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Article

Introduction

Lipid droplets (LDs) are the primary storage organelle for 
triglycerides and cholesterol esters in eukaryotic cells 
(reviewed in Fujimoto and Parton 2011; Thiam et al. 2013). 
LDs can be found in virtually all mammalian cell types but 
are more prominent in some specialized cells. LDs in adipo-
cytes are the primary site of long-term fatty acid storage in 
mammals, whereas LDs in hepatocytes are the major site of 
storage of fat in the liver. Excessive fat storage in the liver 
is common in individuals who consume a Western diet and 
is associated with metabolic syndrome, hypertension, ath-
erosclerosis and an increased risk of type 2 diabetes melli-
tus (Krahmer et al. 2013). Excessive cholesterol 
accumulation in LDs in macrophages results in their con-
version to foam cells, which play an important role in initi-
ating the formation of atherosclerotic lesions (Adams et al. 
1971; Krahmer et al. 2013).

Whereas LDs were previously considered inert stores of 
lipids, it is now appreciated that they are highly dynamic 

organelles (Farese and Walther 2009). The formation and 
destruction of LDs, as well as the multiple processes by 
which triglycerides and cholesterol are transferred to and 
removed from LDs are now active subjects of research by 
many cell biologists. Quantitative methods are needed to 
answer certain questions, such as whether new lipid is 
stored preferentially into existing or de novo LDs; whether 
there are distinct populations of LDs, as suggested by sev-
eral studies (Hsieh et al. 2012; Martin et al. 2005; Wilfling 
et al. 2013; Wolins et al. 2005); and whether LDs undergo 
maturation processes at different stages of their life 
history.
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Summary 
Lipid droplets are the major organelle for intracellular storage of triglycerides and cholesterol esters. Various methods have 
been attempted for automated quantitation of fluorescently stained lipid droplets using either thresholding or watershed 
methods. We find that thresholding methods deal poorly with clusters of lipid droplets, whereas watershed methods 
require a smoothing step that must be optimized to remove image noise. We describe here a novel three-stage hybrid 
method for automated segmentation and quantitation of lipid droplets. In this method, objects are initially identified by 
thresholding. They are then tested for circularity to distinguish single lipid droplets from clusters. Clusters are subjected to 
a secondary watershed segmentation. We provide a characterization of this method in simulated images. Additionally, we 
apply this method to images of fixed cells containing stained lipid droplets and GFP-tagged proteins to provide a proof-of-
principle that this method can be used for colocalization studies. The circularity measure can additionally prove useful for 
the identification of inappropriate segmentation in an automated way; for example, of non-cellular material. We will make 
the programs and source code available to the community under the Gnu Public License. We believe this technique will be 
of interest to cell biologists for light microscopic studies of lipid droplet biology. (J Histochem Cytochem 62:889–901, 2014)
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LDs can be visualized with a variety of bright, hydro-
phobic dyes, including Bodipy (Harris et al. 2013), 
1,6-diphenylhexatriene (Ranall et al. 2011) and Nile Red 
(Greenspan et al. 1985), permitting observation by fluores-
cence microscopy. Most LDs range in size from several 
hundred nanometers to several microns. LDs in adipocytes 
can be much larger, filling much of the cell volume, whereas 
some LDs may be 0.4 µm or smaller in diameter.

Smaller LDs are visualized as circular spots by light 
microscopy, which correspond to the point-spread function 
of the microscope and the focal plane. The shape of larger 
LDs is also typically circular or nearly circular, whereas 
clusters tend to be more irregularly shaped. The presence of 
clusters of LDs complicates quantitative image analysis, as 
individual LDs cannot be easily separated by thresholding 
(see Fig. 1). Watershed methods, originally developed to 
separate whole cells labeled with volume or surface mark-
ers, have also been used to segment LDs within single cells 
(Wilfling et al. 2013). Whereas watershed methods are 
more robust to LD clustering, they are highly sensitive to 
image noise and generally require some smoothing, which 
leads to a loss of resolution in order to prevent severe 
over-segmentation.

