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Abstract

Background: While much attention has focused on the development of high-density single nucleotide polymorphism
(SNP) assays, the costs of developing and running low-density assays have fallen dramatically. This makes it feasible

to develop and apply SNP assays for agricultural species beyond the major livestock species. Although low-cost
low-density assays may not have the accuracy of the high-density assays widely used in human and livestock
species, we show that when combined with statistical analysis approaches that use quantitative instead of discrete
genotypes, their utility may be improved. The data used in this study are from a 63-SNP marker Sequenom® iPLEX
Platinum panel for the Black Tiger shrimp, for which high-density SNP assays are not currently available.

Results: For quantitative genotypes that could be estimated, in 5% of cases the most likely genotype for an individual
at a SNP had a probability of less than 0.99. Matrix formulations of maximum likelihood equations for parentage
assignment were developed for the quantitative genotypes and also for discrete genotypes perturbed by an assumed
error term. Assignment rates that were based on maximum likelihood with quantitative genotypes were similar to
those based on maximum likelihood with perturbed genotypes but, for more than 50% of cases, the two methods
resulted in individuals being assigned to different families. Treating genotypes as quantitative values allows the same
analysis framework to be used for pooled samples of DNA from multiple individuals. Resulting correlations between
allele frequency estimates from pooled DNA and individual samples were consistently greater than 0.90, and as high
as 0.97 for some pools. Estimates of family contributions to the pools based on quantitative genotypes in pooled DNA
had a correlation of 0.85 with estimates of contributions from DNA-derived pedigree.

Conclusions: Even with low numbers of SNPs of variable quality, parentage testing and family assignment from
pooled samples are sufficiently accurate to provide useful information for a breeding program. Treating genotypes as
quantitative values is an alternative to perturbing genotypes using an assumed error distribution, but can produce very
different results. An understanding of the distribution of the error is required for SNP genotyping platforms.

Background

High-density SNP (single nucleotide polymorphism) assays
have become a standard tool in the study of human, animal
and plant genetics, due to a rapid increase in SNP density
for a constant or falling price per assay. Concurrently,
progress has been achieved in technologies for low-
density SNP assays with a substantially reduced price
per assay. These developments in two directions i.e.
maximum density per unit of cost and minimum cost

* Correspondence: John.Henshall@csiro.au

'CSIRO Food Futures National Research Flagship, CSIRO Animal, Food and
Health Sciences, Armidale, NSW 2350, Australia

Full list of author information is available at the end of the article

( ) BiolVled Central

per assay, have provided tools at different price points
that are suited to different applications across a broad
range of genetics studies. While much of the focus in the
literature is on discoveries that arise from the application
of the newest, most powerful high-density assays, in many
applications, especially in species other than humans,
reducing the price per assay is more important than
increasing the number of SNPs in the assay. Parentage
assignment in commercial livestock industries is an
example. The benefit of knowing pedigree is real and
quantifiable, but is relatively small per individual animal,
and the cost of alternative means of assigning parentage
puts a cap on the price at which genomic assays will be
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beneficial. In commercial aquaculture there are often no
alternative means of assigning parentage unless families
are reared in isolation, which is undesirable from the
perspective of tank infrastructure. Consequently, there
is much interest in the use of genomic assays for pedigree
construction. In aquaculture, the value of individual
animals is perceived to be lower than in many terrestrial
livestock species, so systems to assign parentage may
be even more sensitive to the price of assays. However,
the opportunities are significant. DNA-based parentage
removes the need for single-family rearing, allows physical
tagging at a much later age, and offers the opportunity to
link phenotypes from individuals grown in commercial
ponds to broodstock grown in specialized pond or tank
systems [1]. In cases where recording pedigree through
management from mating to tagging is impractical, the
introduction of molecular-based parentage offers perhaps
the only opportunity to embark on a modern genetic
improvement program. Importantly, this does not neces-
sarily require the use of high-density genotyping arrays.

The shrimp industry is an example of an industry for
which to date no high-density SNP assays have been
developed, despite ongoing efforts. Establishment of
Penaeid shrimp selective breeding programs over the
last 20 years have underpinned global expansion of a
sustainable shrimp aquaculture industry that is worth an
estimated US 3 billion dollars in 2012 (MRP Briggs, per-
sonal communication). More recently, breeding programs
have adopted microsatellite-based DNA testing to enable
accurate pedigree assignment, both to select for specific
genetic traits that maximise production efficiency and to
restrict inbreeding [2-5]. When applying molecular tools
to parentage testing, statistical methods developed in
other disciplines have usually been used. For example, in
the analysis of SNP data from a designed Black Tiger
shrimp Penaeus monodon breeding program, Sellars et al.
[5] applied maximum likelihood methods that were
developed for parentage assignment using microsatellites
in wild populations. Both the change from microsatellites
to SNPs and differences between wild populations and
managed breeding populations provide justification for
reviewing the appropriateness of these existing methods
for parentage assignment.

Microsatellites have been empirically compared to
SNPs for parentage analysis in a number of studies e.g.
[5-8] and parentage assignment using SNPs is discussed
in other studies, e.g. [9-12]. Earlier studies favoured
microsatellites, especially for non-model organisms, due
to the ease of developing microsatellites and the additional
power that results from the larger numbers of alleles at
each locus. However, the price per SNP in a high-density
array is so much less than the price of an equivalent
amount of information from microsatellites that more
recent studies accept that SNPs can be more efficient in
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some circumstances. If SNPs are sufficiently closely linked,
haplotypes of SNPs that are in linkage disequilibrium can
be estimated, and these are far more polymorphic than
individual SNPs and can be treated as alleles in parent-
age analyses [11,13]. In these situations, the differences in
polymorphism between SNPs and microsatellites become
negligible.

To date, comparisons of microsatellites and SNPs
for parentage analysis have generally used the same
methods and software for each assay platform, with little
consideration of the properties of the method. Over the
years, a number of statistical approaches to parentage
analysis have been considered (see Jones et al. [9] for a
review). The aim of the current study is the quantitative
analysis of genotypes from low-cost, low-density SNP
assays, focusing on maximum likelihood based methods
that allow for the possibility of genotyping errors, e.g.
[14-20]. The likely form of genotyping errors in bi-allelic
SNP data was explicitly discussed by Sieberts et al. [15],
Anderson and Garza [10] and Teo et al [21]. With only
two alleles at each locus, a genotyping error is easily
modelled as the probability of an allele being read as
the alternative allele, and this probability can be assumed
to be constant across SNPs and samples, or specific to
SNPs or samples, e.g. [21]. A second reason for focusing
on maximum likelihood methods is that the likelihoods
of alternative pedigrees can serve as input into a second
analysis, in which other, non genetic data is included
[22,23]. For example, the probability of a particular mating
having occurred can be affected by spatial location records,
both in wild and in managed populations.

