Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 14;92(6):2154–2158. doi: 10.1073/pnas.92.6.2154

Cloning and analysis of murine cDNA that encodes a fibrogenic lymphokine, fibrosin.

S Prakash 1, P W Robbins 1, D J Wyler 1
PMCID: PMC42442  PMID: 7892239

Abstract

Tissue fibrosis that complicates chronic inflammation can be a cause of serious morbidity. The molecular links between inflammation and fibrosis appear to be a variety of proteins produced by activated chronic inflammatory cells. Collectively, these fibrogenic cytokines promote the growth of fibroblasts and the production of extracellular matrix that are the characteristic features of fibrotic tissue. In an attempt to clone cDNA for a fibrogenic lymphokine that we had isolated, we transfected COS-7 cells with a cDNA library derived from concanavalin A-stimulated lymphocyte line CDC25. Conditioned medium from the transfected COS-7 cells but not from sham-transfected cells stimulates fibroblast proliferation in vitro. We used heterologous expression in COS-7 cells of pools of CDC25 cDNA and screening for biological activity in conditioned medium to enrich for the cDNA clone(s) that encodes this activity. With this strategy of sib selection we isolated clone 2B3. The culture supernatants of 2B3-transfected COS-7 cells exert maximum growth-stimulating effects on fibroblasts at a dilution of 1:20,000. The isolated cDNA has one open reading frame (216 nucleotides) that has no significant homology with nucleotide sequences that encode other proteins. A synthetic peptide constructed from the deduced amino acid sequence is biologically active in picomolar concentrations, even though it may represent only a portion of the native fibrosin. This lymphokine, which we designate fibrosin, may play a role in regulating fibrogenesis in certain chronic inflammatory diseases.