In this study, we take advantage of the generally spheri-
cal nature of LDs to create a novel three-step hybrid method. 
In this method, an image containing candidate LDs and 
clusters is first segmented based on global and local thresh-
olding, and each segmented object is then tested for circu-
larity using a least-squares fit to a circular boundary. Objects 
established as nearly circular (within a threshold) are 
accepted as LDs. Remaining objects are accepted as clus-
ters and are segmented using the standard Vincent and Solle 
watershed algorithm (Vincent and Soille 1991). An interest-
ing feature of our method is that the circularity measure can 
also act as a quality control on the overall segmentation. We 
supply characterization and testing of the performance and 
limits of this method both on actual and simulated LD 
images, and additionally demonstrate the use of this meth-
odology in the context of a proof-of-principle application. 
The current version is in the form of Unix command-line 
programs, which we have tested on Mac OSX but which 
should be portable to a variety of platforms. We have made 
this software available as open source under the Gnu Public 
License. Source code can be obtained from github.com/
jfpresley2/lipid-droplet-segmentation.

Materials & Methods

Reagents

Defatted bovine serum albumin (defatted BSA), Nile Red, 
nocodazole, paraformaldehyde and oleic acid were obtained 
from Sigma-Aldrich (Oakville, ON, Canada). The 

Tip47-GFP expression vector was a kind gift of N. Wolins 
(St. Louis, MO). The GFP-Rab7 is previously described 
(Dejgaard et al. 2008). The GalTase-GFP (Cole et al. 1996b) 
is a kind gift of J. Lippincott-Schwartz (Bethesda, MD).

Cell Culture and Lipid Droplet Induction

HeLa cells obtained from the American Type Culture 
Collection (Manassas, VA) were grown as described 
(Dejgaard et al. 2008) in Dulbecco’s Modified Eagle’s 
Medium (DMEM) supplemented with 10% fetal calf serum, 
2 mM glutamine, 150 mg/ml penicillin and 100 U/ml strep-
tomycin (Invitrogen; Burlington, ON). Cells were grown in 
an incubator at 37C with 5% CO

2
. HeLa cells were grown 

in MatTek dishes (MatTek, Inc.; Ashland, MD) for imaging. 
LD formation was induced by the addition of 50 µM, 350 
µM, or 2 mM oleic acid conjugated to defatted BSA, as 
described in Martin and Parton (2008). Transfections were 
performed using Fugene HD Transfection Reagent (Roche 
Applied Science; Mannheim, Germany) according to man-
ufacturer’s instructions. Cells were fixed 24–48 hr after 
oleic acid addition in 4% formaldehyde/PBS (pH 7.2) for 
10 min. Cells were then washed with PBS, and stored at 4C 
immersed in PBS. Nile Red was prepared as a 1 mg/ml 
stock solution in DMSO. Prior to imaging, cells were 
stained with 30 ng/ml Nile Red in PBS (10 min, 37C) to 
visualize LDs, and taken immediately to the microscope 
stage.

Image Acquisition and Analysis

Image z-stacks were taken using a Zeiss LSM510 confocal 
microscope (Zeiss; Toronto, ON) using a numerical aper-
ture (NA) 1.4, 63× plan-apochromat oil immersion, and a 
pixel size of 0.1 µm. Nile Red was visualized using the 543-
nm line of a He-Ne laser, and a 560–615-nm band-pass fil-
ter. GFP was visualized using the 488-nm line of an Argon 
laser and a 505–530-nm BP emission filter. To increase the 
signal, the pinhole was set for a slice thickness of 2 µm, 
with an interval between slices of 1 µm. This resulted in an 
improved signal at the expenses of some out-of-focus fluo-
rescence in the projected images. Line averaging of 4–8× 
was also used to minimize noise, which could interfere with 
the analysis. Images were exported as 12-bit TIFF files 
using the microscope software. For analysis, TIFF images 
were converted to PGM or PPM using the program “con-
vert” in the open source ImageMagick package (http://
www.imagemagick.org/). The other programs used were 
created for this project, and are described in the text. The 
included program “project” was used to perform a slice-by-
slice background correction and additive projection. Briefly, 
a median-filtered background was calculated for each pixel 
utilizing a 128×128 background region centered on the 

http://www.imagemagick.org/
http://www.imagemagick.org/
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pixel. The background was subtracted and negative pixels 
then zeroed. Images were projected by integer addition of 
the corresponding background-corrected pixels in each 
slice. The brightest pixel of the projected image was deter-
mined and the projected image was rescaled to a maximum 
value of 4095 prior to further analysis by a floating point 
division of each pixel by the maximum pixel value in the 
image followed by multiplication of the result by 4095.0 
and rounding to the nearest integer value.

