c-Myc undergoes dual regulation by two F-box proteins,

Fbw7 and Skp2, that target its MB1 and MB2 domains,

respectively.

Results

Interaction of Fbw7 with c-Myc

Skp2 associates with c-Myc in a manner independent of MB1.

However, c-Myc stability is largely dependent on the phos-

phorylation of Thr-58 and Ser-62 in MB1. We therefore

investigated whether another regulator might control c-Myc

stability in a manner dependent on the phosphorylation of

these residues. The peptide sequence surrounding Thr-58 of

c-Myc conforms to a motif known as the Cdc4 phospho-

degron (CPD) (Nash et al, 2001), which is also present in the

Fbw7 substrate cyclin E (Figure 1A). We thus tested whether

Fbw7 interacts with c-Myc. We expressed the hemagglutinin

epitope (HA)-tagged F-box proteins Fbw1a, Fbw2, Fbw4, and

Fbw7 together with FLAG-tagged c-Myc in HEK293T cells.

Cell lysates were subjected to immunoprecipitation with

antibodies to FLAG, and the resulting precipitates were sub-

jected to immunoblot analysis with antibodies to HA or

FLAG. HA-Fbw7 was co-precipitated by the antibodies to

FLAG in the presence of FLAG-c-Myc, whereas HA-tagged

Fbw1a, Fbw2, and Fbw4 (F-box proteins that, like Fbw7,

contain WD40 repeats) were not (Figure 1B). These results

suggested that Fbw7 interacts with c-Myc and might target it

for ubiquitylation.

To determine whether HA-Fbw7 interacts with endogenous

c-Myc, we deprived transfected HEK293T cells of serum and

then stimulated them by re-exposure to serum in order to

induce expression of endogenous c-Myc. Cell lysates were

subjected to immunoprecipitation with antibodies to c-Myc

or with control mouse immunoglobulin G (IgG). HA-Fbw7

was co-precipitated by the antibodies to c-Myc but not by the

control IgG (Figure 1C), suggesting that endogenous c-Myc

associates with HA-Fbw7 in these cells.

Purified recombinant SCFFbw7 ubiquitylates c-Myc

in vitro

To determine whether the SCFFbw7 complex ubiquitylates c-

Myc, we purified recombinant SCFFbw7 from insect cells

infected with baculoviruses encoding the four components

of this complex: Fbw7 (fused with an NH2-terminal hexahis-

tidine tag; His6-Fbw7), Rbx1, Cul1, and Skp1. We also pre-

pared a His6-c-Myc substrate with this system; this protein

was phosphorylated on both Thr-58 and Ser-62 by the insect

cells (see Figure 3C). We then assayed the ubiquitylation

activity of the recombinant SCFFbw7 complex in vitro with the

His6-c-Myc substrate. Immunoblot analysis of the reaction

mixtures with antibodies to c-Myc detected the ubiquitylation

of His6-c-Myc only in the presence of Uba1 (E1), UbcH5A

(E2), ubiquitin, ATP, and SCFFbw7 (E3) (Figure 2A). Lack of

any of these components prevented c-Myc ubiquitylation.
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Figure 1 Interaction of Fbw7 with c-Myc in vivo. (A) The Cdc4
phospho-degron (CPD) sequences of human cyclin E and c-Myc.
The asterisk indicates L, I, or P; X indicates any residue other than K
or R. (B) HEK293T cells were transfected with vectors for FLAG-c-
Myc and either HA-Fbw1a, HA-Fbw2, HA-Fbw4, or HA-Fbw7, as
indicated, and were then incubated with MG132 for 6 h. Cell lysates
were subjected to immunoprecipitation (IP) with antibodies to
FLAG, and the resulting precipitates as well as the original cell
lysates (input) were subjected to immunoblot analysis (IB) with
antibodies to HA or FLAG. (C) HEK293T cells were transfected with
a vector for HA-Fbw7, subjected to serum deprivation, stimulated
by re-exposure to serum for 2 h, and then incubated for 6 h in the
additional presence of MG132. Cell lysates were then subjected to
immunoprecipitation with antibodies to c-Myc or with control
mouse IgG, and the resulting precipitates were subjected to im-
munoblot analysis with antibodies to HA or c-Myc.
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The SCFFbw7 complex was thus shown to ubiquitylate c-Myc

in an ATP-dependent manner.

Promotion of c-Myc degradation by Fbw7 in vivo

To examine the possible effect of Fbw7 on the degradation of

c-Myc in vivo, we transfected HEK293T cells with vectors for

c-Myc and for either wild-type Fbw7 or an Fbw7 mutant

(Fbw7-DNF) that lacks the F-box domain and is therefore

unable to associate with Skp1. Pulse-chase analysis revealed

that expression of wild-type Fbw7 markedly promoted the

degradation of c-Myc, whereas Fbw7-DNF delayed it

(Figure 2B). These results thus suggested that Fbw7 contri-

butes to the turnover of c-Myc in intact cells.

Phosphorylation of Thr-58 and Ser-62 is required for

c-Myc degradation mediated by SCFFbw7

To determine whether phosphorylation of Thr-58 and Ser-62

in MB1 of c-Myc is required for the binding of Fbw7,

we tested the ability of phosphorylated and nonphosphory-

lated forms of a synthetic peptide encompassing the c-Myc

CPD (amino acids 51–66) to interact with Fbw7 in vitro.

Recombinant Fbw7 interacted only with the phosphorylated

form of the peptide, whereas Skp2, Fbw1a, Fbw2, or

Fbw4 did not interact with either form (Figure 3A). To

investigate the possible effect of phosphorylation of these

residues of c-Myc on its degradation by the SCFFbw7 complex,

we first performed in vivo analysis of the interaction between

Fbw7 and c-Myc mutants (T58A, S62A, T58A/S62A) in

which either or both Thr-58 and Ser-62 were replaced by

alanine. In transfected HEK293T cells, wild-type c-Myc inter-

acted with Fbw7, whereas the T58A, S62A, and T58A/S62A

mutants did not (Figure 3B), suggesting that phosphorylation

of c-Myc on both Thr-58 and Ser-62 is required for interaction

with Fbw7. We next examined the possible requirement

for phosphorylation of Thr-58 and Ser-62 in the ubiquityla-

tion of c-Myc in vitro. The His6-c-Myc substrate was shown

to be phosphorylated by immunoblot analysis with

antibodies that specifically recognize c-Myc phosphorylated

on Thr-58 and Ser-62 (Figure 3C); the mutant

His6-c-Myc(T58A/S62A) was not phosphorylated. The in

vitro ubiquitylation assay revealed that, unlike the wild-

type protein, the c-Myc mutant was not ubiquitylated by

purified SCFFbw7 (Figure 3C). These data suggest that phos-

phorylation of c-Myc on Thr-58 and Ser-62 is required for its

ubiquitylation.

We next performed pulse-chase analysis to examine the

effect of Fbw7 on the stability of the T58A/S62A mutant of c-
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Figure 2 Promotion of the ubiquitylation and degradation of c-Myc
by Fbw7. (A) Ubiquitylation of c-Myc by the recombinant SCFFbw7

complex in vitro. Recombinant SCFFbw7 was assayed for ubiquityla-
tion activity with His6-c-Myc as substrate in the absence or presence
of the indicated reaction mixture components. The reaction mix-
tures were then subjected to immunoblot analysis with antibodies
to c-Myc. The positions of unmodified His6-c-Myc and of His6-c-Myc
conjugated with ubiquitin ((Ub)n) are indicated. (B) Promotion of c-
Myc degradation by Fbw7 in vivo. HEK293T cells were transfected
with vectors for FLAG-c-Myc and either HA-Fbw7 or HA-Fbw7-DNF
(or the corresponding empty vector; mock). The cells were then
subjected to pulse-chase analysis by metabolic labeling with
[35S]methionine, and cell lysates were prepared at the indicated
times of the chase incubation and subjected to immunoprecipitation
with antibodies to FLAG. The precipitates were subjected to SDS–
polyacrylamide gel electrophoresis and autoradiography (upper
panel). The percentage of FLAG-c-Myc remaining after the various
chase times was quantitated by image analysis (lower panel).

Figure 3 Phosphorylation of c-Myc on Thr-58 and Ser-62 is required for its recognition by the SCFFbw7complex. (A) Interaction of Fbw7 with a
synthetic CPD peptide in vitro. HEK293T cells were transfected with vectors for HA-Fbw7, HA-Skp2, HA-Fbw1a, HA-Fbw2, or HA-Fbw4. Cell
lysates were subsequently subjected to a ‘pull-down’ assay with beads linked to nonphosphorylated or phosphorylated peptides corresponding
to the CPD of c-Myc (upper panel), and the resulting precipitates (or 5% of the input cell lysates) were subjected to immunoblot analysis with
antibodies to HA. (B) In vivo association of Fbw7 with c-Myc derivatives. HEK293T cells were transfected with vectors for HA-Fbw7 and either
wild type (WT) or the indicated Thr-58 or Ser-62 mutants of FLAG-c-Myc. They were then subjected to in vivo binding analysis as described in
Figure 1B. (C) Ubiquitylation of phosphorylated but not nonphosphorylated c-Myc by recombinant SCFFbw7 in vitro. His6-c-Myc and the His6-c-
Myc(T58A/S62A) mutant purified from Sf21 cells were subjected to immunoblot analysis with antibodies to c-Myc or phospho-c-Myc (upper
panel). The purified His6-c-Myc and His6-c-Myc(T58A/S62A) proteins were also tested as substrates in the in vitro ubiquitylation assay,
performed with all reaction components (lower panel), as described in Figure 2A. (D) HEK293T cells were transfected with the indicated
combinations of FLAG-c-Myc and HA-Fbw7 vectors and then subjected to pulse-chase analysis as described in Figure 2B. (E) HEK293T cells
transfected with a vector for HA-Fbw7 were deprived of serum and then stimulated with serum in the absence or presence of a GSK3 inhibitor
as described in Materials and methods. Cell lysates were then subjected to immunoprecipitation and immunoblot analysis as described in
Figure 1B. (F) HEK293T cells transfected with a vector for FLAG-c-Myc were subjected to pulse-chase analysis in the absence or presence of a
GSK3 inhibitor.
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Myc. Whereas expression of Fbw7 promoted the degradation

of wild-type c-Myc, it had no effect on the stability of the

T58A/S62A mutant (Figure 3D). These observations thus

suggested that phosphorylation of c-Myc on Thr-58 and Ser-

62 is also essential for its ubiquitylation by Fbw7 and its

degradation in vivo.
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Given that phosphorylation of c-Myc on Thr-58 appears to

be mediated primarily by GSK3 (Sears et al, 1999, 2000),

we examined the effects of treatment of HEK293T cells

expressing HA-Fbw7 with a GSK3 inhibitor during induction

of c-Myc (after serum deprivation). Immunoblot analysis

with antibodies specific for phospho-c-Myc revealed

that the inhibitor markedly reduced the extent of c-Myc

phosphorylation on Thr-58 (or Ser-62) (Figure 3E).

Immunoprecipitation with antibodies to c-Myc and subse-

quent immunoblot analysis with antibodies to HA, c-Myc, or

phospho-c-Myc revealed that HA-Fbw7 was co-precipitated

only with c-Myc that was phosphorylated by GSK3

(Figure 3E). Phosphorylation of c-Myc on Thr-58 by GSK3

thus appears to be essential for recognition by Fbw7.

Moreover, pulse-chase analysis showed that the GSK3 inhi-

bitor delayed the turnover of FLAG-c-Myc in HEK293T cells

(Figure 3F).

Depletion of Fbw7 results in accumulation of c-Myc

To examine whether the abundance of endogenous Fbw7

affects that of c-Myc, we used RNAi to deplete HeLa cells

of Fbw7. Reverse transcription (RT) and polymerase chain

reaction (PCR) analysis revealed that transfection of HeLa

cells with small interfering RNAs (siRNAs) for Fbw7 or

Skp2, or with the combination thereof, resulted in down-

regulation of the corresponding mRNAs (Figure 4A).

Depletion of Fbw7 mRNA induced the accumulation of

c-Myc and, consistent with previous observations (Koepp

et al, 2001), that of cyclin E (Figure 4B). Similar experiments

by another group revealed no effect of an Fbw7 siRNA on c-

Myc abundance (Kim et al, 2003); this previous study, how-

ever, failed to demonstrate the effectiveness of the Fbw7

siRNA by RT–PCR analysis. As previously described

(Nakayama et al, 2000; Kim et al, 2003), depletion of Skp2

led to the accumulation of c-Myc, cyclin E, and p27Kip1

(Figure 4B). Moreover, the combination of siRNAs for Fbw7

and Skp2 resulted in an additive effect on the abundance of c-

Myc and cyclin E (Figure 4B).

To evaluate further the effect of Fbw7 or Skp2 depletion on

the turnover of c-Myc, we performed pulse-chase analysis.

The degradation of c-Myc in cells transfected with the siRNAs

for Fbw7 or Skp2 was delayed compared with that apparent

in cells transfected with a control siRNA. Moreover, the

combination of the siRNAs for Fbw7 and Skp2 delayed the

turnover of c-Myc in an additive manner (Figure 4C). These

data suggested that endogenous Fbw7 and Skp2 both parti-

cipate in regulation of the turnover of c-Myc in vivo. We next

investigated the effect of Fbw7 or Skp2 depletion on the

stability of the T58A/S62A mutant of c-Myc for further

understanding the relative contribution of Fbw7 and Skp2

to the degradation of c-Myc. Whereas the siRNA for Fbw7

had no effect on the stability of the T58A/S62A mutant, the

siRNA for Skp2 delayed its degradation (Figure 4D). These

observations suggest that Fbw7 ubiquitylates c-Myc in a

manner dependent on phosphorylation at Thr-58 and Ser-

62, whereas Skp2 ubiquitylates it in a manner independent of

the phosphorylation.

Depletion of Fbw7 promotes c-Myc-dependent

transactivation

To examine the effect of Fbw7 deficiency on c-Myc-dependent

transactivation, we measured the relative luciferase activity

of cells transfected with a c-Myc-responsive reporter con-

struct (p4�E-SVP-Luc) (Mori et al, 1998). The relative

luciferase activity of cells transfected with the Fbw7 siRNA

was increased compared with that apparent in cells trans-

fected with the control siRNA (Figure 4E). Conversely, we

found that overexpression of Fbw7 reduced the extent of c-

Myc-dependent transactivation (Figure 4E). In addition, RT

and real-time PCR analysis revealed that depletion of Fbw7

by RNAi resulted in an increase in the abundance of tran-

scripts derived from the LDH and Hsp60 genes, both of which

are positively regulated by c-Myc (Guo et al, 2000). In

contrast, the abundance of transcripts derived from the cyclin

D1 and carboxypeptidase D genes, both of which are nega-

tively regulated by c-Myc (Philipp et al, 1994; Guo et al,

2000), was reduced in cells transfected with the Fbw7 siRNA

relative to that in cells transfected with the control siRNA

(Figure 4F). These observations thus suggested that the

accumulation of c-Myc induced by depletion of Fbw7 also

resulted in an increase in the transactivation activity of

c-Myc.

Stabilization of c-Myc in Fbw7�/� ES cells

We have generated Fbw7-deficient mice and found that these

animals die in utero at embryonic day 10.5 as a result of

impaired vascular development (Tsunematsu et al, 2004).

Attempts to isolate mouse embryonic fibroblasts (MEFs)

from such immature embryos have not been successful.

Instead, we have generated mouse embryonic stem (ES)

cells with deletions in both Fbw7 alleles (Tsunematsu

et al, 2004). Marked accumulation of c-Myc was apparent

in these Fbw7�/� ES cells compared with the low concentra-

tion of this protein detected in Fbw7þ /� ES cells (Figure 5A).

Furthermore, pulse-chase analysis showed that the stability

of c-Myc was greatly increased in Fbw7�/� ES cells compared

with that in Fbw7þ /� ES cells (Figure 5B). Accumulation

of cyclin E was not apparent in the Fbw7�/� ES cells

(Figure 5A) or in Fbw7�/� embryos at embryonic day 9.5

(Tsunematsu et al, 2004), excluding the possibility that

the increased abundance of c-Myc in the Fbw7�/� cells is a

secondary effect of cyclin E accumulation. Skp2�/� MEFs also

exhibited a substantial accumulation of c-Myc as

well as of p27 compared with the abundance of these proteins

in Skp2þ /� cells (Figure 5C). The degradation of c-Myc in

Skp2�/� MEFs appeared to be especially impaired at

early time points (20 min) of cycloheximide treatment

(Figure 5D), suggesting that Skp2 is important for the

early phase of c-Myc degradation, whereas Fbw7 might

contribute to a later phase. The difference in c-Myc stability

between the control cells in Figure 5B and those in Figure 5D

may be attributable to the difference in cell type (ES cells

versus MEFs). Together with previous biochemical data (Kim

et al, 2003; von der Lehr et al, 2003), our genetic evidence

indicates that both Fbw7 and Skp2 participate in the degrada-

tion of c-Myc.

Discussion

The ubiquitin–proteasome pathway plays important roles in

many cell functions by determining the abundance of regu-

latory proteins (Hershko and Ciechanover, 1998). c-Myc, a

bHLH/Zip-type transcription factor, was previously shown

to be ubiquitylated and degraded by the proteasome
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(Ciechanover et al, 1991; Salghetti et al, 1999; Gregory and

Hann, 2000). Given that many mutations of c-MYC associated

with cancer affect the stability of c-Myc (Bahram et al, 2000),

characterization of the mechanism of c-Myc ubiquitylation is

important for understanding the oncogenic process mediated

by c-Myc.
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We and others have recently shown that Skp2 participates

in c-Myc degradation through interaction with MB2 (and the

HLH-Zip region) (Kim et al, 2003; von der Lehr et al, 2003).

However, MB1 has also been implicated in the degradation of

c-Myc, and phosphorylation of Thr-58 and Ser-62 in MB1 has

been thought to be primarily responsible for the regulation of

c-Myc stability (Lutterbach and Hann, 1994; Sears et al, 1999,

2000). Indeed, most c-MYC mutations associated with cancer

affect these or neighboring residues (Bahram et al, 2000).

Skp2 does not appear to contribute to the regulation of c-Myc

stability mediated at the level of MB1 (Kim et al, 2003; von

der Lehr et al, 2003). Furthermore, Skp2 is itself an onco-

protein with growth-promoting properties (Gstaiger et al,

2001; Latres et al, 2001), which renders its potential role as

the E3 that targets c-Myc for degradation inconsistent with

the notion that such a molecule is likely to be a tumor

suppressor. We thus hypothesized that another E3 might

also mediate c-Myc degradation in a manner dependent on

the phosphorylation of Thr-58 and Ser-62.

The c-Myc degron in MB1 (LPTPPLSP) conforms to the

CPD sequence recognized by Fbw7. We now show that Fbw7

binds to c-Myc in a manner dependent on the phosphoryla-

tion of Thr-58 and Ser-62. We therefore propose that ubiqui-

tylation of c-Myc is mediated by two F-box proteins, Fbw7

and Skp2 (Figure 6). Given that Fbw7 recognizes c-Myc in a

phosphorylation-dependent manner, the Fbw7-mediated de-

gradation of c-Myc is likely triggered by activation of GSK3

and the Ras–ERK signaling pathway. In contrast, Skp2-

mediated degradation of c-Myc is not dependent on the

phosphorylation of Thr-58, although it is not clear whether

Skp2 requires phosphorylation at other sites in c-Myc for

its recognition of this protein.

c-Myc is virtually undetectable in resting cells, but its

abundance increases on entry of cells into G1 triggered by

exposure to mitogens, during which time it activates the

transcription of various genes important for progression

into S phase. Thereafter, c-Myc is phosphorylated on Thr-58

and Ser-62, probably by GSK3 and ERK, respectively (Sears

et al, 2000), and is then immediately degraded by the

ubiquitin–proteasome pathway. Our present data indicate

that phosphorylation of c-Myc at these sites is essential

for its binding to Fbw7, its Fbw7-mediated ubiquitylation,

and its Fbw7-dependent turnover. Consistent with this no-

tion, a GSK3 inhibitor reduced the extent of phosphorylation

of c-Myc on Thr-58 (or Ser-62) as well as that of the interac-

tion between c-Myc and Fbw7. In contrast, Skp2 binds to a c-

Myc mutant that lacks MB1 (von der Lehr et al, 2003) and to

the T58A mutant of c-Myc but not to a phosphorylated

peptide corresponding to c-Myc(51–66), with which Fbw 7

interacts. The role of Skp2-mediated ubiquitylation of c-Myc

has been unclear. However, given that Skp2 is expressed

predominantly in S phase (Lisztwan et al, 1998; Hara et al,

2001), Skp2-mediated degradation of c-Myc must occur in

this phase of the cell cycle. In contrast, Fbw7 is expressed

throughout the cell cycle (Spruck et al, 2002). The timing of

the actions of Fbw7 and Skp2 in late G1–S phase thus appears

too close to readily allow their delineation. c-Myc, Skp2, and

Fbw7 are also all localized predominantly in the nucleus (von

der Lehr et al, 2003), suggesting that the intracellular sites of

c-Myc ubiquitylation mediated by Fbw7 and Skp2 are similar

or identical. The degradation of c-Myc in Fbw7�/� ES cells

was impaired for up to 60 min in the chase incubation of
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Figure 6 A model for c-Myc ubiquitylation. Two F-box proteins,
Fbw7 and Skp2, regulate the turnover of c-Myc. The putative
oncosuppressor Fbw7 recognizes c-Myc molecules that are phos-
phorylated in the MB1 region of the transcriptional activation
domain (TAD). The oncoprotein Skp2 recognizes the MB2 and
HLH-Zip domains. Skp2 both enhances the transactivation activity
of c-Myc and promotes its degradation. NLS, nuclear localization
signal; BR, basic region.
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pulse-chase analysis, whereas that in Skp2�/� MEFs ap-

peared to be impaired in particular at early times (20 min)

of cycloheximide treatment, suggesting that Skp2 is impor-

tant for an early phase of degradation and that Fbw7 is

required for a later phase. However, we cannot exclude the

possibility that this difference in the time course of c-Myc

degradation is attributable to the difference in the cell types

studied. Overall, although the timing and subcellular site of

c-Myc ubiquitylation mediated by Fbw7 or Skp2 appear to

be similar, Fbw7-mediated ubiquitylation is regulated by

phosphorylation of c-Myc on Thr-58 and Ser-62, whereas

Skp2-mediated ubiquitylation is dependent on the time

course of Skp2 expression.

The stability of IkBa, a relatively well-characterized ubi-

quitylated protein, is also determined by two molecular

regions: an NH2-terminal domain that is phosphorylated by

the IkB kinase complex in response to extracellular signals

(Regnier et al, 1997), and a COOH-terminal PEST domain that

is important in the basal turnover of the protein. The F-box

protein Fbw1 recognizes the phospho-degron (DpSGXXpS)

that is present in the NH2-terminal domain of IkBa and

conserved in all members of the IkB and b-catenin families,

and it mediates the ubiquitylation of these proteins

(Hatakeyama et al, 1999; Kitagawa et al, 1999). We propose

that the turnover of c-Myc is also determined by signal-

induced and basal degradation mediated by Fbw7 and

Skp2, respectively.

Whereas overexpression of Fbw7 reduced the transactiva-

tion activity of c-Myc, overexpression of Skp2 had an oppo-

site effect (von der Lehr et al, 2003). The decrease in the

transactivation activity of c-Myc induced by Fbw7 likely

results from the degradation of c-Myc mediated by the

ubiquitin–proteasome pathway. In contrast, Skp2 appears to

induce both the degradation and the activation of c-Myc. This

latter effect of Skp2 might result from its also targeting a

negative regulator of c-Myc, such as MM-1 (Mori et al, 1998),

for ubiquitin-mediated proteolysis.