In all studies mentioned above, assay results from
microsatellites or SNPs were modelled as discrete pairs
of alleles. However, in their raw form, SNP assays return
quantitative estimates of area or intensity for two axes,
X and Y, which relate to the two nucleotide alleles. For
example, the Illumina BEADSTUDIO software can be
configured to return the frequency of the B allele, a
quantitative measure taking values between 0 and 1 [24].
Commonly, these quantitative values are used to estimate
SNP allele frequencies in pooled samples of DNA, which
can then be used to estimate SNP effects on disease or
production traits, e.g. [1,25-30], but they can also be
used to estimate population parameters, such as the
proportional contributions from multiple families in a
pooled sample [31]. This application is of particular inter-
est for selective breeding in aquaculture, where individual
animals are of low value, but family numbers are very
large. In shrimp, genotyping assays of pooled DNA
samples provide promise for linking substantial amounts
of quantitative phenotypic data from commercial ponds to
parental broodstock. High-performing families can be
identified and young broodstock from these families can
then be used to produce the next generation.
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In this study, we attempted to incorporate all of the
seemingly disparate aspects of SNPs and parentage
analysis noted above into a single approach. We used
a low-density SNP panel to genotype individuals and
pools from several generations from a domesticated P.
monodon breeding population. Instead of applying an
error function to discrete allele calls, we estimated
genotype probabilities directly from the quantitative
X-Y data from the assay, using SNP specific parameters that
were calibrated from as many samples as are available.
These genotype probabilities were then used in maximum
likelihood parentage analysis, using a matrix formulation to
simplify the algebra and reduce the risk of software errors.
We also describe the matrix formulation of a traditional
maximum likelihood method [19] and of simply counting
allele mismatches and, for comparison, applied them to
the same dataset. The likelihoods from the parentage
analysis were used to identify likely family structures
that are consistent with known biological constraints in
P. monodon. Finally, we used the most likely parent pairs
identified in this analysis to estimate family contributions
in pooled samples of DNA from the progeny.

Methods
A worked example of the statistical approach used in this
study is in the Appendix.

Animals, tissue sampling, DNA extraction and SNP
genotyping

Samples were available from multiple generations of P.
monodon shrimp from a single hatchery. All available
pleopod tips (approximately 8 mm? in size) from G9
(generation 9, n = 311) breeding shrimp and a random
sample of 202 G10 shrimp from the same shrimp breeding
line were used. Pleopod tips were snap-frozen on dry ice
for transport back to the laboratory. Genomic DNA
(gDNA) was extracted from each individual using CSIRO
standard industry protocols that apply QIAGEN’s DNeasy
extraction methodology. gDNA was also extracted from
583 G1 and G2 individuals from an unrelated breeding
line from the same farm. In addition to the individual
samples, the 202 G10 shrimp were allocated at random to
nine pools, each containing between 18 and 24 individ-
uals, and the 311 G9 shrimp were allocated at random to
13 pools, each containing between 23 and 26 individuals.
Pooled gDNA samples were then created by mixing 5 pL
of gDNA from each individual in the pool. Subsequently,
60 pL from each pooled samples and 500 ng of gDNA
from each individual shrimp were sent to GeneWorks® for
genotyping using the 63-SNP marker Sequenom® iPLEX
Platinum panel reported by Sellars et al, [32]. Of these 63
SNPs, two consistently failed and were removed from all
analyses, leaving a 61-SNP assay.
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Estimation of SNP specific parameters

All 1096 G1, G2, G9 and G10 individual samples (i.e.,
excluding the samples of pooled DNA) were used to
estimate SNP specific parameters. In addition to the
standard genotype call for each SNP for each sample,
GeneWorks® provided estimates of the X and Y areas
that relate to the A and B alleles for each SNP, which
are the raw output from the Sequenom genotyping
platform. For assay ij, for sample i and SNP j, these
consist of an area for each allele (2;; and a,;) and an
uncertainty measure for each allele (#;; and u,;). We
excluded assay results when the Sequenom software
failed to call an allele. For all other assays, we converted
Cartesian X-Y area measurements to polar coordinates
[24] to derive a measure of allelic proportion as:

_1 ((azj—ua

tan! 2;{ 2,,.
_ a1ij—Ulij 1
by = I . (1)

2

This can be interpreted as a measure taking a value
between 0.0 and 1.0, corresponding to the polar coordin-
ate range from 0 to 7. A figure showing the relationship
between the X and Y areas and p;; is in the Appendix.
We then used the genotype calls from the Sequenom
software to estimate means (paaj, pap; and pgg;) and
standard deviations (0aaj, 0ap; and ogg;) for values p;
for each genotype class (homozygous AA, heterozygous
AB, and homozygous BB) for each SNP. Unlike in the
approach used to estimate B allele frequencies in [24],
where allelic proportions were scaled such that values
pij = 0.0, 0.5 and 1.0 corresponded to the means ysaj
#ap; and pgpj, respectively, we did not scale the p;
values. As a measure of the power to discriminate be-
tween genotype classes, we used the Welch statistic
(the t-statistic appropriate when the variances of classes
are unequal, using the standard output for the t.test()
function in R [33]). The Welch statistics T4; and 1g; were
estimated for the intervals (4 a; to ¢ag;) and (pag; to pgg),
respectively.

Parentage assignment
Parents from generation G9 were assigned to the G10
individuals in a two-step process.

First, the likelihoods of sire-dam-offspring trios were
estimated. Instead of first assigning genotypes and then
applying a likelihood method that incorporated an error
term (such as in [19,34,35]), the likelihood method expli-
citly incorporated the SNP specific parameters (#aaj
UABj UBBj0AA)j OaB; and opg;) and the measures of allelic
proportion p;. The latter were included regardless of
whether the Sequenom software called a genotype, but
were set to missing when a;; - u;; + a; - us; was less
than 3.0. This cut-off was chosen after examining the
values of a and u for those samples that were not assigned
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a genotype by the Sequenom software. For each pj, a
quantitative ordered genotype probability matrix G’ was
estimated as:

i | Panj Dasi )

G'= [CDBAL';' Dpgyj ] /Z(D”’

where @, 5 is the height of the N(us4j, 044 distribution
at x = p;;, Oap; and Dpy;; are each half the height of the N
(uagp oag)) distribution at x = p;;, Ogg;; is the height of the
N(ugg; opgy) distribution at x =p;; and the sum Zd; is
over genotypes AA, AB, BA and BB. The G matrices are
symmetric, and have dimension (2 x 2) for biallelic SNPs.
The vector of probabilities of allele transmission from a
sire or dam i at marker j is

ool

Multiplying by the vector of 1s produces the row averages

(Gij [ } }) and the column averages (Gi", E]) , which

are equal because G is symmetric. So here the equation for
T could be simplified, but there are situations where G
might not be symmetric (for example, in a multigener-
ational dataset where parental origin of alleles is known), so
we chose to leave the equation in this more general format.
For a potential parent pair, sire (s) and dam (d), with trans-

mission vectors T¥ and TY, the transmission matrix Tszdjl
contains the genotype probabilities expected from that
pairing. Thus, for offspring (o) with genotype probability
matrix G%, the likelihood of the trio (s, d, o) for marker j is:

L6 — sum ( <TSdei'> G"") , (3)

where °is the Hadamard or entrywise product. To estimate
the likelihood when marker data for one parent is missing,
the genotype matrix for the missing parent was set to
PP, where P is the (2 x 1) vector of allele frequencies
for SNP j, estimated from all G9 animals. In the likeli-
hood ratio %, the denominator L” is the likelihood
under the null hypothesis that the offspring is unrelated
to the sire and dam, which is constructed by treating
both parents as missing. The likelihood ratio across all
markers is the product of the marker likelihood ratios,
or the sum of the log-likelihood ratios. For consistency
with earlier publications, we will refer to the summed
log-likelihood as the log odds (LOD) score. We only
retained LOD scores where, for at least 10 SNPs, none
of the sire, dam or offspring genotypes were missing.
This relatively relaxed threshold was used because the
LOD scores were further processed in the second step,
as described in a following paragraph. When the LOD
for a sire-dam-offspring trio was less than the LOD
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for the sire-offspring pair with a missing dam, the sire-
offspring LOD was used and the dam was assumed to be
missing. Likewise, when the LOD for a sire-dam-offspring
trio was less than the LOD for the dam-offspring pair
with a missing sire, the dam-offspring LOD was used
and the sire was assumed to be missing. The most likely
pedigree was identified and will be referred to as the
unrestricted pedigree.

The second step in the parentage assignment was to
impose constraints due to the reproductive biology of
P. monodon and hatchery records. The G10 offspring
were produced by natural mating of the G9 parents in
large mating groups, spawned over a three-week period.
Under natural mating, females can only mate immediately
following moult, which occurs in a cycle of approximately
three weeks, and at each moult, females mate with at most
one male. Given the width of the spawning window, it
is unlikely, but not impossible, that females produced
offspring from more than one male. After mating, male
P. monodon take 7 to 12 days to re-develop their sper-
matophores [36,37]. So similarly, it is unlikely, but not
impossible, that males produced offspring from more
than one female. Accordingly, we used a stochastic
search process to identify two constrained pedigrees,
first the set of full-sib families that maximised the total
LOD (referred to as the full-sib pedigree) and second,
the set of half-sib families that maximised the total
LOD (referred to as the half-sib pedigree), where for
the half-sib families, parents could have no more than
two mates. For each full-sib and half-sib pedigree, 5000
independent random pedigrees were sampled and the
one with the maximum total LOD retained. Each ran-
dom pedigree was produced by proceeding through
randomly ordered offspring, creating a family for the
sire-dam-offspring mating pair with the highest LOD
that did not violate mating constraints. With this ap-
proach, the largest families are likely to be identified
first, maximising the chance of finding a high likeli-
hood solution for the whole pedigree. We validated the
method by repeating the process five times, and in each
case the same solution was found, always within the
first 1000 of the 5000 samples. To assist in determining
whether departures from the hypothesized full-sib pedi-
gree structure were due to lack of power in parentage
assignment or to parents having multiple mates, we
fitted two generalised linear models, with the response
vector for the first model coded 0/1 when the parent
pair was different/the same in the unrestricted and
half-sib pedigrees, and with the response vector for the
second model coded 0/1 when the parent pair was
different/the same in the half-sib and full-sib pedigrees.
For each offspring, the explanatory variable was the
sum of the genotype probabilities for the most likely
unordered genotype for each SNP.
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Matrix formulation of maximum likelihood and exclusion
methods

For comparison, we also conducted the analysis described
above using an established maximum likelihood approach
[19,34,35] and by exclusion. Both of these are easily
represented in matrix form. For the maximum likeli-
hood approach, the genotype probability matrix is built

as M = (1—8,) DV + s/F"F’J , where the discrete genotype

i 1 0] |0 1 0 0
T
matrix DY = [O 0}, [0 0} or [0 1} , the genotype
probability matrix expected due to the allele frequency is

PP , as described above, and ¢ is the assumed error rate.
Alternative formulations of the matrix for heterozygous
individuals are equivalent, provided that the sum of the
heterozygous probabilities equals 1, while the assumed
error rates may be constant or differ between SNPs. We
estimated SNP specific error rates in two different ways.

: L _ gmax max ;
First, as & = meom(l g ), where g"/*" is the vector for

SNP j that comprised the maximums of the unordered
genotypes in GV (with the unordered heterozygous geno-
type being the sum of the two ordered heterozygous
genotypes); and second, as:

g,
§=1"
0.01,

This second formulation allows for an underlying
error rate regardless of the precision of the genotyping
assay, which is similar to allowing a certain number of
mismatches when using an exclusion method. We
refer to € and ¢ as the estimated and assumed error
rates, respectively.

To assign parentage, the genotype probability matrix MY
replaces the genotype probability matrix G” in Equation 2,
while no changes to Equation 3 are required. We refer to
this maximum likelihood method as “perturbed”, since the
DY matrices are perturbed with an assumed error function.
In forming the DY matrices, we included only markers for
which the most likely genotype in the quantitative ordered
genotype probability matrix GY was greater than 0.98 (or
0.49 for the two heterozygous genotypes).