Creation of Simulated Images. Simulated images were cre-
ated by first calculating LD diameters and locations in 2-D 
depending on the pattern desired, or at locations generated 
at random. Uniformly fluorescent spheres with the appro-
priate diameters were projected onto the selected locations 
on the 2-D grid, with the fluorescence intensity of each 
pixel representing the integrated projected fluorescence 
over that pixel. All simulated images were created to 
approximate the resolution expected on an image with 

Figure 1. Thresholding-based identification of lipid droplets (LDs) in HeLa cells with varying LD density. (A) Object identification 
strategy. A median-filtered background (neighborhood size, 128 pixels) was subtracted from the original image. The image was then 
thresholded, with pixels measuring <15% of the maximum pixel intensity set to zero. All contiguous sets of pixels were identified, and 
pixels in each cluster with a value less than 50% of the maximum pixel value for that cluster were set to zero. (B) HeLa cells incubated 
with 350 mM oleic acid for 24 hr and then stained with Nile Red. The field shown was selected to show an example with well-separated 
LDs. (C) HeLa cells incubated with 2 mM oleic acid for 24 hr and stained with Nile Red to generate large areas of near-confluent LDs. 
(D) HeLa cells incubated and stained as in (A), but field chosen to illustrate some degree of LD clustering under moderate labeling 
conditions. All source images (left; B, C, D) were prepared by projection and median filter background correction of z-stacks following 
the procedure detailed in the Materials & Methods. Scale, 5 µm.
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0.1-µm pixels taken with an objective with a numerical 
aperture of 1.4. This was done by subjecting the image to a 
Gaussian convolution with a standard deviation of 2.576 
pixels. The image was then rescaled so that the brightest 
pixel had a value of 4095 followed by the addition of pho-
ton shot noise (always specified as the number of photons 
required to give a fluorescence value of 4095).

Photon shot noise is a major contributor to noise found in 
confocal images and arises from the fact that, in a single 
acquisition, the number of photons that contribute to an 
individual pixel while it is being recorded can be very small. 
Thus, the number of photons actually measured will be 
drawn from a Poisson distribution centered on the expected 
mean value. We modeled shot noise in the simulated images 
by assigning a fixed number of photons to the maximum 
pixel value (4095), which, in the simulation images, was 
generally also the brightest pixel in a simulated LD or clus-
ter. A conversion factor (fluorescence per photon; FPP) 
could then be calculated; e.g., 400 photons/maximum pixel 
would indicate that the arrival of a single photon was equiv-
alent to an FPP of 4095/400 or 10.2375 fluorescence units. 
A new pixel value was then calculated as follows, using the 
function gsl_ran_poisson() and the function gsl_ran_gauss-
ian() from the open-source Gnu Scientific Library (Galassi 
et al. 2009). Calculations were done as follows, using dou-
ble-precision floating point arithmetic, except for gsl_ran_
poisson(), which returns integer values, with the final result 
rounded to an integer value and stored in a copy of the origi-
nal image. First, the pixel value was converted to a mean 
photon count and this count was randomized as follows 
using gsl_rnd_poisson:

mean photon count  pixel value  FPP= /  (1)

count   = gsl rnd poisson mean photon count_ _ ( )  (2)

A new pixel value was generated by adding a Gaussian-
distributed random number to count with a mean of 0 and a 
standard deviation of 1 (to ensure the final values are a con-
tinuous distribution). The result was then multiplied by the 
FPP to rescale it to the original range and the result con-
verted to an integer by rounding.

new value  FPP X  count = +( _ _gsl rnd gauss(1.0))  (3)

For mean photon counts of 10 or higher (i.e., well below 
threshold values set to zero), the distributions produced 
were close to a Gaussian with an SD of the square root of 
the count. Thus, for the purposes of this study, this model 
closely approximates other models of counting noise that 
use Gaussian distributions (e.g., in Constantino et al. 
2005).

Software

Software was written in the D programming language 
(Alexandrescu 2010) as a series of programs designed to be 
run from a Unix command line. Programs were compiled 
using the freely available dmd compiler (Alexandrescu 
2010) and run using the command-line interface under Mac 
OS10.6.8 (Snow Leopard). Source codes for the programs 
used for image analysis are hosted at github.com/jfpres-
ley2/lipid-droplet-segmentation, along with a makefile and 
compilation instructions. These programs are designed to 
operate in a Unix or Unix-like environment and may be 
used or modified under the terms of the GNU General 
Public License version 2. Translation of the code to  
other C-family languages (e.g., C++, Java) should be 
straightforward.

Results

Background Correction and Thresholding Fail 
to Distinguish Correctly Segmented LDs from 
Clusters

We wished to test whether approaches previously developed 
to isolate and quantitate fluorescently labeled endosomes 
based on global and local thresholding would be sufficient to 
identify and quantitate LDs in fluorescence microscope 
images (Dunn et al. 1989). We therefore loaded HeLa cells 
with 50 µM–2 mM oleic acid for 24–48 hr, as described in 
the Materials & Methods, in order to obtain a range of LD 
densities for tests. As we found that LD density in HeLa 
cells was reduced at high confluence, we also varied the 
plating density. Low LD densities were defined as densities 
in which 75% or more of LDs were visibly separated from 
neighboring LDs. Under these low density conditions, 
objects isolated after thresholding were near-circular, con-
sistent with LD morphology (Fig. 1A, 1B). In cells treated 
with 2 mM oleic acid, the highest concentration tested, the 
cytoplasm was full of LDs, which were adjacent (Fig. 1C). 
After thresholding and segmentation, more than 75% of flu-
orescence was found in large and irregular objects, which 
appeared to consist of multiple, circular structures that were 
touching, consistent with failure to segment large clusters of 
LDs (Fig. 1C). Some high-density LD clusters were also 
found localized to small regions of the cytoplasm (Fig. 1D) 
under lipid loading conditions (50–350 µM oleic acid), 
which have been frequently used in published experiments; 
thus, the problem cannot be easily bypassed simply by 
avoiding heavy loading conditions. We also found high-den-
sity LD clusters in HepG2, Chinese Hamster Ovary and 
COS7 cells upon moderate oleic acid loading (data not 
shown), suggesting that the tendency of LDs to cluster must 
be taken into account in any quantitation strategy.
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Development of a Test to Distinguish Single LDs 
from Clusters

LDs are typically circular in fluorescence images, and are 
often nearly circular in electron microscopic images. We 
reasoned that clusters of LDs would be more irregularly 
shaped and that an automated test for circularity could vali-
date correctly segmented LDs while flagging unsegmented 
clusters for special attention. To test for circularity, we modi-
fied our object isolation algorithm to extract the location of 
the boundary pixels of each spot. The array of pixel coordi-
nates was then fitted to the equation of a circle using the 
Späth best-fit algorithm (Spath 1996). The standard devia-
tion of the boundary pixels with respect to the circle was 
then computed and expressed in units of best-fit circle radius 
(Fig. 2A), giving a measure of quality-of-fit that can be com-
pared between structures which may be of different sizes.

To gain insight into whether this strategy could distin-
guish between single LDs and clusters, we created a simula-
tion that projected spherical LD images onto a plane and 
added simulated photon shot noise to the image. Single or 
multiple LDs could be projected onto the same image. LD 
diameters (Fig. 2A) were assumed as 100 nm/simulated 
pixel. Projections were then subjected to a Gaussian blur 
(SD, 2.576 pixels) to approximate the effects of image blur-
ring due to diffraction, assuming an NA 1.4-objective and 
560-nm fluorescence imaging. Shot noise was then applied, 
with the brightest pixel of the LD corresponding to either 
100 or 400 photons. These are realistic estimates because 
(1) Nile Red is brightly fluorescent and this facilitates the 
acquisition of low-noise images, and (2) confocal images 
are typically averages of several acquisitions.

Simulated images were created containing a single pro-
jected LD, three LDs arranged in an equilateral triangle 
with 20% overlap, or four LDs arranged in a rhombus with 
20% overlap (Fig. 2A). Sizes of LDs were varied from 4 µm 
to 100 nm in 100 nm increments. Simulated objects were 
clipped to their full width half maximum (FWHM), as done 
for endosomal isolation, and a circle fit to the boundary pix-
els of the object using the Späth algorithm (Spath 1996). 
The standard deviation between the boundary pixels and the 
best-fit circle were calculated, and expressed in units of 
radius of the best-fit circle (standard-deviation best-fit-cir-
cle; SDBFC).

Under low-noise conditions (400 photons/max pixel), 
the spherical geometry could be easily distinguished from 
rhombi and triangles at large fit radii, with fit errors of 0.1 
or less for the spheres, and ~0.13–15 for the other geome-
tries. At fit radii of 5 pixels or less, the calculated fit error 
was similar under all conditions, suggesting, as expected, 
that this discriminator breaks down at small object sizes. 
Increased noise (100 photons/brightest pixel) gave similar 
results, but with increased fit error (<0.15 for sphere with 
radius ≥5 pixels). Clusters are likely to be more irregular 

than the test geometries (triangle and rhombus), which were 
intentionally chosen to approximate a circular object. This 
analysis suggests that an LD with a diameter >1 µm could 
be distinguished from a cluster in most cases utilizing 
SDBFC.

As SDBFC was noticeably affected by image noise 
(compare Fig. 2B and 2C), we conducted additional simula-
tions in which we progressively increased image noise from 
200 photons/maximum pixel to 10 photons/maximum pixel 
while holding the fit circle diameter at either of two values 
~1600 nm (large) or ~620 nm (marginal). Image definition 
was markedly reduced by <50 photons/maximum pixel 
value (Fig. 3A, 3B), and extremely poor at 10 photons/max-
imum pixel value. Single LDs were well distinguished from 
clusters at 100 photons/maximum value, with discrimina-
tion dramatically reduced <80 photons/maximum value 
(Fig. 3C, 3D). This suggests that SDBFC can be used as a 
discriminator to distinguish LDs from clusters but that the 
image noise must be kept low by utilizing bright dyes to 
minimize detector gain and by image averaging or increas-
ing integration times.

Assessing LD Segmentation Accuracy in Images 
of Cells

Overall, this analysis suggests that SDBFC can discrimi-
nate LDs from clusters in simulations, using plausible 
image acquisition conditions. To test whether SDBFC could 
discriminate LD clusters on real images of cells, we re-ana-
lyzed the same images shown in Figure 1, and additionally 
an image of cells stained for the Golgi protein GM130, 
which is not found on LDs, but instead on the Golgi appara-
tus, which consists of a ribbon of typically non-spherical 
stacks. Objects were considered circular if the fit circle was 
greater than 500 nm in radius (1 µm in diameter) and 
SDBFC was greater than 0.15. The SDBFC requirement 
was made less stringent for smaller objects (0.25 for radius 
400–500 nm; 0.3 for radius 300–400 nm; 0.35 for radius 
<300 nm).

In an image with moderate LD clustering (Fig. 1D), 
spherical LDs were separated from non-spherical clusters 
consistent with expectations from visual inspection (Fig. 4, 
top row). Whereas a surprisingly large proportion of the 
fluorescent mass was in clusters, many clusters consisted of 
LDs connected by only a few pixels, suggesting that they 
could be resolved either with modification of the original 
segmentation algorithm or with a secondary segmentation 
step.

In an image of cells with severe LD clustering (Fig. 1C), 
the algorithm identified a small number of round structures, 
and correctly identified that most of the fluorescent mass 
was in clusters (Fig. 4, middle row). Whereas the clusters 
could be visually separated into LDs, it was not obvious if 
further automated processing was possible.



894 Dejgaard and Presley

Overall, this analysis suggests that single LDs could be 
separated from clusters in real images, but also that LD 
clusters are a significant portion of the total LD mass even 

at moderate levels of oleic acid loading. Nevertheless, a 
strategy was suggested to target clusters for a secondary 
segmentation step.

Figure 2. Fits of circle to boundaries of single lipid droplets (LDs) or LD clusters in simulated images. (A) Illustration of simulated 
LDs arranged singly (top row) or as indicated. Simulated images were created by projection of a sphere onto a plane, preserving 
the integrated fluorescence intensity for each 2D pixel. The radius indicated at the top is the radius on the simulated image prior to 
processing (100 nm/pixel). The objects shown have been subjected to a Gaussian blur to simulate the effects of diffraction, followed 
by the application of simulated photon shot noise (400 photons/maximum pixel value), and clipping to their full width half maximum 
(FWHM). The boundary pixels were then extracted and the best-fit circle determined (red). (B) Fit error (SDBFC; standard-deviation 
best-fit-circle) as a function of fit circle radius for single LDs, clusters of three arranged in a triangle or clusters of four arranged in a 
rhombus created and processed exactly as described for (A). LDs in clusters were overlapped by 20% to prevent segmentation by the 
thresholding routine. Each point represents the mean value of 1000 simulations. Error bars are not shown since standard deviation of 
simulation runs was <0.1% for 100 nm LDs (the smallest size tested) for all three geometries. (C) Fit error as a function of circle radius 
exactly as in (B) except that shot noise was increased to 100 photons/maximum pixel value. Each point represents the mean of 1000 
simulation runs. Standard deviation was <0.2% for 100 nm LDs for all three geometries. Scale, 10 simulated pixels (1.0 simulated µm).
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Secondary Watershed Screening

Watershed algorithms are a family of algorithms that divide 
an image into regions surrounding local minima, expanding 
the minima until the regions meet, and creating boundaries 
at the meeting points (Roerdink and Meijster 2001). 
Watershed algorithms are frequently used to segment cells 
in high-throughput screening applications. We reasoned 

that inversion of pixel values in an image of fluorescent 
LDs (e.g., Fig. 1C) would result in local minima at the cen-
ter of many LDs, and that application of a watershed algo-
rithm to such an image could serve as an effective secondary 
segmentation step.

We implemented the Vincent and Soille watershed algo-
rithm (Vincent and Soille 1991), and integrated it with our 
previous segmentation approach. In the hybrid approach, 

Figure 3. Effects of increased noise 
on the ability to distinguish simulated 
spherical lipid droplets (LDs) from 
clusters. (A) LDs were simulated 
as described for Figure 2 to give a 
diameter for the fit circle of roughly 
1600 nm. This corresponded to an 
initial simulated size of 2300 nm for 
a single LD, 1300 nm for each LD 
arranged in a triangle, and 1100 nm for 
each LD arranged in a rhombus. LDs 
were subjected to simulated photon 
shot noise with the brightest simulated 
pixel set to the indicated number of 
photons/pixel. Noised images were 
then thresholded to their full width half 
maximum (FWHM) and the boundary 
extracted and fit to a circle (red). Note 
that images degrade significantly as 
smaller numbers of simulated photons 
are sampled. (B) LDs simulated as in 
(A), but with sizes of LDs set to give 
a fit circle diameter near 620 nm for 
each geometry. This corresponds to 
an initial radius prior to processing 
of 400 nm for single LDs and 200 nm 
for each LD arranged in a rhombus 
or triangle. (C) Fit error (SDBFC; 
standard-deviation best-fit-circle) as a 
function of fit circle radius for single 
LDs, clusters of three arranged in a 
triangle, or clusters of four arranged 
in a rhombus with an overlap of 20% 
created and processed such that the fit 
circle diameter approximates 16 pixels 
(1600 nm) exactly as described for 
(A). Each point represents the mean 
value of 1000 simulations. Simulations 
were not included in the average if the 
structure was broken into more than 
one contiguous area. This was <5% 
of total simulations at 40 photons/
maximum value for all geometries, 
but rejections for this reason rapidly 
increased at higher noise levels. (D) 
Effect of shot noise on fit error exactly 
as in (C) but with a fit circle diameter 
approximating 600 nm. Scale, 10 
simulated pixels (1.0 simulated µm).
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we first segmented the image as previously described, and 
then passed regions that did not pass the test for circularity 
onto the watershed algorithm. To reduce the effect of image 

noise on the algorithm prior to application of the watershed 
algorithm, we applied a Gaussian blur with a standard devi-
ation of 2.5 pixels. After applying the watershed algorithm 