Full text

PDF
2154

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark-Lewis I., Aebersold R., Ziltener H., Schrader J. W., Hood L. E., Kent S. B. Automated chemical synthesis of a protein growth factor for hemopoietic cells, interleukin-3. Science. 1986 Jan 10;231(4734):134–139. doi: 10.1126/science.3079915. [DOI] [PubMed] [Google Scholar]
  2. Ignotz R. A., Massagué J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986 Mar 25;261(9):4337–4345. [PubMed] [Google Scholar]
  3. Johnson R. L., Ziff M. Lymphokine stimulation of collagen accumulation. J Clin Invest. 1976 Jul;58(1):240–252. doi: 10.1172/JCI108455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kimura A., Katoh O., Kuramoto A. Effects of platelet derived growth factor, epidermal growth factor and transforming growth factor-beta on the growth of human marrow fibroblasts. Br J Haematol. 1988 May;69(1):9–12. doi: 10.1111/j.1365-2141.1988.tb07595.x. [DOI] [PubMed] [Google Scholar]
  5. Lammie P. J., Monroe J. G., Michael A. I., Johnson G. D., Phillips S. M., Prystowsky M. B. Partial characterization of a fibroblast-stimulating factor produced by cloned murine T lymphocytes. Am J Pathol. 1988 Feb;130(2):289–295. [PMC free article] [PubMed] [Google Scholar]
  6. Lee F., Yokota T., Otsuka T., Meyerson P., Villaret D., Coffman R., Mosmann T., Rennick D., Roehm N., Smith C. Isolation and characterization of a mouse interleukin cDNA clone that expresses B-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2061–2065. doi: 10.1073/pnas.83.7.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leibovich S. J., Ross R. A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol. 1976 Sep;84(3):501–514. [PMC free article] [PubMed] [Google Scholar]
  8. Okayama H., Berg P. High-efficiency cloning of full-length cDNA. Mol Cell Biol. 1982 Feb;2(2):161–170. doi: 10.1128/mcb.2.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Okayama H., Kawaichi M., Brownstein M., Lee F., Yokota T., Arai K. High-efficiency cloning of full-length cDNA; construction and screening of cDNA expression libraries for mammalian cells. Methods Enzymol. 1987;154:3–28. doi: 10.1016/0076-6879(87)54067-8. [DOI] [PubMed] [Google Scholar]
  10. Perlman D., Halvorson H. O. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol. 1983 Jun 25;167(2):391–409. doi: 10.1016/s0022-2836(83)80341-6. [DOI] [PubMed] [Google Scholar]
  11. Postlethwaite A. E., Holness M. A., Katai H., Raghow R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest. 1992 Oct;90(4):1479–1485. doi: 10.1172/JCI116015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Postlethwaite A. E., Keski-Oja J., Moses H. L., Kang A. H. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta. J Exp Med. 1987 Jan 1;165(1):251–256. doi: 10.1084/jem.165.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Postlethwaite A. E., Seyer J. M. Fibroblast chemotaxis induction by human recombinant interleukin-4. Identification by synthetic peptide analysis of two chemotactic domains residing in amino acid sequences 70-88 and 89-122. J Clin Invest. 1991 Jun;87(6):2147–2152. doi: 10.1172/JCI115247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Postlethwaite A. E., Smith G. N., Mainardi C. L., Seyer J. M., Kang A. H. Lymphocyte modulation of fibroblast function in vitro: stimulation and inhibition of collagen production by different effector molecules. J Immunol. 1984 May;132(5):2470–2477. [PubMed] [Google Scholar]
  15. Prakash S., Wyler D. J. Fibroblast stimulation in schistosomiasis. XI. Purification to apparent homogeneity of fibroblast-stimulating factor-1, an acidic heparin-binding growth factor produced by schistosomal egg granulomas. J Immunol. 1991 Mar 1;146(5):1679–1684. [PubMed] [Google Scholar]
  16. Prakash S., Wyler D. J. Fibroblast stimulation in schistosomiasis. XII. Identification of CD4+ lymphocytes within schistosomal egg granulomas as a source of an apparently novel fibroblast growth factor (FsF-1). J Immunol. 1992 Jun 1;148(11):3583–3587. [PubMed] [Google Scholar]
  17. Rennick D. M., Lee F. D., Yokota T., Arai K. I., Cantor H., Nabel G. J. A cloned MCGF cDNA encodes a multilineage hematopoietic growth factor: multiple activities of interleukin 3. J Immunol. 1985 Feb;134(2):910–914. [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tony H. P., Phillips N. E., Parker D. C. Role of membrane immunoglobulin (Ig) crosslinking in membrane Ig-mediated, major histocompatibility-restricted T cell-B cell cooperation. J Exp Med. 1985 Nov 1;162(5):1695–1708. doi: 10.1084/jem.162.5.1695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wahl S. M. Lymphocyte- and macrophage-derived growth factors. Methods Enzymol. 1988;163:715–731. [PubMed] [Google Scholar]
  22. Wahl S. M., Wahl L. M., McCarthy J. B. Lymphocyte-mediated activation of fibroblast proliferation and collagen production. J Immunol. 1978 Sep;121(3):942–946. [PubMed] [Google Scholar]
  23. Wyler D. J., Ehrlich H. P., Postlethwaite A. E., Raghow R., Murphy M. M. Fibroblast stimulation in schistosomiasis. VII. Egg granulomas secrete factors that stimulate collagen and fibronectin synthesis. J Immunol. 1987 Mar 1;138(5):1581–1586. [PubMed] [Google Scholar]
  24. Wyler D. J., Postlethwaite A. E. Fibroblast stimulation in schistosomiasis. IV. Isolated egg granulomas elaborate a fibroblast chemoattractant in vitro. J Immunol. 1983 Mar;130(3):1371–1375. [PubMed] [Google Scholar]
  25. Wyler D. J., Wahl S. M., Cheever A. W., Wahl L. M. Fibroblast stimulation in schistosomiasis. I. Stimulation in vitro of fibroblasts by soluble products of egg granulomas. J Infect Dis. 1981 Sep;144(3):254–262. doi: 10.1093/infdis/144.3.254. [DOI] [PubMed] [Google Scholar]
  26. Wyler D. J., Wahl S. M., Wahl L. M. Hepatic fibrosis in schistosomiasis: egg granulomas secrete fibroblast stimulating factor in vitro. Science. 1978 Oct 27;202(4366):438–440. doi: 10.1126/science.705337. [DOI] [PubMed] [Google Scholar]
  27. Yokota T., Arai N., Lee F., Rennick D., Mosmann T., Arai K. Use of a cDNA expression vector for isolation of mouse interleukin 2 cDNA clones: expression of T-cell growth-factor activity after transfection of monkey cells. Proc Natl Acad Sci U S A. 1985 Jan;82(1):68–72. doi: 10.1073/pnas.82.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES