
Volume 25  December 1, 2014	 3973 

MBoC  |  ARTICLE

Predicting interactome network perturbations 
in human cancer: application to gene fusions in 
acute lymphoblastic leukemia
Leon Juvenal Hajingaboa, Sarah Daakourb, Maud Martinb, Reinhard Grausenburgerc, 
Renate Panzer-Grümayerd, Franck Dequiedtb, Nicolas Simonisa,*, and Jean-Claude Twizereb,*
aLaboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles, B-1050 Bruxelles, 
Belgium; bLaboratory of Protein Signaling and Interactions, GIGA-Research, University of Liège, B-4000 Liège, 
Belgium; cDepartment of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, 
Austria; dChildren’s Cancer Research Institute, St Anna Kinderkrebsforschung, 1090 Vienna, Austria

ABSTRACT  Genomic variations such as point mutations and gene fusions are directly or indi-
rectly associated with human diseases. They are recognized as diagnostic, prognostic mark-
ers and therapeutic targets. However, predicting the functional effect of these genetic altera-
tions beyond affected genes and their products is challenging because diseased phenotypes 
are likely dependent of complex molecular interaction networks. Using as models three dif-
ferent chromosomal translocations—ETV6-RUNX1 (TEL-AML1), BCR-ABL1, and TCF3-PBX1 
(E2A-PBX1)—frequently found in precursor-B-cell acute lymphoblastic leukemia (preB-ALL), 
we develop an approach to extract perturbed molecular interactions from gene expression 
changes. We show that the MYC and JunD transcriptional circuits are specifically deregulated 
after ETV6-RUNX1 and TCF3-PBX1 gene fusions, respectively. We also identified the bulk 
mRNA NXF1-dependent machinery as a direct target for the TCF3-PBX1 fusion protein. 
Through a novel approach combining gene expression and interactome data analysis, we 
provide new insight into TCF3-PBX1 and ETV6-RUNX1 acute lymphoblastic leukemia.

INTRODUCTION
The development of every cancer is characterized by frequent 
genomic aberrations. Investigations focused on specific human 
neoplasms have identified numerous sequence variants in which 
mutations are implicated in oncogenesis. These human cancer 
genes are listed in the Cancer Genome Project database, with genes 
encoding protein kinase and transcriptional regulation domains 
highly represented (Futreal et al., 2004). Characterization of the bio-

logical properties of some mutated genes, such as the breakpoint 
cluster region-v-Abelson murine leukemia viral oncogene homo-
logue 1 (BCR-ABL1), has led to the development of successful tar-
geted therapies (Lynch et al., 2004; Gazdar, 2009; Quintas-Cardama 
and Cortes, 2009; Agrawal et al., 2010; Kaulfuss et al., 2013). The 
most prevalent category among the known cancer genes are chro-
mosomal translocations, often involving immunoglobulin, T-cell re-
ceptor, and transcription factor genes (Futreal et al., 2004). Although 
these rearrangements represent important diagnostic markers that 
are used to define cancer subtypes (Mitelman et al., 2004; Maher 
et al., 2009), their molecular interactions and the pathways affected 
by the result of gene fusions are poorly characterized.

Genes and their products do not act in isolation but as part of 
complex molecular networks in which most genes play their roles 
through several molecular functions or interactions. The changes 
induced by gene fusions and other genetic alterations, as well as 
modifications of expression levels, do not lead to a complete loss of 
the gene products and are thus very likely to alter the different inter-
actions of the same gene or protein in distinct fashions (Zhong et al., 
2009). Classically, genome-wide transcriptomic studies have been 
used to identify genes or gene expression signatures in order to 
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MYC (Figure 2A). We performed chromatin immunoprecipitation 
followed by high-throughput sequencing (ChIP-seq) in cells express-
ing the ETV6-RUNX1 fusion protein to detect the MYC-binding sites 
at a genome scale. We identified 557 MYC target genes in both cell 
lines (Figure 2B and Supplemental Table S4, HEK293 +ETV6-RUNX1 
anti MYC and HEK293 anti MYC), representing 19% of MYC target 
genes reported in the human B-cell interactome (Lefebvre, 2007, 
2010). As predicted, this experiment showed a high modification of 
MYC targets in the presence of ETV6-RUNX1 fusion, with ∼88% (489 
of 557) of the targets being different between the two cell lines. 
Among these, 52% were also identified as MYC- perturbed interac-
tions by our method (Figure 2C and Supplemental Table S1), further 
supporting the use of differences of correlation between expression 
profiles to predict perturbed interactions.

Topological analysis of the perturbed networks
To determine whether the structure of the network is modified after 
ETV6-RUNX1 or TCF3-PBX1 fusions, we analyzed network topology 
perturbations using three metrics: characteristic path length (cpl), 
edge betweenness centrality (ebc), and edge-clustering coefficient 
(ecc).

We sequentially removed edges corresponding to perturbed in-
teractions by decreasing order of significance, calculated the cpl, 
average ebc, and average ecc of the resulting network at each step, 
and compared these metrics to those obtained by removing ran-
dom edges (Figure 3, red lines). For ETV6-RUNX1 fusion, we ob-
served a significant increase of cpl and ebc, whereas ecc decreased, 
indicating that edge perturbations in ETV6-RUNX1 fusion leads to a 
less compact network but with a globally higher, more evenly dis-
tributed communication potential and a lower local connectivity on 
high-degree nodes than expected at random (Figure 3, compare 
green to red lines). In the case of TCF3-PBX1 fusion, on the contrary, 
the perturbed network becomes more compact, with a slightly lower 
communication potential and local connectivity than expected at 
random (Figure 3, compare blue and red lines). We also compared 
ebc, ecc, and the edge shortest path length (espl) of the network 
composed of perturbed edges with the rest of the network (the net-
work of not-perturbed edges). The espl was computed as the mean 
of all shortest path lengths between the vertices of an edge and all 
other vertices in the network. It appeared that perturbed edges af-
ter ETV6-RUNX1 fusion are characterized by significantly higher 
ebc, higher ecc, and lower espl than other edges in the network 
(Table 1A). Similar local metrics for the TCF3-PBX1 fusion showed 
minor changes (Table 1B).