Counting mismatches for the exclusion method using
the matrix formulation is equally straightforward. Matrix
DY is used instead of MY to produce the transition
matrices in Equation 2 and, similar to the likelihood
calculation in Equation 3, the number of mismatches is

the number of markers for which sum((TSdejl) D°i)

equals 0. In assigning parents, we either allowed for
no or three mismatches. Three mismatches out of 61
SNPs is small relative to the 15 out of 122 SNPs
allowed by [6], but SNPs have only two alleles, so mis-
matches between unrelated individuals are expected to

g > 0.01
& <0.01
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occur by chance far less frequently with SNPs than
with microsatellites.

Estimation of allele frequencies for pooled samples

For each SNP (subscripted j), for each of the nine pools
(subscript k) we assumed that the reaction had failed
for assays for which ayy; + asij — 41y — Uiy < 3. For the
remaining assays, allelic proportions py; were estimated for
each pooled sample using Equation 1. As in Peiffer et al.
[24], the genotype means (#aa; pap; and pgg;) estimated
from individual samples were used to adjust the allelic

proportions to obtain estimates of allele frequencies f;,

where
0.0 if pij < tanj
(ij—ﬂAAj) )
. 7( if ppp; < Pij < Haj
—~ MAB;'—//‘AA/)
f g =

(Pk/—ﬂABj)
05+05| —+~

(/f‘BBj—/"ABj)
1.0 if py; > ppp

if ppp; < pij < tgg;

As an estimate of the variation associated with f,;, we
used the relevant Welch statistic (t4; or 1g)):

_ ] W
T = T3

Allele frequencies of pooled samples, f ,*q, were also esti-

if pii<pinp
ifpr; > ppg;’

mated from the genotype probability matrices of the indi-
viduals that were used to create each pool. This was done
using the estimated allelic proportions for the individuals.

The correlation between f; and f ,’:j was estimated for each

pool, and the effect of genotyping success rates on the
correlation was tested using a regression analysis.

Estimation of family contributions to pools

The families represented in the nine G10 pools were
determined using the known G10 individuals in the
pool and the full-sib, half-sib and unrestricted pedigrees
were identified using the stochastic search described
above. With m being the number of SNPs for each pool
k, containing individuals from # families, matrices X (sub-
script k implied), y, and w were assembled as follows:

X X Xin
X — X:21 X:22 X:Zn ,
Xml XmZ an
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y= fk2

—
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(1)
(rzs;)z

(rii:f

where Xj; contains estimates of the allele frequencies
for SNP j and family /, given the estimated genotype
probability matrices for the sire and dam described
above. Missing values in X and y were replaced with
0.5, and missing values in w were replaced with 1.0.
These X and y matrices are equivalent to those of
Kinghorn et al. [31], except that we add a vector of
weights w. These weights are based on the differences
in resolution between genotype clusters for individual
samples, which we assume is related to the variance of
allele frequency estimates for pooled samples. We
then used the pcls() function in the R package mgcv
[33,38] to solve the weighted least squares problem min
VW (XB-y)||” for the (1 x 1) vector of family contribu-
tions B, subject to the constraint min(f) > 0. Strictly, an
additional constraint Y. 8 =1.0 applies, but we found that
the sum of the solution vector 8* returned by pcls() was
generally close to 1.0 (min = 1.02, max = 1.12), and we
scaled B* to produce a final estimated family contribu-
tion vector B = B /Zﬁ . For each pool, we also
constructed vectors y using the means of allele frequencies
for individual samples in the pool (i.e., using f,’; instead
of fi;) and we estimated family contributions from
these for comparison.

W =

Results

SNP genotyping and estimation of SNP specific parameters
Of the 64 538 assays (1058 G1, G2, G9, and G10 animals
by 61 SNPs), an estimated genotype was returned by the
Sequenom software for 54 761 assays. There was a lot
of variation in genotype call rates between SNPs. The
reasons for this become evident when the raw data are
examined. In Figure 1, intensity is plotted against allelic
proportion (p) for selected SNPs, based on X-Y areas
unadjusted for area uncertainty on the left, and based
on X-Y areas adjusted for area uncertainty on the right.
For the adjusted plots, the means (¢aa), #ag; and pgg))
and standard deviations (0aaj 0ap; and ogg) from
values p;; in each genotype class (AA, AB, and BB) are
also provided. The first SNP (78443-0_3537) illustrates
the value in subtracting the uncertainty value; although
there was little change in the values of p for heterozy-
gous individuals, the variation in the values of p for
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homozygous individuals was much reduced. The second
SNP (550057-0_189) illustrates that the variation in
heterozygous individuals could be much higher than
that in homozygous individuals, and that the mean p for
heterozygous individuals may not lie half way between the
means for the homozygous individuals. For this SNP, most
assays produced a genotype estimate. The third SNP
(484475-0_438) exhibits even more variation, and the
mean value of p for homozygous GG individuals was not
close to 1.0. For this SNP, a genotype was not returned for
some assays when p values did not clearly lie within the
clusters. For the final SNP (753848-0_614), the within-
genotype variation was smaller and clusters were quite
distinct, with few uncalled genotypes, but the mean values
of p were very different from 0.0, 0.5, and 1.0. The Welch
statistics (1a;, Tg) for these four SNPs were (224.24,
155.44), (132.96, 46.95), (48.17, 35.44) and (58.97, 67.92),
respectively. For the second SNP, there was a large
difference between T4, and tg, with a clearer distinction
between the means of the AA and AG genotypes than
between the AG and GG genotypes.

For three of the 61 SNPs, the number of genotype calls
was not sufficient to estimate the SNP parameters, and, for
the remaining 58 SNPs, quantitative genotype probability
matrices (quantitative genotypes) could be estimated only
for 43% of individuals. The estimated error rates (&) of 47
SNPs were lower than 0.01, and the assumed error rates
(¢) for these were set to 0.01. For the remaining SNPs,
seven had estimated error rates lower than 0.02, three
had estimated error rates lower than 0.04, and one had
an estimated error rate of 0.08.

For 87% of individuals, quantitative genotypes could be
estimated on 50 or more SNPs, but for 10% of individuals,
less than 20 SNPs provided quantitative genotypes. When
quantitative genotypes could be estimated, in 95.4% of
cases the most likely unordered genotype class had a
genotype probability that exceeded 0.98, our threshold for
declaring a genotype for use in the perturbed maximum
likelihood and exclusion methods.

In Figure 2, quantitative genotype probabilities are com-
pared to perturbed genotype probabilities. Generally, the
quantitative genotype probability was far more certain
(ie., closer to 0 or 1) than the perturbed genotype probabil-
ity. The patterns for estimated error and assumed error
were remarkably similar; the effect of imposing a floor of
1% in the assumed error was reduced by multiplication by
the expected genotype frequency given the allele frequen-
cies. Consequently, although the assumed error rate was
greater than or equal to 0.01, genotype probabilities were
still commonly less than 0.01 or greater than 0.99. The pat-
terns in panels A and D were affected by the threshold of
98% quantitative genotype certainty before a perturbed
genotype was assigned, but a perturbed genotype was
missing for that reason in only 3414 out of 72 039 cases.
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(See figure on previous page.)

Figure 1 Variation between SNPs and effect of adjusting for uncertainty. Intensity is plotted against allelic proportion p (see Equation 1) for
all individuals for four selected SNPs, using both the unadjusted areas (left hand side) and areas adjusted for the uncertainty associated with the
area estimate as provided by the genotyping provider (right hand side); intensities are estimated as Euclidean distances from the origin to the
data points in Cartesian coordinates; for the adjusted areas, the mean and standard deviation of the allelic proportion estimates (p) are provided.

Parentage assignment

G9 males (166) and females (124) recorded as potential
parents of the G10 offspring were tested as parents of
G10 progeny (210). Using the quantitative genotypes, of
the 34 860 sire-offspring pairs, a LOD score was produced
for only 28 566 pairs, the others having less than 10 SNPs
for which both sire and offspring had an estimated allelic
proportion. For dam-offspring pairs, 19 872 LOD scores
were produced from a possible 26 040 pairs. Testing each
sire by dam combination for the 207 offspring resulted in
LOD scores for 2 741 922 sire-dam-offspring trios for
which at least 10 SNPs in all three animals had a valid
genotype. In Figure 3, LOD scores from quantitative and
perturbed maximum likelihood are compared using the
estimated error (¢) and using the assumed error (&) for
the perturbed maximum likelihood. The LOD scores that
were estimated using the quantitative approach have
the greatest range, followed by those estimated using

the perturbed approach with an estimated error, followed
by those estimated using the perturbed approach with an
assumed error.

Differences in the distributions of LOD scores produced
differences in the distribution of most likely pedigrees.
Table 1 summarises, for each progeny, whether both
parents appear to have genotype records included in
the analysis, whether one parent appears to be missing,
or whether both parents appear to be missing. Results
differed largely between methods; exclusion allowing
zero mismatches produced the least assignments and
exclusion allowing three mismatches produced the most
assignments. The three maximum likelihood methods
were intermediate, with the quantitative method most
similar to exclusion allowing zero mismatches, and the
perturbed method with an assumed error most similar to
exclusion allowing three mismatches. To understand the
reasons for these differences, we examined individual
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Figure 2 Comparison of genotype probabilities for quantitative and perturbed genotypes. Perturbed genotype probabilities were estimated
using either an estimated error (top three panels) or an assumed error (bottom three panels), and were only estimated when the quantitative genotype
probability exceeded 0.98; the data in the left hand panels (A and D) are expanded in the centre (B and E) and right hand panels (C and F).
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Figure 3 Comparison of LOD scores obtained with quantitative and perturbed genotypes. In the top two panels, the genotypes were
perturbed (x-axis) using the estimated error rate, and in the bottom two panels, the genotypes were perturbed (x-axis) using the assumed error
rate; the left hand panels contain LOD scores for all pedigrees, while in the right hand panels only LOD scores for the 10 most likely pedigrees
for each progeny are plotted; these are coloured according to whether the pedigree appeared in the top 10 pedigrees obtained using perturbed
genotypes, the top 10 pedigrees obtained using quantitative genotypes, or the top 10 pedigrees for both approaches.
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cases when the perturbed method produced a high likeli-
hood for a trio and the quantitative method did not. The
differences were due to a small number of SNPs, which
when perturbed moved genotype probabilities away
from O or 1, while the quantitative estimates were very
close to 0 or 1. In one example (progeny 2443, sire
1819, dam 1728), for SNP 78443-0_3537 (the first SNP
in Figure 1, with error rates &€ = 0.001, € = 0.01), the
probabilities of the progeny genotype not being AA
were < 1.0e-28, 0.0009 and 0.0091 for the quantitative
and perturbation (¢ = 0.001 and € = 0.01) approaches
respectively, and the probabilities of the sire genotype
not being GG were <1.0e-14, 0.0005 and 0.0050. The
effect of this SNP on the log likelihood was -31.9 for
the quantitative genotype, —5.1 for the perturbed genotype
(¢ =0.001) and -2.9 for the perturbed genotype (¢ = 0.01)
approaches. The penalty for an inconsistent genotype can
be much larger for the quantitative approach, since the
genotype probabilities can be much closer to 0 or 1.

In Figure 4, for each progeny, the LOD scores for the
most likely pedigree is compared to §, the difference in
LOD between the most likely and second most likely
pedigrees. For arbitrary thresholds of maximum LOD
greater than 3.0 and § greater than 3.0, assignment rates
for the quantitative maximum likelihood and perturbed
maximum likelihood (¢ = 0.001 and € = 0.01) approaches
were similar at 23, 22 and 20% respectively. However, the
families assigned under the approaches frequently differed;
for only 9% of progeny did the quantitative and perturbed
approaches most exceed the thresholds for the same
parent pair, regardless of whether the estimated or assumed
error rate was used for the perturbed approach.

The remaining results relate to the quantitative geno-
types and likelihoods. Summaries of the impact of the
pedigree constraints are in Table 2. The three largest fam-
ilies were the same for all three analyses, each comprising
a known sire and unknown dam. In Figure 5, the LOD
scores for unrestricted pedigrees are compared to LOD
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Table 1 Estimated counts of G10 offspring for which both sire and dam, only sire or only dam, or neither parent
appeared to be present, depending on the method for parentage assignment used

Method
Most likely pedigree Quantitative Perturbed, error = ¢ Perturbed, error = € Exclusion, zero mismatches Exclusion, < 3 mismatches
Sire+dam 41 67 115 31 177
Sire+missing 151 133 91 66 0
Dam-+missing 64 35 8 10 0
(sire or dam)+missing 56 31 7 81 30
Both missing 7 3 0 19 0

Counts are for the quantitative genotype method and perturbed genotype maximum likelihood method using either an estimated error (€) or an assumed error
(€), and exclusion with a threshold of either zero or three mismatches. For sire+dam, the trio LOD is greater than 0, the sire LOD and the dam LOD. For sire
+missing, the sire LOD is greater than both 0 and the trio LOD, and the dam LOD is less than the trio LOD or less than 0. For dam-+missing, the dam LOD is
greater than both 0 and the trio LOD, and the sire LOD is less than the trio LOD or less than 0. For (sire or dam)+missing, the sire LOD and dam LOD are both
greater than 0, and both greater than the trio LOD. If all LOD scores are less than 0, it is assumed that genotypes for both parents are missing. Equivalent

conditions are applied for the exclusion method.

scores for full-sib and half-sib pedigrees. Most of the
increase in LOD score observed when going from full-
sib families to half-sib families occurred due to a small
number of individuals, each with a large LOD score,
leaving a full-sib family to form their own half-sib family.
The quality of the individual genotype, measured as the
sum of the genotype probabilities for the most likely un-
ordered genotype for each SNP, had no effect on whether
individuals were assigned to the same or different parents
in the half-sib and unrestricted pedigrees (P > 0.3), but
there was a suggestion that it had an effect on whether
individuals were assigned to the same or different parents
in the full-sib and half-sib pedigrees (P = 0.08, residual
deviance 133.17 on 205 degrees of freedom).

Estimation of allele frequencies for pooled samples

Genotyping of three of the 22 pools failed and only
results for the other 19 pools are presented, in Table 3
and graphically in Figure 6. The proportion of genotypes
available for individuals known to be in pools differed
between pools, with a higher average proportion of indi-
vidual shrimp genotypes available for pools with G10
individuals. The G9 and G10 samples were taken a year
apart, and DNA was extracted soon after collection, so
there was a batch effect of unknown cause. Not surpris-
ingly, differences in the proportion of genotypes available
for individuals known to be in the pools had a significant

effect on the correlation between ]? and f* (P = 0.034).
Generation (G9 or G10) only affected the correlation
through its effect on the proportion of genotypes available
on individuals; if this proportion was in the model then
the generation effect on the correlation was not signifi-
cant. There was also variation in the number of SNP
genotypes available per pool, and this also had an effect
on the correlation (P = 0.002). This suggests that for
assays with fewer SNPs called, results for other SNPs
were also more variable. The estimate of the Welch

statistic (Figure 6, panel B) had a highly significant effect
on the correspondence between f and f* (P < le-7); the

difference betweenf and f* tended to be smaller for esti-
mates with high Welch statistics (i.e. those in intervals
where genotype clusters for samples from individual DNA
were clearly distinguished).

Estimation of family contributions to pools

For the eight G10 pools, family contributions estimated
from pedigree ranged from 4 to 35% (1/24 to 8/23). The
most abundant family generally accounted for between
one quarter and one third of the individuals in a pool
(Table 4). The correlation between the contributions

B Quantitative

E Perturbed, error

A
€
B Perturbed, error=%

1 1 1 | |
-60 -40 -20 0 20

Maximum LOD

Figure 4 Comparison of LOD scores for most likely pedigrees
obtained with quantitative and perturbed genotypes. For each
progeny, the LOD score of the most likely sire-dam family (x-axis)
and 6, the difference between the LOD for the most likely and
second most likely sire dam family (y-axis), are plotted; colours
indicate whether quantitative or perturbed (estimated error or
assumed error) genotypes were used.
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Table 2 Estimates of numbers of families, sires and dams for the unrestricted, half sib and full sib pedigrees

Families Sires Missing sires Dams Missing dams Largest family LOD
Unrestricted 64 42 16 47 20 52 1,529
Half sib 51 44 18 44 20 53 1,481
Full sib 43 43 17 43 21 55 1,397

Counts for sires and dams include those that are missing, and the LOD is the sum of the LOD scores for the individual assignments.

estimated from pedigree and from the pooled DNA sam-
ples (ie. using f) differed based on the pedigree used
(Figure 7, left hand panels), with the highest correlation
(0.85) for the full-sib pedigree and the lowest correlation
(0.54) for the unrestricted pedigree. Contributions of the
larger families were over-estimated with the pooled DNA
samples and contributions of the smaller families were
under-estimated. If family contributions were estimated
from the mean value of p for individuals in the pool (ie.
using f*) instead of from pooled DNA samples, correla-
tions with pedigree-based estimates were 0.87, 0.65 and
0.60 for the full-sib, half-sib and unrestricted pedigrees,
respectively. These correlations did not differ greatly from
the correlations obtained from pooled DNA samples,
which may be explained by the high correlation between
contributions estimated from pooled and from individual
samples (Figure 7, right hand panels).

Discussion
This study focussed on the inference of relationships
between individuals using genotype data obtained from

20

B fullsib pedigree X
E halfsib pedigree

10

0
|

LOD: restricted pedigree
-5 5
| |

-10

I T T I I I I
-10 -5 0 5 10 15 20

LOD: unrestricted pedigree

Figure 5 Effect of constraining the pedigree. The maximum
sire-dam-offspring trio LOD score is plotted for each of the 207 G10
progeny; on the y-axis, the maximum LOD score for the unrestricted
pedigree is plotted, while on the x-axis the maximum LOD scores for
the half-sib and full-sib pedigrees are plotted; the order of plotting is
full-sibs followed by half-sibs; full-sib data points are masked by half-sib

data points, except when the two differ.

a low-cost low-density genotyping platform. We used
an example from aquaculture but the results are also
relevant to other industries for which the value of an
individual animal is low. We chose to restrict our geno-
type data to that obtainable from a single low-density
Sequenom 63-SNP multiplexed assay, the cost of which
is similar to that of genotyping a very small number of
multiplexed microsatellites (e.g. two panels of six and
seven microsatellites, as used by Sellars et al. [32]). Rather
than increase power and cost by using multiple Sequenom
assays to genotype additional SNPs, we used statistical
approaches to extract more information from the data
available from an existing single SNP assay. Notably,
quantitative genotype estimates were used in data pro-
cessing, rather than genotypes that had been classified
into discrete genotype classes. This also meant that

Table 3 Correlation between allele frequencies estimated

from pooled samples (f) and allele frequencies estimated
from individual samples (f *)

Pool Shrimp Generation Shrimp genotyped SNP in f r(f,f*)

1 24 G10 98% 50 097
2 24 G10 98% 51 0.96
3 23 G10 97% 52 097
4 22 G10 95% 52 0.95
5 22 G10 99% 41 09

6 22 G10 98% 51 0.94
7 23 G10 93% 41 092
8 18 G10 98% 52 0.98
9 24 G9 65% 51 09

10 24 G9 73% 49 0.93
11 24 G9 66% 52 0.93
12 23 G9 70% 48 0.95
13 24 G9 68% 49 0.95
14 24 G9 78% 46 0.92
15 24 G9 83% 48 092
16 23 G9 75% 50 094
17 24 G9 86% 48 0.95
18 24 G9 65% 52 093
19 24 G9 79% 50 0.94

“Shrimp genotyped” is the mean number of shrimp contributing to the estimate
of %, expressed as a percentage of the number of shrimp in the pool, and “SNP
in f” is the number of SNP without missing values in f.
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Figure 6 Accuracy of allele frequencies estimated from pooled DNA. SNP allele frequencies estimated from pooled or individual samples are
compared in panel A, and, in panel B, the absolute value of the difference between allele frequency estimates from pooled and individual samples is
plotted as a function of the estimate of the relevant Welch statistic (1).

extension to analysis of DNA from groups of individuals
was straightforward.

The differences in the pattern of area measurements
between SNPs (Figure 1) provide immediate justification
for treating SNP genotypes as quantitative values. With
the assay used in this study, it is clear that there is often
considerable variability amongst X-Y signals within a geno-
type cluster, while other clusters form very tight groups.
We chose to use a normal distribution to model the
distribution of area measurements, for consistency with
algorithms used to call alleles, but another distribution
is clearly more appropriate for some alleles and some
SNPs. We recognise that the benefits of quantitative
genotypes may be less for other, more accurate geno-
typing platforms, or for Sequenom panels with more
rigorous SNP screening. The panel used here, although
of modest power, was very affordable in terms of both
development and application. However, we do believe
that investment in better SNP screening is often justified.
As with the use of statistical approaches to increase power,
and in contrast to using multiple panels to increase power,
once development costs have been accounted for, an

up-front investment in SNP screening produces no ongoing
additional cost per sample.

We tried to keep our approach to parentage assignment
as clear as possible. The Mendelian transmission rules
are simple and constant for diploid species, and are
easily represented by matrix operations, regardless of
whether genotypes are discrete or continuous. The error
function we used for our quantitative approach assumed
that area estimates produced by the genotyping platform
have a normal distribution. Alternative maximum likeli-
hood approaches make different assumptions about the
distribution of the error, but the matrix algebra is the same.
One characteristic of our error distribution is that, unlike
(for example) Marshall et al. [19], we did not allow for
additional errors associated with the possibility of sample
swaps. Because the Sequenom assay is applied to all SNPs
in parallel, all SNP genotypes come from the same DNA
sample. Thus, a sample swap will either be identified
due to inconsistencies with the known pedigree, or if it goes
unnoticed, its impact will be equivalent to a tagging error.

We observed large differences between results for the
quantitative approach and the perturbed error approach

Table 4 Estimated family contributions to pools based on the full sib, half sib and unrestricted pedigrees

Full sib Half sib Unrestricted
Pool Shrimp Families Max (contrib) Families Max (contrib) Families Max (contrib)
1 24 12 0.29 13 0.25 14 025
2 24 1 0.29 10 0.29 13 029
3 23 12 035 13 035 13 035
4 22 8 033 9 0.29 9 0.29
5 22 7 0.27 9 0.27 9 027
6 22 11 0.27 12 0.27 14 023
7 23 14 023 16 0.23 17 023
8 18 8 033 9 0.28 10 022
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Figure 7 Estimation of family contributions to pools. Estimates of family contributions to pools from pooled DNA samples (y-axis) are compared
to family contributions to pools estimated from pedigree (x-axis, left hand panels) and to family contributions estimated from individual DNA samples
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in our study, which highlights the importance of the error
term in the maximum likelihood procedure. For some
SNPs and some individuals, the quantitative approach sets
the error term to a very low value, essentially zero, and
therefore applies a strict exclusion criterion for these
SNPs. For other SNPs and individuals, a more lenient
error term is applied. Whether this is better or worse than
SNP specific error rates, or the arbitrary error rate of 1%
used for comparison with perturbation, depends on how
well the alternatives match the true but unknown error
distribution. For a SNP genotyping technology for which
the probability of the relevant homozygous genotype is
effectively equal to 0 whenever the signal for either X or Y
is effectively 0, the quantitative method is preferred. If
there is a probability that at random one of the X or Y
signals totally drops out for a heterozygous individual,
while the other signal remains strong, then the perturbed
method is preferred. There is nothing in our dataset to
help us to choose between these two alternatives. The
assignment rates for the two approaches were both
unacceptably low at around 20%, due either to a lack of
power in the panel or missing genotypes on parents.
However, because the families assigned using one error
distribution had only a small overlap with the families
assigned using other error distributions, it is clearly
very important that we learn all we can about the true
distribution of errors.

Based on Figure 5, it is apparent that, the application of
constraints to the pedigree in the second stage of parent
assignment to account for biological constraints and
hatchery records affected only a relatively small number
of individuals. In the unconstrained pedigree, most
offspring were assigned to full-sib families, which is
consistent with our understanding of the data. For the
constrained pedigrees, without access to a more power-
ful DNA parentage panel, it is not possible to determine
whether departures from a full-sib model are due to
parents having multiple mates, or to incorrect assign-
ments. The weak association between the quality of the
individual’s genotype data and consistency of assignment
between full-sib and half-sib families suggests that the
departures from a full-sib model may be at least partly
due to incorrect assignments caused by poor quality
genotype data.

A weakness of this study is the lack of knowledge on
the true parentage of the G10 progeny, especially for
families for which a parent was declared as missing. We
do not know whether the true parent was not tested, or
whether the true parent was tested but genotyping failed
(which occurred in around 10% of cases), or whether the
true parent was tested and wrongly excluded. However,
for industrial application in the P. monodon breeding
program, although not desirable, this incomplete infor-
mation is not an insurmountable problem. Individuals in
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such families, while missing one parent, are known to be
full-sibs, and the potential mates of the identified parent
are likely known and from a common genetic background.
Thus, it is unlikely that breeding decisions would differ in
a significant way if the missing information was available.

Correlations between allele frequencies estimated from
individual and from pooled samples were consistently
greater than 0.9. Not surprisingly, given the variability
between SNPs (Figure 1), there was a strong association
between the Welch statistics (t5; or 1g;) related to the
interval that contained the allele frequency estimate (py;)
from pooled DNA, and the absolute value of the differ-
ence between the allele frequency estimate from pooled
DNA and from individual DNA (Figure 6, panel B). This
suggests that for low-density SNP assays, variation in
SNP quality is as important as other forms of variation
when analysing samples from pooled DNA.

The high correlations between allele frequency estimates
from pooled and individual samples were reflected in the
high correlations between estimates of family contributions
to pools when using allele frequencies from the two
sources (Figure 7, right hand panels). The correlations
between family contributions to pools estimated from
pedigree and from allele frequencies were not as high
(Figure 7, left hand panels). This indicates that 50 SNPs
is too few to produce accurate estimates of contributions
for pools containing individuals from around 12 families.
However, especially in the case of the full-sib pedigree, the
correlations were positive, and probably high enough to
provide useful information. Despite this, because much
fewer assays are needed when DNA samples are pooled, it
will be cost effective to use multiple low-density SNP
assays such as the four P. monodon multiplexed assays
already available [39] or high-density SNP assays when
they become available.

Conclusions

Treating SNP genotypes as continuous instead of as
discrete values in parentage assignment poses no additional
statistical problems. The maximum likelihood framework
seamlessly incorporates quantitative allele probabilities;
they only require an alternative formulation for the distri-
bution of the error term. However, since the distribution
of the error term can have a large impact on pedigree
assignments, it is important to gain an understanding
of this distribution. The likelihood equations can be
conveniently formulated using matrix algebra, allowing
easy implementation on any software platform that
supports matrix operations. Using the Sequenom assay
with only 63 SNPs, most individuals were assigned to
full-sib families, as expected given the origin of the sam-
ples. Further refinement of the pedigree by constraining
parents to only one mate reduced the number of families
from 64 to 43, and probably results in a more accurate
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pedigree given the uncertainty in the parentage assign-
ments from a low-density SNP panel. Estimates of family
contributions in pooled samples of DNA obtained with 63
SNPs were of low accuracy, and for this application the
use of multiple multiplexed low-density SNP assays would
be beneficial.

Appendix
Worked example
Estimation of SNP specific parameters

Additional file 1: Figure S1 illustrates the mapping from
Cartesian coordinates to polar coordinates for SNP
186827-0_535. In this example, the X and Y areas that
relate to SNP alleles A and G, are adjusted for the area
uncertainties. The plots highlight the data points for the
sire, dam and offspring used throughout this Appendix
to illustrate the method. Adjusted X and Y values are
(36.6, 13.4), (25.3, 22.9) and (30.4, 0) for the sire, dam
and offspring, respectively.

SNP specific parameters for SNP 186827-0_535 are in
Additional file 2: Table S1. For the sire, the estimate of
allelic proportion is

1 13.4
tan —
36.6
psj = T
2

= 0.223.

Similarly, values for the dam and offspring are equal to
0.468 and 0.000, respectively.

Calculation of parentage likelihood
For this SNP, the alleles are A and G, and for the sire:

Dar = P.0360.057(0-223) = 0.033

Dpg = Doy = %.400,0.1;7(0-223)

DOgg = ©0.742,0.096 (0-223) = 0.000,

=0.633

where ¢, ,(x) is the height of the normal (4, 0) distribution
at x. Scaling to make the sum equal to O gives the genotype
probability matrix for the sire:

Dap Dac 0.033 0.633
®ga Pgg|  |0.633 0.000 7{0.025 0.487}

ZQ‘/ 1.299 B

It is most likely that the sire is heterozygous AG but
there is a small probability that it is homozygous AA.
Likewise, GY and G are

st: |:

0.000 0.487 d 0.993 0.004
0487 0.026 | 2 0.004 0.000 |’

respectively.

0.487 0.000 |-
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The transmission vector for the sire is:

19— CGHEEH) - [osm),

2 0.487

0.513
so the transmission matrix for the sire dam pairing is:

and the transmission vector for the dam is TY = [0'487}

iodi’ 0.250 0.263
siTd —
T {0.237 0.250]'

The likelihood of the trio (s, d, o) for marker j is:
L(sdo)j — sum < (Tszdj’ ) 0G0j>

([0.250 0.263} [0.993 0.004D
= sum °

0.237 0.250 | *| 0.004 0.000
0.248 0.001
- Sum[o.om o.ooo] = 0:250.

The likelihood L” is the likelihood under the null
hypothesis that the offspring is unrelated to the sire
and dam, and is equal to the likelihood for a random
parental pair given the allele frequencies. For this SNP,
the frequency of the G allele is equal to 0.354, so the
transmission vector for a random parent is:

i [0.646
) —
F= {0.354]’

and the transmission matrix for a random sire dam
pairing is:

P — {0.418 0.229}

0.229 0.125

The likelihood that the offspring comes from a random
pair of parents is:

19 = sum((FiFi/) oG"i) — 0.416.

L7
The likelihood for a random pair of parents is greater
than the likelihood of the sire dam pair for this off-
spring for this SNP, so the log of the likelihood ratio is
less than 0.

The log of the likelihood ratio is log (L(Sdu)j) = -0.511.

Estimation of allele frequencies for pooled samples
At this same SNP (j), for a pool (¢) with allelic proportion
Py =0.289, because paa; < pyj < Uagp
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(ppj_”AAj) . ((0.289—0.036))

fy=05(~—"1) =05
(ks (0.400-0.036)

=0.348

and the Welch statistic associated with f; is equal to
48.170.

Additional files

Additional file 1: Figure S1. Example of conversion from Cartesian to
polar coordinates. Data points for SNP 186827-0_535 are plotted in Cartesian
coordinates and in polar coordinates. Intensities in the polar coordinate plot
are estimated as Euclidean distances from the origin to the data points in
Cartesian coordinates; identified in the plot are the sire, dam and offspring
used to demonstrate the method.

Additional file 2: Table S1. Contains the numbers of data points (n),
the mean values of allelic proportion p (1) and standard deviations of p
(0), for genotype classes AA, AG and GG. The Welch statistics (1) for
testing means of p are also included for genotypes AA and AG, and

genotypes AG and GG.
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