The turnover of cyclin E is also regulated by both Fbw7

(Koepp et al, 2001; Moberg et al, 2001; Strohmaier et al, 2001)

and Skp2 (Nakayama et al, 2000). Fbw7 recognizes cyclin E

phosphorylated on Thr-380. In contrast, Skp2 interacts only

with free cyclin E in a phosphorylation-independent manner;

the association of cyclin E with Cdk2 prevents its interaction

with Skp2. We thus propose that Fbw7 plays an important

role in termination of the action of the cyclin E–Cdk2 com-

plex, whereas Skp2 controls the abundance of the cyclin E

pool during the cell cycle. Mice lacking Skp2 manifest

cellular accumulation of cyclin E and p27Kip1 as well as over-

replication of chromosomes and centrosomes (Nakayama

et al, 2000). The increased abundance of cyclin E in

Skp2�/� mice is not a secondary effect of p27Kip1 accumula-

tion, given that it was also apparent in Skp2�/� p27�/�

double-mutant mice (Nakayama et al, 2004) and that cyclin

E ubiquitylation was markedly increased by recombinant

Skp2 in vitro (Nakayama et al, 2000). The collaboration of

two cell cycle-related F-box proteins thus appears to be a

common feature of the mechanisms by which the turnover of

cyclin E and c-Myc, both of which promote cell proliferation

and have oncogenic potential, is regulated.

Given that Fbw7 targets cyclin E, Notch1, Notch4, and

c-Myc, all of which are thought to be oncoproteins, for

degradation, it is likely that Fbw7 functions as an oncosup-

pressor. Indeed, FBW7 has been shown to be mutated in at

least 16% of human endometrial tumors (Spruck et al, 2002).

In contrast, overexpression of Skp2 has been detected in

many types of cancer, and mice transgenic for Skp2 in the

lymphoid lineage are predisposed to malignant lymphoma

(Gstaiger et al, 2001; Latres et al, 2001). It is thus possible that

the accumulation of c-Myc and cyclin E due to Fbw7 defi-

ciency contributes to tumorigenesis, in which case restoration

of FBW7 expression by gene therapy may prove beneficial in

individuals with malignant tumors.

Materials and methods

Antibodies
Rabbit polyclonal antibodies to c-Myc (sc-764), cyclin E (sc-198, sc-
481), Cdk2 (sc-163), or HA (sc-805) as well as mouse monoclonal
antibodies to c-Myc (sc-42) were obtained from Santa Cruz
Biotechnology. Rabbit polyclonal antibodies to phospho-c-Myc
(M8433) and mouse monoclonal antibodies to FLAG (M2) or HA
(HA11) were from Sigma and Babco, respectively. Mouse mono-
clonal antibodies to p27Kip1 or Hsp90 were from BD Biosciences.

Plasmid construction and mutagenesis
Complementary DNAs encoding HA-Fbw7, HA-Fbw7-DNF (hu-
man), and HA-Fbw4 (zebrafish) were cloned into pCGN (Kitagawa
et al, 1999); cDNAs encoding HA-Fbw1a, HA-Fbw2, and HA-Skp2
(mouse) were cloned into pcDNA3 (Invitrogen); and a cDNA
encoding FLAG-c-Myc (human) was cloned into pCI (Promega).
The pCI vectors encoding the FLAG-c-Myc substitution mutants
T58A, S62A, and T58A/S62A were generated with the use of a
QuickChange site-directed mutagenesis kit (Stratagene). For ectopic
expression in ES cells, a vector for FLAG-c-Myc controlled by the
phosphoglycerate kinase gene promoter was constructed.

Complementary DNAs encoding either a glutathione S-transfer-
ase (GST) fusion protein of Myc epitope-tagged Cul1 (mouse) or T7-
tagged Skp1 (human) were cloned into pBacPAK9 or pBacPAK8 (BD
Biosciences). Complementary DNAs encoding c-Myc, c-Myc(T58A/
S62A), or Fbw7 were cloned into pFASTBacHTa (Invitrogen).

Transfection, immunoprecipitation, and immunoblot analysis
HEK293T cells were transfected with vectors with the use of
FuGENE6 (Roche). Cells were incubated for 6 h with the protea-
some inhibitor MG132 (10mM) (Peptide Institute) beginning 24 h
after transfection. Cell lysis and immunoprecipitation were per-
formed as described (Kitagawa et al, 1999). The immunoprecipi-
tates were subjected to immunoblot analysis as described (Kamura
et al, 2003).

In vitro ‘pull-down’ assay
Nonphosphorylated and phosphorylated peptides corresponding to
the CPD region of c-Myc (residues 51–66) were chemically
synthesized and conjugated to NHS-activated beads (Pharmacia).
Cell lysates (200mg of protein) were incubated for 30 min at 41C
with the peptide-conjugated beads. The resulting precipitates were
washed four times with lysis buffer and subjected to immunoblot
analysis.

Serum deprivation and stimulation
HEK293Tcells and MEFs were deprived of serum for 48 h by culture
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 0.1% fetal bovine serum (FBS). They were then stimulated for
various times by incubation with DMEM supplemented with 30%
FBS.

Production of recombinant proteins
Saccharomyces cerevisiae Uba1, human UbcH5A, and human
ubiquitin were expressed in and purified from Escherichia coli as
described (Hara et al, 2001). Recombinant baculoviruses were
generated with the BacPAK (BD Biosciences) or Bac-To-BacHT
(Invitrogen) baculovirus systems. The recombinant SCFFbw7 com-
plex was purified as described (Kamura et al, 2003). His6-c-Myc and
His6-c-Myc(T58A/S62A) were purified similarly.
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Assay of ubiquitylation in vitro
The ability of the purified recombinant SCFFbw7 complex to
ubiquitylate c-Myc was assayed by incubation of 50 ng of His6-c-
Myc and 200 ng of the complex as described (Kamura et al, 2003).
The reaction mixtures were subjected to immunoblot analysis with
antibodies to c-Myc (sc-764).

Pulse-chase analysis
Pulse-chase analysis was performed with the use of antibodies to
FLAG as described (Kitagawa et al, 1999). All pulse-chase data are
from experiments that were repeated three times with similar
results.

GSK3 inhibitor treatment
After transfection and serum deprivation, HEK293T cells were
stimulated by re-exposure to serum in the presence of 20mM 2-
thio(3-iodobenzyl)-5-(1-pyridyl)-[1,3,4]-oxadiazole (GSK3 inhibitor
II, Calbiochem) or 0.1% dimethyl sulfoxide (vehicle) for 2 h. The
cells were then incubated in the additional presence of 10 mM
MG132 for a further 6 h before immunoprecipitation and immuno-
blot analysis.

RNAi
RNAi was performed as described (Elbashir et al, 2001), with the
exception that Oligofectamine (Invitrogen) was used for transfec-
tion. The siRNA duplexes corresponding to Fbw7, Skp2, or
enhanced green fluorescent protein (EGFP) were synthesized by
Dharmacon Research; sequences are available on request.

Luciferase assay
At 48 h after siRNA transfection, HeLa cells were transfected with
both p4�E-SVP-Luc (Mori et al, 1998), provided by Y Ariga, and
pRL-Tk (Promega), as an internal control, with the use of FuGENE6.
After incubation for an additional 24 h, the cells were assayed with
a Dual-Luciferase Reporter Assay System (Promega).

RT and real-time PCR
Total RNA (1 mg) isolated from HeLa cells with the use of an
RNAssay kit (Qiagen) was subjected to RT with a RevaTra Ace kit
(Toyobo). The resulting cDNA was subjected to PCR with SYBR
Green PCR Master Mix in an ABI-PRISM 7000 Sequence Detection
System (Applied Biosystems). The relative amounts of each target
mRNA were calculated as described (Pfaffl, 2001).
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