Taken together, our network topology analysis suggests that 
ETV6-RUNX1 chromosomal translocation may lead to disruption of 
molecular interactions important for B-cell communication circuits, 
whereas TCF3-PBX1 fusion only slightly modifies the structure of the 
network.

Specific deregulation of transcription factor networks
We ranked nodes based on the proportion of their perturbed inter-
actions in HBCI, and highlighted the 10 most deregulated nodes in 
ETV6-RUNX1 and TCF3-PBX1 fusion subtypes of ALL. It appeared 
that, for both ALL subtypes, top deregulated nodes correspond to 
diverse transcription regulators (Figure 4, A and B). This result sug-
gests that ETV6-RUNX1 and TCF3-PBX1 fusions support oncogen-
esis mostly by specifically deregulating other transcriptional regula-
tors. We therefore analyzed the interaction networks of transcription 
factors (TFs) that have at least one interaction predicted as deregu-
lated and categorized the TFs according to the number of per-
turbed interactions and the published classification of human TFs 

characterize and classify cancer types or subtypes (Golub et  al., 
1999; Andersson et  al., 2005; Gandemer et  al., 2007; Den Boer 
et al., 2009; Li et al., 2009; Fuka et al., 2011). Although very useful 
to identify oncogenes and for diagnostic purposes, these methods 
are limited in their ability to understand the underlying molecular 
biology, as they are focused on genes, transcripts, and proteins, ne-
glecting the interactions between them.

In this study, we propose a strategy that uses gene expression 
profiles to identify genes, molecular interactions, and pathways 
that are important in a specific genetic alteration. We use as mod-
els two chromosomal translocations found in precursor-B-cell 
acute lymphoblastic leukemia (preB-ALL) and involving key spe-
cific transcription factors regulating hematopoietic development: 
1) the Ets transcription factor variant 6 (ETV6)–runt-related tran-
scription factor 1 (RUNX1) fusion (also known as TEL-AML1) and 
2) the transcription factor 3 (TCF3)–pre-B-cell leukemia homeobox 
1 (PBX1) fusion (also known as E2A-PBX1; Okuda et  al., 1996; 
Zhou et al., 2012; Tijchon et al., 2013). These chromosomal rear-
rangements alone are insufficient for leukemogenesis but may 
support leukemia when additional molecular perturbations are 
present (Andreasson et al., 2001; Seto, 2010). We thus extracted 
perturbed molecular interactions and showed that MYC and JunD 
interactomes are specifically deregulated after ETV6-RUNX1 and 
TCF3-PBX1 gene fusions, respectively. Furthermore, we demon-
strated that the TCF3-PBX1 fusion could impair the normal mRNA 
export machinery.

RESULTS
Predicting perturbed interactions linked to gene fusions
To predict perturbed molecular interactions specifically linked to 
ETV6-RUNX1, TCF3-PBX1, and BCR-ABL1 gene fusions, we used 
the human B-cell interactome (HBCI; Lefebvre, 2007, 2010) and ex-
pression data sets from two microarray series (Den Boer et al., 2009; 
Mullighan et al., 2009), including 24 samples with BCR-ABL1 fusion, 
77 with ETV6-RUNX1 fusion, 16 with TCF3-PBX1 fusion, and 248 
samples with other different genetic subtypes. Expression data were 
first normalized by frozen robust multiarray analysis (fRMA; McCall 
and Irizarry, 2011). For each interaction in HBCI, we computed the 
difference between the correlation of expression profiles in a group 
of samples exhibiting a genotype of interest and in the control sam-
ples (groups of samples with other genotypes). Because interacting 
genes/proteins are likely to be involved in similar biological pro-
cesses and are likely coexpressed (Ge et al., 2001), we selected in-
teractions with significant differences of correlation as deregulated 
(corrected p < 0.05; Figure 1A).

We detected 2550 perturbed interactions (∼4.5% of interactions 
in the HBCI, involving 664 human genes) and 3334 (∼5.8% of the 
HBCI, involving 1022 human genes) in the ETV6-RUNX1 and TCF3-
PBX1 ALL samples, respectively (Supplemental Tables S1 and S2). 
We found only 74 (0.13%) overlapping interactions between ETV6-
RUNX1 and TCF3-PBX1 ALL samples, showing the specificity of the 
method (Figure 1B). For BCR-ABL1 genotype, which does not in-
volve direct translocation of a transcription factor–coding gene, we 
detected only 10 (∼0.018%) potentially perturbed interactions (Sup-
plemental Table S3). Our next analyses thus will compare perturbed 
networks for ETV6-RUNX1 and TCF3-PBX1 fusions.

We ranked proteins/genes according to the number of perturbed 
interactions, and identified MYC (∼46% of HBCI) as the most per-
turbed in the ETV6-RUNX1 subtype of preB-ALL. To confirm the di-
rect link between MYC network alteration and the presence of 
ETV6-RUNX1 fusion protein, we used HEK293 cells stably express-
ing ETV6-RUNX1 and control cells expressing similar amounts of 
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and TCF3-PBX1 fusions, respectively (Figure 5, A and B, red ar-
rows). In particular, the majority of bZIP members of the activating 
protein-1 (AP-1) complexes, including JunD, JunB, c-Jun, c-Fos, 

(Wingender et al., 2013). We found that two classes of transcription 
factors, basic helix-loop-helix (bHLH) and leucine zipper (bZIP), ac-
count for the majority of perturbed interactions for ETV6-RUNX1 

FIGURE 1:  Prediction of perturbed interactions. (A) Flowchart of the method. Arrows show the flow of data analysis: 
black for microarrays, and green and red for HBCI and Pathway commons interactome, respectively. For each 
interaction in the B-cell or pathways interactome, we computed the differential in correlation between genotypes. 
Significance of the difference in correlation is estimated from randomized data. Interactions with corrected p < 0.05 are 
predicted as perturbed. Dashed lines represent perturbed interactions. (B) Venn diagram representing the number of 
detected perturbed interactions (DPIs) in the B-cell interactome for ETV6-RUNX1, BCR-ABL1, and TCF3-PBX1.
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regulation in ETV6-RUNX1 ALL samples. 
We thus hypothesized that the ETV6-RUNX1 
fusion could compete with the formation of 
MYC/Miz1 complex or the binding to its 
down-regulated targets, including the CD-
KN1A promoter. To test the latter hypothe-
sis, we analyzed the CDKN1A promoter se-
quence (−499 to +100 base pairs around 
the start site) using the eukaryotic promoter 
database (EPD; epd.vital-it.ch) and the TF-
search program (Heinemeyer et  al., 1998) 
and identified two putative RUNX1-binding 
sites. The ETV6-RUNX1 chromosomal trans-
location conserves the RUNX1 DNA–bind-
ing domain (Supplemental Figure 1A), sug-
gesting that any putative RUNX1-binding 
site would also be a potential target se-
quence for ETV6-RUNX1 fusion protein, as 
previously demonstrated (Wotton et  al., 
2008; Krapf et al., 2010; Kaindl et al., 2014). 
We therefore performed ChIP assays using 
leukemic REH cells (or REH cells silenced in 
ETV6-RUNX1 expression by short hairpin 
RNA [shRNA; REH-G1]; Fuka et  al., 2012; 

Supplemental Figure 1B) and a specific antibody to ETV6 transcrip-
tion factor. We specifically amplified a genomic CDKN1A promoter 
fragment encompassing both putative RUNX1-binding sites, indi-
cating that ETV6-RUNX1 fusion protein directly binds the CDKN1A 
promoter (Supplemental Figure S1C). In a transcriptional reporter 
assay, we also demonstrated that the activation of the CDKN1A pro-
moter by a phorbol ester (PMA; Zeng and el-Deiry, 1996) could be 
inhibited by overexpression of ETV6-RUNX1 fusion protein (Supple-
mental Figure 1D), similar to the previously reported repressor effect 
of MYC on CDKN1A promoter (Seoane et al., 2002; Wu et al., 2003). 
Finally, using HEK293 cells stably expressing ETV6-RUNX1, we com-
pared MYC and ETV6-RUNX1 ChIP-seq data sets and showed that 
both transcription regulators could target similar genes (Supple-
mental Table S9). Taken together, these results support the idea that 
the ETV6-RUNX1 fusion protein might interplay with the MYC tran-
scriptional network.

Perturbations in signaling pathways
To explore signaling pathways potentially disturbed after ETV6-
RUNX1 and TCF3-PBX1 gene fusions, we adopted two strategies. 
First, we performed a gene enrichment pathway analysis using the 
664 or 1024 human genes involved in ETV6-RUNX1 or TCF3-PBX1 
perturbed interactions, respectively. As stated earlier, this data set is 
restricted to genes involved in B-cell interactions reported in the 
HBCI database. We performed a functional enrichment analysis us-
ing the Database for Annotation, Visualization and Integrated Dis-
covery (DAVID; Huang da et al., 2009). We linked perturbed interac-
tions in ETV6-RUNX1 or TCF3-PBX1 ALL samples to similar signaling 
pathways, including pathways in cancer, T- and B-cell receptor sig-
naling, Toll-like and growth factor signaling, mitogen-activated pro-
tein kinase signaling, and cell cycle and cell adhesion (Figure 7, A 
and D). However, the proportions of perturbed interactions (Figure 
7, compare B and E) and the pathway subnetwork profiles (Figure 7, 
compare C and F) are very different. Of interest, pathways involved 
in B-cell migration (chemokine receptor signaling) and cell adhesion 
were specific to the ETV6-RUNX1 fusion, consistent with previous 
studies showing that ALL cells, including REH, are highly motile and 
capable of rapid migration within lymphoid tissues (Makrynikola 

Fra-1 (FOSL1), FosB, ATF2, ATF3, CREB1, and CREBL2, seems 
affected after TCF3-PBX1 fusion (Figures 4B and 5B).

To validate our analysis experimentally, we investigated TCF3-
PBX1–induced transcriptional regulation of the Jun/AP-1 pathway. 
HEK293 cells were cotransfected with a luciferase reporter construct 
harboring AP-1–binding sites (Samuel et al., 2008) and increasing 
amounts of expression vectors for TCF3-PBX1, TCF3, or PBX1 tran-
scription factor. As shown on Figure 4C, AP-1 transactivation is sig-
nificantly increased in the presence of the oncogenic fusion TCF3-
PBX1, in accordance with previous reports that demonstrated 
functional interplay between TCF3-PBX1 and the CREB-binding 
protein (CBP) and p300 transcriptional coactivators (LeBrun, 2003; 
Bayly et al., 2004; Denis et al., 2012; Hyndman et al., 2012) and that 
CBP/p300 and AP-1 factors have many partners in common (Denis 
et al., 2012).

Among the bHLH TFs, the proto-oncogene MYC was the top-
ranked gene, with ∼46% of HBCI perturbed interactions (Figure 5A). 
By comparison, only a small minority (1%) of MYC interactions is 
perturbed in TCF3-PBX1–associated ALL samples, suggesting a 
specific interplay between MYC and ETV6-RUNX1 transcriptional 
regulation. This is also illustrated by the network of MYC transcrip-
tional regulators, showing that the majority of protein–DNA interac-
tions (such as STAT5 and the MYC promoter; Denis et al., 2012; Ott 
et al., 2012; Mangolini et al., 2013) and protein–protein interactions 
(such as SP1 and MYC coregulation of some target genes; Zhang 
et al., 2012; Wang et al., 2013, 2014) are specifically deregulated in 
ETV6-RUNX1 compared with TCF3-PBX1 ALL subtypes (Figure 6). 
To further validate MYC deregulation in ETV6-RUNX1 compared 
with TCF3-PBX1 subtypes of ALL, we analyzed the relative expres-
sion of MYC and its targets involved in cell cycle regulation, includ-
ing cyclin-dependent kinase inhibitors (CKIs), which are known tar-
gets repressed by the MYC/Miz1 complex (Figure 6C and 
Supplemental Table S5). Among these key cell cycle regulators, 
TP53, MYC, and CDKN3 were relatively underexpressed, whereas 
CDKN1A (p21WAF1/CIP1) expression was unchanged in ETV6-
RUNX1 samples compared with other groups of samples. As re-
cently reported for the MDM2 promoter (Kaindl et al., 2014), this 
result indicates a p53-independent mode of CDKN1A promoter 

FIGURE 2:  ETV6-RUNX1 expression perturbs MYC binding to its targets. (A) HEK 293T 
expressing V5-ETV6-RUNX1 and control cells were subjected to Western blot analysis using 
anti-MYC and anti-V5 antibodies. (B) Chromatin immunoprecipitation was performed using an 
anti-MYC antibody, followed by massively parallel sequencing of isolated DNA fragments. Venn 
diagrams indicate the comparison of MYC target genes identified in HEK vs. HEK+ETV6-RUNX1 
cell lines. (C) Venn diagrams showing a comparison between the numbers of perturbed MYC 
targets identified by ChIP-seq and those predicted by computing the differences of correlation 
between expression profiles.
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Next we used Pathway commons (www 
.pathwaycommons.org), which is a collec-
tion of pathways from multiple sources and 
organisms. Compared to the cell-context 
HBCI database, we reasoned that Pathway 
Commons might allow us to uncover unex-
pected novel functions for TCF3-PBX1 or 
ETV6-RUNX1 fusion proteins. We thus con-
sidered Pathway Commons as a single net-
work and predicted disrupted interactions 
in the same way as for the HBCI. This analy-
sis revealed 61 and 45 perturbed pathways 
for ETV6-RUNX1 and TCF3-PBX1 fusions, 
respectively (Supplemental Tables S6 and 
S7). Confirming our foregoing results, sev-
eral pathways linked to MYC transcription 
factor were predicted as perturbed by the 
ETV6-RUNX1 fusion. Of interest, we high-
lighted a potential deregulation of pathways 
linked to RNA transport machinery after 
TCF3-PBX1 (Table 2). Perturbed interactions 
involve several proteins important for RNA 
processing, including mRNA export pro-
teins such as the eukaryotic translation fac-
tor 4A3 (eIF4A3), the nuclear pore complex 
(NCP/NUP), and the nuclear export recep-
tor NXF1/TAP (Siddiqui and Borden, 2012; 
Supplemental Table S8). Eukaryotic mRNA 
is exported from the nucleus either by the 
bulk export NXF1-dependent pathway or 
via more specialized factors such as the 
chromosome region maintenance 1 (CRM1, 
also called exportin-1 [XPO1]; Hutten and 
Kehlenbach, 2007; Siddiqui and Borden, 
2012). Because most TCF3-PBX1 perturbed 

interactions involved the NXF1 rather than the CRM1 pathway, we 
analyzed potential interaction between TCF3-PBX1 fusion protein 
and NXF1 by examining the subcellular localization of both pro-
teins. We showed that both NXF1 and TCF3-PBX1 colocalize in the 
nucleoplasm (Supplemental Figure S2A), indicating functional inter-
play. To test whether TCF3-PBX1 fusion protein could interfere with 
RNA localization, we visualized RNA molecules in cells transfected 
with the TCF3-PBX1 fusion and observed colocalization between 
TC3-PBX1 and RNA molecules, and, most important, RNA was de-
localized from the nucleoli to the nucleoplasm (Supplemental Figure 
S2B). Together these results suggest a potential deregulating role 
of TCF3-PBX1 in the mRNA export machinery.

DISCUSSION
As genome-wide expression profiling and interactomic data accu-
mulate and are stored in public databases, the integration to drive 
interpretation of genotype–phenotype relationships and identify 
genes and pathways associated with specific diseases remains chal-
lenging. Several approaches have been conducted on cancer sam-
ples to identify tumor markers and gene expression signatures and 
to classify cancer types or subtypes. However, functional perturba-
tions arising from expression changes are rarely interpreted in the 
context of molecular network perturbations, which may be sensitive 
to subtle transcriptional changes.

In this study, we integrated data from gene expression in B-cell 
ALL subtypes, molecular interaction networks from the human B-cell 
interactome, and Pathway Commons databases to provide novel 

FIGURE 3:  Topological analysis of the perturbed BCI network. We show the evolution of three 
network metrics while removing predicted perturbed interactions in their order of significance 
(highest difference of correlation first) for ETV6-RUNX1 and TCF3-PBX1 fusions. Abscissa, 
number of removed edges (perturbed interactions); ordinate, values of the metric. Green, blue, 
and red curves represents the distributions of the values of the metric removing edges 
sequentially in ETV6-RUNX1, TCF3-PBX1, and randomly (100 random iterations), respectively. 
Vertical bars, SEs of random iterations. (A) Characteristic path length (cpl). (B) Edge- 
betweenness centrality (ebc). (C) Edge-clustering coefficient (ecc).
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A. ETV6-RUNX1

Edge shortest path length 
(espl)

2.084 2.288 <2.22E-16

Edge betweenness (ebc) 1838 572 <2.22E-16

Edge clustering coefficient 0.683 0.451 <2.22E-16

B. TCF3-PBX1

Edge shortest path length 
(espl)

2.259 2.280 3.5219E-13

Edge betweenness (ebc) 614 628 1.859E-12

Edge clustering coefficient 
(ecc)

0.457 0.462 0.4265

Difference of the means (p) is assessed through a Mann–Whitney U test.

TABLE 1:  Comparison of local metrics between perturbed edges 
and the rest of the network for (A) ETV6-RUNX1 and (B) TCF3-PBX1 
fusion.

et  al., 1994; Gandemer et  al., 2007). Alternatively, we predicted 
NF-κB pathway deregulation for TCF3-PBX1, in accordance with the 
significant proportion of perturbed interactions involving NF-κB 
RELA (p65) and REL subunits (16 and 14% of HBCI reported interac-
tions, respectively).
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outcome on the downstream signaling transduction molecules 
(Pendergast et al., 1993; Skorski et al., 1995; Ren, 2005); and 2) the 
common changes are not observable in BCR-ABL1 ALL samples and 
may have been missed. Those unidentified changes found in all 
subtypes could define the major networks implicated in BCR-ABL1, 
ETV6-RUNX1, and TCF3-PBX1 leukemia subtypes.

Although we showed that our method is useful in the identifica-
tion of previously unknown mutant-specific deregulated biological 
processes, this strategy, like any other system biology model that 
predicts perturbations, presents some limitations: 1) To predict in-
teractome network perturbations, we calculated the difference of 
correlation between expression profiles of two genes coding for 
proteins involved in a protein–protein or protein–DNA interaction. 
High-throughput data concerning other variables that may influence 
an interaction, such as mutations in coding sequences, proteins lo-
calization and translocation, protein modifications (phosphorylation, 
acetylation, glycosylation, etc.), and mRNA processing (transport, 
degradation, stability, etc.), were not included. 2) We applied our 
methodology to the analysis of ETV6-RUNX1 or TCF3-PBX1 chro-
mosomal rearrangements restricted to precursor-B-cell leukemia, 
whereas we interrogated a mature-B-cell interactome data set 
(HBCI), which is an interaction network assembled from a collection 
of 254 B-cell gene expression profiles representing 24 distinct phe-
notypes of normal and diseased B cells (Lefebvre et al., 2010). To 
the best of our knowledge, similar cell-context interactomes for all 
stages of B-cell development, including precursor B cells, are not 
yet available. Some important interactions specific for precursor B 
cells may be missed and some irrelevant interactions may be in-
cluded in our analysis. 3) The accuracy of our predictions depends 
on the technical quality of transcriptome and interactome data sets. 
In our study, transcriptome data sets were from published microar-
ray hybridization data (Den Boer et al., 2009; Mullighan et al., 2009). 
High-throughput RNA sequencing should provide more precise 
measurement of gene expression levels and increase the accuracy 
of our predictions (Wang et al., 2009). In addition, the human B-cell 
interaction data were obtained by either reverse engineering of 
transcriptome data or literature curation of interactions. For techni-
cal reasons, both methods capture a number of false-positive and 
false-negative interactions and do not give a complete view of inter-
actomes (Cusick et  al., 2009; Dreze et  al., 2010; Lefebvre et  al., 
2010; Yu et al., 2011; Tsang et al., 2014). To summarize, our strategy, 
like other systems biology predicting models, will improve over time 
as more accurate cell-specific interactome and transcriptome data 
are available. In all cases, biological validations are necessary to 
confirm perturbations of interactome networks in cancer subtypes 
of interest.

The identification of the MYC network as specifically deregu-
lated after ETV6-RUNX1 fusion could not be anticipated. Of inter-
est, we did not observe dramatic changes in MYC transcript expres-
sion levels in ETV6-RUNX1 compared with other subtype of B-ALL, 
and at the protein level, we show that ectopic expression of ETV6-
RUNX1 does not affect MYC expression. We thus speculate that the 
deregulation of MYC network may be attributed to functional inter-
play between MYC and ETV6-RUNX1 transcriptional activities. MYC 
forms highly stable heterodimers with MYC interacting factor X 
(Max) through their respective basic helix-loop-helix leucine zipper 
(bHLHZ) domains, which specifically bind the E-box (5′-CACGTG-3′) 
DNA sequences (Nair and Burley, 2003) and recruit different cofac-
tors for transcriptional activation or repression (Conacci-Sorrell et al., 
2014; Diolaiti et al., 2014). Our analysis demonstrated that, in ETV6-
RUNX1 samples, MYC/Max interaction was not affected, whereas 
some MYC interactions with cofactors, such as Miz-1, were 

hypotheses about deregulated molecular interactions and path-
ways. We detected 0.018, 4.5, and 5.8% of perturbed interactions in 
the human B-cell interactome after chromosomal translocations of 
BCR-ABL1, ETV6-RUNX1, and TCF3-PBX1 fusions in ALL, respec-
tively. Potential perturbed interactions were ranked according to the 
magnitude of change in gene expression for a pair of interacting 
partners (Supplemental Tables S1–S3).

The relatively low number of specific perturbed interactions for 
BCR-ABL subtype (Supplemental Table S3) is unexpected and im-
plies that, for most pairs of interactions, 1) gene expression profiles 
are too different between BCR-ABL1 ALL samples, consistent with 
the fact that several breakpoints on chromosomes 9 (for the ABL 
gene) and 22 (for the BCR gene) may generate kinases with different 

FIGURE 4:  Deregulation of transcription factor interactions. 
(A) ETV6-RUNX1. (B) TCF3-PBX1. Ten most perturbed nodes, that is, 
genes/proteins showing the highest number of perturbed 
interactions. Colors: red bars (pred_inter) represent perturbed 
interactions, blue bars (other HBCI) represent other interactions in the 
HBCI database. (C) Transactivation of an AP-1 reporter by TCF3-PBX1. 
HEK293 cells were transfected with the reporter plasmid p4XAP1-luc 
and indicated amounts of effector plasmids (pFlag-TCF3-PBX1, 
pFlag-TCF3, pFlag-PBX1). Firefly luciferase data were normalized to 
Renilla luciferase counts, and data are reported as mean and SE of 
three independent experiments in triplicate.
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FIGURE 5:  Network of TFs in (A) ETV6-RUNX1 and (B) TCF3-PBX1 fusion. Left, circles represent TFs that have at least 
one protein–DNA interaction (PDI) predicted as perturbed; colors correspond to the class of transcription factor. Red/
gray edges represent the perturbed/not-perturbed interactions, respectively. Right, chart showing the number of 
perturbed interactions for each transcription factor class according to TF class (Wingender et al., 2013).
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expression profiles from multiple experiments and different biologi-
cal conditions. Of importance, we show that integration of interac-
tome data with differences of correlation between expression pro-
files could classify subtypes within the same lineage and provide 
specific potential targets.

MATERIALS AND METHODS
Experimental data
We downloaded from Gene Expression Omnibus (GEO) the 
Affymetrix HG-U133A expression data sets (GSE13425, GSE12995), 
comprising 190 and 175 ALL samples, respectively. These data 
sets contain 24 samples with BCR-ABL1 fusion, 77 with ETV6-
RUNX1 fusion, 16 with TCF3-PBX1 fusion, and 248 with various 
other genetic subtypes (Den Boer et  al., 2009; Mullighan et  al., 
2009)

The list of protein interactions was retrieved from the HBCI 
(Lefebvre, 2007, 2010), among which were 21,156 protein–protein 
interactions (PPIs), 41,568 protein–DNA interactions (PDIs), and 
1925 transcription factor–modulator interactions (TFMIs). We also 
analyzed the network composed of known cellular pathways in Path-
way Commons (Cerami et al., 2011) to predict affected cellular path-
ways. The Pathway Commons version of 27 October 2011 used in 
our study contains 2308 pathways collected from multiple sources 
(HumanCyc, Reactome, NCI-Pathways Interactions Database, 
Biocarta, and KEGG; Romero et al., 2005; Matthews et al., 2009; 
Schaefer et al., 2009; Kanehisa et al., 2012).

Prediction of disrupted interactions
Inspired by an oncogene prediction method (Mani et al., 2008), we 
detected changes in correlation of expression between gene pairs 

perturbed (Figure 6, red vs. blue lines). Perturbation of MYC/Miz-1 
interaction may suggest that the ETV6-RUNX1 fusion could prefer-
entially target the repression function of MYC. It is possible that 
ETV6-RUNX1 fusion interferes with formation of MYC/Miz-1 com-
plex and recruitment of MYC to target gene transcriptional initia-
tors, as previously reported for the interplay between transforming 
growth facto-β/Smad signaling pathway and MYC/Miz-1 complex to 
control p15INK4b and p21WAF1 CDK inhibitors (Seoane et  al., 
2001, 2002, 2004). In addition, ETV6-RUNX1 may also exert its ef-
fect on the MYC network by binding to its target promoters (Supple-
mental Table S10), as shown here for the CDKN1A promoter (Sup-
plemental Figure 1, C and D).

Another important result from this study is the possible involve-
ment of the TCF3-PBX1 fusion protein in mRNA transport. RNA ex-
port is a central process in gene expression regulation and is an ex-
citing new field in cancer biology. Although overexpression of some 
components of the mRNA export machinery, such as nucleoporins 
Nup88 and Nup214 (von Lindern et al., 1992; Xu and Powers, 2009; 
Kohler and Hurt, 2010), CRM1 (Noske et al., 2008), eIF4E (Borden 
and Culjkovic-Kraljacic, 2010), and GANP, the nuclear adapter for 
NXF1 (Fujimura et al., 2005), have been associated with other types 
of cancer, including B lymphomas, our data constitute the first re-
port implicating TCF3-PBX1 in RNA localization and interaction with 
an export factor, NXF1 (Supplemental Figure S2). Similar to overex-
pression of eIF4E being efficiently inhibited by ribavirin in acute my-
elogenous leukemia (Kentsis et  al., 2004), targeting TCF3-PBX1/
mRNA export pathway interactions could lead to effective ALL 
therapies.

In conclusion, our study establishes the feasibility of predicting 
specific perturbations of molecular interactions based on gene 

FIGURE 6:  MYC regulators and the cell cycle. Network showing HBCI interactions for transcription factors regulating 
Myc. Red edges represents interactions detected as perturbed; gray edges, interactions not detected as perturbed. 
(A) For ETV6-RUNX1. (B) For TCF3-PBX1. (C) Network showing HBCI interactions for cyclins (CCNs; light magenta), 
cyclin-dependent kinases (CDK; light blue), and cyclin-dependent kinase inhibitors (CDKNs; light green) relative to MYC, 
RUNX1, ETV6, and MIZ-1.
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First, microarray expression profiles are normalized using fRMA 
(McCall and Irizarry, 2011). Second, for each genotype (fusion) and 
each interaction in the HBCI, we computed the difference of correla-
tions of expression profiles between a genotype of interest (exhibiting 

in different groups of patients: gene pairs whose expression correla-
tion values show significantly different values between a test group 
(e.g., the ALL associated to a particular gene fusion) and a control 
group of samples (e.g., all other ALL samples).

FIGURE 7:  Pathways enrichment of genes having at least one interaction predicted as perturbed in 1) ETV6-RUNX1 
and 2) TCF3-PBX1 fusions. (A, D) The size of the circle represents the number of genes involved in the pathway, and 
the edges size represents the number of shared genes. The size of a green/red circle represents the total number of 
interactions in HBCI/perturbed interactions between genes involved in the pathway, respectively. The edge size 
represents the shared interactions (gray for interactions in BCI and red for the perturbed ones) between pathways. 
(B, E) Proportion of perturbed interactions in each pathway. (C, F) Networks of predicted perturbed interactions in each 
pathway. Circles represent genes; edges, interactions.
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where X = (x1,…,xn) and Y = (y1,…,yn) are vectors representing 
expression profiles of two genes/proteins in interaction; n is the 
number of samples; i = {1,…,n}; di = xi − yi represents the difference 
between ranks; and x  and y  are the sample means of the X and 
Y vectors, respectively.

The difference of correlations (Δcor) of two genes between a 
genotype of interest (gi) and other genotypes (og) was com-
puted as

X Y X Ycor , cor ,cor gi og( ) ( )∆ = −

where cor(.,.) represents the correlation function (Spearman’s rank or 
Pearson’s correlation).

a genotype of interest) and other genotypes. We selected interac-
tions showing significant differences of correlation for both Pearson 
and Spearman rank correlation coefficients. To detect interactions 
with significant differences of correlation, we generated 10,000 data 
sets permuting expression values across the whole table of the origi-
nal data set. For each random set, we computed the difference of 
correlation in the same way as for the original data and computed the 
p value and corrected p value (using Benjamini–Hochberg multiple 
testing correction) from the distribution of all differences of correlation 
values. Interactions with corrected p < 0.05 for both Pearson and 
Spearman correlation measures are predicted as perturbed.

Difference of correlation between expression profiles
We computed Spearman’s rank correlation (ρ; Best and Roberts, 
1975) and Pearson’s correlation (r; Pearson, 1895) using the follow-
ing formulas:

d
n n

1
6

1
i
2

2
∑ρ ( )= −

−

Pathway name
Number of perturbed 

interactions
Number of interactions 
in the current pathway Corrected p

A. ETV6-RUNX1

Validated targets of c-Myc transcriptional activation 48 489 2.92E-25

Validated targets of c-Myc transcriptional repression 27 272 7.26E-14

Regulation of nuclear SMAD2 3 signaling 41 716 2.56E-13

RNA polymerase II transcription termination 31 576 3.43E-9

Cleavage of growing transcript in the termination 
region

31 576 3.43E-9

Postelongation processing of the transcript 31 576 3.43E-9

Postelongation processing of intron-containing 
pre-mRNA

24 406 6.79E-8

mRNA 3′-end processing 24 406 6.79E-8

c-Myc pathway 13 106 1.15E-7

Regulation of nuclear β-catenin signaling and target 
gene transcription

22 362 1.56E-7

B. TCF3-PBX1

RNA transport 209 1742 5.55E-17

Transport of mature transcript to cytoplasm 138 1004 9.85E-16

Transport of mature mRNA derived from an 
intron-containing transcript

126 934 8.65E-14

Noncoding RNA metabolism 101 703 1.09E-12

Small nuclear ribonucleoprotein assembly 101 703 1.09E-12

mRNA surveillance pathway 78 595 8.85E-8

Transport of the stem-loop binding protein–depen-
dent mature mRNA

56 378 2.87E-7

Regulation of nuclear SMAD2 3 signaling 86 716 6.49E-7

Transport of mature mRNAs derived from intronless 
transcripts

57 404 9.90E-7

TNFα 244 2784 3.27E-6

Corrected p value is computed using Benjamini–Hochberg multitesting correction.

TABLE 2:  The 10 top perturbed pathways after (A) ETV6-RUNX1 and (B) TCF3-PBX1 gene fusion.
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Eppelheim, Germany) at 3 μg/μg of DNA. For CDKN1A promoter 
activation, cells were treated with 100 μg/ml of PMA. At 24 h post-
transfection, cells were lysed and luciferase activities determined.

Chromatin immunoprecipitation
We collected 107 REH-G1, REH-C, HEK293-E/R-V5, or HEK295-V5 
cells, performed DNA–protein cross-linking using 1% formaldehyde 
for 8 min at room temperature, and stopped the fixation by adding 
125 mM glycine for 5 min at room temperature. Cells were col-
lected and lysed using lysis buffers iL1 and iL2 according to the 
manufacturer’s instructions (Diagenode, Liege, Belgium), and chro-
matin DNA was sheared by sonication for two or three runs of 
10–30 cycles (depending on the cell line: two runs of 10 cycles for 
HEK293 and three runs of 30 cycles for REH cells), using the Biorup-
tor (Diagenode). DNA–protein complexes were immunoprecipi-
tated overnight using validated specific ChIP antibodies for MYC or 
ETV6 proteins (Seitz et al., 2011; Torrano et al., 2011; N-262 and 
N-19, respectively; Santa Cruz Biotechnology, Santa Cruz, CA) and 
positive and negative control antibodies (histone H3 rabbit and 
normal rabbit immunoglobulin G). An aliquot (10%) was used for 
regular PCR amplification using specific primers, human RPL30 
Exon 3 (7014; Cell Signaling, Danvers, MA) as positive control for 
histone H3 immunoprecipitation and CDKN1A-specific primers 
(forward, 5′-ACTGCCCCTATTTGGGAC-3′; and reverse, 5′-GATCA-
CATACCCTGTTCA-3′). The remaining samples (10–20 ng of immu-
noprecipitated DNA) were used for ChIP-seq library sample prepa-
ration and subjected to HiSeq Illumina sequencing according to the 
manufacturer’s instructions (Illumina, San Diego, CA).

The resulting reads were mapped to the human genome (GRCh 
37/hg19) using BWA, version 0.6 (Li and Durbin, 2009). We used 
SWEMBL, version 3.3.1 (ebi.ac.uk/∼swilder/SWEMBL/), to identify 
regions of the genome where multiple reads align (peaks). We ad-
justed parameters for ChIP-seq and reference (Input) sequence rela-
tive to the number of reads in the samples, with a relative gradient 
of 0.002 (R parameter). The resulting peaks were submitted to 
GREAT, version 2.0.2 (McLean et al., 2010), to identify gene targets. 
We assigned each gene to a “regulatory domain” (Dostie et  al., 
2006; Lieberman-Aiden et al., 2009; Schoenfelder et al., 2010) of a 
minimum distance of 5.0 kb upstream and 1.0 kb downstream from 
its transcription start site. We set the extension of the regulatory 
domain up to 1000.0 kb in both directions. Then each DNA-binding 
region was associated with all genes whose regulatory domain it 
overlaps. Comparison between identified target gene lists and sta-
tistical analysis were performed using the R statistical package.

Immunofluorescence and confocal microscopy
HeLa cells were seeded onto coverslips in a 24-well plate and trans-
fected with 1 μg of pFlag-TCF3-PBX1 and/or pYFP-NXF1 plasmids 
using Lipofectamine 2000 (Invitrogen, Carlsbad, CA). At 24 h post-
transfection, cells were washed with phosphate-buffered saline (PBS), 
fixed in 3.7% formaldehyde for 20 min at room temperature, permea-
bilized with 0.5% Triton X-100 for 15 min at room temperature, and 
incubated with anti-flag M2 antibody (Sigma-Aldrich, St. Louis, MO) 
diluted in immunofluorescence (IF) buffer (5% FBS, 0.1% Tween-20 in 
PBS) for 1 h at room temperature. After extensive washes, cells were 
incubated with Alexa 568 secondary antibody diluted in the IF buffer 
and for 1 h at room temperature). Where indicated, cells were also 
incubated with the SYTO RNASelect marker (Invitrogen) and mounted 
with Prolong gold Antifade reagent with 4′,6-diamidino-2-phenylin-
dole (Invitrogen). Slides were analyzed by confocal microscopy using 
the Nikon A1R system (Melville, NY) and images processed with Im-
aris software (Bitplane, Zurich, Switzerland).

Topological analysis
The characteristic path length (cpl) of a graph G is the average 
length of the shortest paths between all distinct pairs of vertices in 
the graph (Watts and Strogatz, 1998). In a nondirected graph, the 
characteristic path length L(G) is computed as follows:
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where V is the set of vertices and d(v, v′) is distance between vertices 
v and v′, that is, the length of the shortest path joining them.

The edge-betweenness centrality (ebc) or B(e) is defined as
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where σst(e) is the number of shortest paths between vertex s and t 
that pass through the given edge (Newman, 2010).

The edge clustering coefficient (EC) is computed as the number 
of triangles to which a given edge belongs, divided by the number 
of triangles in which the edge may possibly participate at most, 
given the degrees of the adjacent nodes (Wang et al., 2012):
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where λG denotes the number of triangles that include the edge 
(u, w) and d(u) and d(w) are degrees of u and w, respectively. The 
min(d(u) − 1, d(w) − 1) is the number of triangles in which the edge 
(u,w) may possibly participate at most.

Cell culture and transfection
HeLa and HEK293 cells were cultured in DMEM supplemented with 
10% fetal bovine serum (FBS), 2 mM glutamine, and penicillin/strep-
tomycin. The same medium was used to culture ETV6-RUNX1 (E/R)–
expressing HEK 293T clones generated as previously described 
(Fuka et  al., 2012). The ETV6-RUNX1 (E/R)–positive leukemia cell 
line REH was cultured in RPMI 1640 supplemented with 10–20% 
FBS and antibiotics as recommended by the distributor (DSMZ, 
Braunschweig, Germany). Knockdown of E/R was performed as pre-
viously described (Fuka et al., 2012) using validated lentiviral vector 
encoding a U6 promoter-driven shRNA targeting the E/R fusion se-
quence. Knockdown of E/R was monitored by quantitative reverse 
transcription PCR using published primers and probe sets (Fuka 
et al., 2012), and cells with at least 50% reduction were used in ChIP 
and Western blot experiments.

Plasmids
Plasmids pFlag-TCF3, pFlag-PBX1, and pYFP-NXF1 were generated 
from the corresponding entry clones (human ORFeome 7.1) by LR 
recombination into pDEST1899 (Flag N-ter vector) or pDEST491 (YFP 
N-ter vector; gift of James L. Hartley and Dominic Esposito, Protein 
Expression Laboratory, Frederick National Laboratory for Cancer 
Research, Frederick, MD). TCF3-PBX1 (gift of David P. LeBrun, 
Queen’s University, Kingston, Canada) and ETV6-RUNX1 (gift of Guy 
Leclerc, University of Miami, Miami, FL) cDNA clones were also sub-
cloned by Gateway technology into pDEST1899 Flag N-ter vector.

Luciferase reporter assays
HEK293 cells were transfected with 1 μg of reporter plasmid 
(p4XAP1-luc, pkB-luc, CMV-luc, pCDKN1A-luc), different amounts 
of effector plasmids (pFlag-TCF3, pFlag-PBX1, pFlag-TCF3-PBX1 or 
pFlag-ETV6-RUNX1, pMX-MYC), and 100 ng of a control Renilla 
luciferase construct using polyethyleneimine (Polysciences Europe, 
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