Figure 4. Assessment of accuracy of lipid droplet (LD) segmentation by fitting a circle to boundary pixels. LDs in Nile Red stained HeLa 
cells from Figure 1 (top, middle) or the Golgi protein GM130 stained with a primary antibody against GM130 (Nakamura et al. 1995) 
and a Cy3-labeled secondary (bottom) were identified by background correction followed by local thresholding as described for Figure 
1. The best-fit circle was determined for the boundary pixels of each object and goodness of fit calculated as SD of boundary pixels from 
the best-fit circle expressed in units of circle radius. Green and yellow circles indicate objects meeting the criteria for acceptance as 
LDs. In the left panel in each set of green circles indicates goodness of fit of 0.15 or less for objects with a radius of 5 pixels or larger. 
Yellow circles indicate goodness of fit of 0.35 or less for objects with a radius less than 5 pixels. Accepted objects are shown in the 
middle panels. Red and blue circles indicate objects rejected as not meeting the criteria for single LDs. Red circles indicate objects that 
did not meet these criteria, whereas blue circles indicate gross failures of fit. A blue circle indicates either that the area of the best-fit 
circle differs from the area of the object by >50%, or that the center of the circle is outside of the smallest bounding box encompassing 
all of the pixels of the objects. All rejected objects are shown in the right panels. Left panels were prepared by projection and median 
filter background correction of z-stacks following the procedure detailed in the Materials & Methods. Scale, 5 µm.
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to the images, pixels at watershed boundaries were set to 
zero. This permitted the simple definitions of objects as 
contiguous areas of pixels as done previously for threshold-
ing-defined objects. Objects with less than six pixels were 
deleted, both in the first and the second object isolation 
stage. Clusters were broken up into objects that appeared to 
correspond to individual LDs, both in images with moder-
ate clustering (Fig. 5A; blue outlines in right panel) and 
those with severe clustering (Fig. 5B; blue outlines in right 
panel). The isolated structures often appeared less circular 
than LDs isolated by thresholding alone. This non-circular-
ity was often visible in the original images, suggesting that 
LDs in clusters may sometimes have their shape distorted 
due to packing interactions. However, when the watershed 
algorithm was applied without a pre-smoothing step or was 
applied to invalid data in the form of a reflection image of 
the coverslip, dramatically non-circular shapes were 
obtained, suggesting that the same circularity measure used 
for the initial separation of LDs from clusters would be use-
ful as an overall quality control measure.

Effectiveness of Three-Stage Segmentation 
Compared to Thresholding on Simulated Images

To assess the effectiveness of the three-stage segmentation 
technique described here compared to the most commonly 
used techniques, we generated images containing random 
patterns of LDs in simulated cells at preselected low or high 
densities. Simulated LDs were placed at random into an 
ellipse with a major axis of 300 pixels and a minor axis of 
200 pixels with the exception of a 100 pixel exclusion zone 
to simulate the nucleus (Fig. 6A, 6B). LD diameter was 
taken from a Gaussian distribution (mean diameter 20 pix-
els or 2.0 simulated microns; standard deviation 4 pixels). 
Images were then blurred using a Gaussian convolution 
(SD, 2.576 pixels) to approximate the resolution of a NA 
1.4 objective at a pixel size of 0.1 µM pixels and shot noise 
added as described in Methods (400 photons / maximum 
pixel). Droplets were added at random until >20% of the 
total usable area (the inside of the ellipse excluding the 
nucleus) was covered (low density) or >70% of the usable 
area was covered (high density). Droplets were allowed to 
overlap up to 20% of their diameters. To compare the effec-
tiveness of three-stage segmentation to other techniques we 
generated ten low-density images (95 – 102 lipid droplets / 
image) and ten high-density images (378-403 lipid droplets 
/ image). Representative images generated can be found in 
Figure 6a (low density) and 6b (high density). All images 
were quantitated using simple thresholding and object iso-
lation, by careful or rapid manual counting, or with the 
same three-stage segmentation procedure used for the anal-
ysis described in Figure 5. Manual counting was done 
blindly without knowledge of the true number of lipid drop-
let in the simulated images. “Careful” manual counting was 

done with instructions to obtain as close as possible the true 
number even if additional time was required (up to 15 min. 
/ images for the high density images). “Rapid” manual 
counting was done quickly on printouts of images, marking 
each droplet when counted. Simple thresholding and three-
stage segmentation were done using the procedures in 
Figure 1 and Figure 5 respectively. Results were then 
divided by the true number of droplets, and results from the 
ten images averaged. Results are shown in Figure 6c (low 
density) and Figure 6d (high density).

We found that both rapid and careful manual counting 
gave accurate results on the test images (Fig. 6C, 6D); 
although, a time frame of 5–15 min was required per image 
to count the LDs on the high-density images. In contrast, 
simple thresholding and three-stage segmentation required 
less than 1 sec/image. Thresholding followed by object iso-
lation was effective on the low-density images (Fig. 6C) but 
severely undercounted LDs on the high density images 
(Fig. 6D). Three-stage segmentation counted LDs almost as 
accurately as manual counting on both the low-density and 
high-density images, although there was some over-seg-
mentation by the watershed routine leading to a count 
slightly higher than the true count (Fig. 6C, 6D). Thus, the 
three-stage segmentation routine was remarkably accurate, 
even for LDs at a high density, where simple thresholding 
was not effective.

Colocalization of LDs Identified by Three-
Stage Segmentation with Fluorescently Tagged 
Organelle Markers

To test if the three-stage segmentation described could be 
applied to a realistic problem, we transfected HeLa cells 
with (1) PAT protein, Tip47-GFP, which is known to associ-
ate with LDs (Wolins et al. 2005); (2) GFP-Rab7, which 
associates with late endosomes/lysosomes (Jordens et al. 
2001); or (3) GalTase-GFP (Cole et al. 1996b), which asso-
ciates with the Golgi apparatus. Cells were then incubated 
with 350 µM oleic acid for 24 hr. For the last 6 hr, cells 
transfected with GalTase-GFP were additionally treated with 
5 µg/ml nocodazole to break the Golgi into small mini-
stacks localized randomly in the cytoplasm (Cole et al. 
1996a), but not known to associate with LDs. Cells were 
then fixed, stained with Nile Red, and images (10 images per 
condition) acquired as described in the Materials & Methods. 
Confocal z-stacks were background-corrected and projected 
as described in the Materials & Methods. Red and green 
channels in each image were then processed separately using 
the two-step segmentation previously described. Objects in 
the Nile Red image were scored as colocalized if >30% of 
the pixels overlapped with objects in the green image. 
Remaining objects were scored as non-colocalized. All steps 
were incorporated into a procedure, which outputs the colo-
calized and non-colocalized objects into separate images 
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(Fig. 7A; middle and right column, respectively) and also 
generated text output with statistics on each object (summa-
rized in Fig. 7B and 7C). Cell areas were selected manually 
with an ImageJ (NIH, Bethesda, MD) macro, and output text 
filtered using a script written in the open-source Ruby lan-
guage to compile object statistics for individual cells. A 
minimum of 12 cells were scored for each condition.

The majority of Nile Red-stained fluorescence (>60% of 
fluorescence in colocalized structure) was found to colocal-
ize with Tip47-GFP by this measure (Fig. 7A, 7B), whereas 
only a small proportion of Nile Red-stained fluorescence 
colocalized with GalTase-GFP. There was an intermediate 
level of colocalization (<20%) with Rab7-GFP. This could 
be random colocalization due to the very high density of 
Rab7-labeled punctae, or might represent autophagic deliv-
ery of LDs to lysosomes. Overall, the results were consis-
tent with our expectations, and suggest that the procedures 

described here may be useful for quantifying colocalization 
of LDs with tagged markers.

The current study demonstrates one possible strategy for 
the quantitation of LDs in microscope images and, under 
our test conditions, the three-stage segmentation procedure 
provides good results in assessing colocalization of LDs 
with marker proteins. This suggests its use in a number of 
applications, including scoring the association of LDs with 
PAT proteins, Rab proteins, or proteins involved in lipoly-
sis. The total image processing time, including all curve 
fits, and both the primary and secondary segmentation rou-
tines was typically ~3 sec for a 1000×1000 pixel image with 
several hundred objects in each channel. This is adequate 
for use in general cell biology applications, and could likely 
be sped-up considerably if needed for high-throughput rou-
tines, as a major portion of the total running time is spent in 
curve fits of circular boundaries using a reliable but fairly 

Figure 5. Processing of lipid droplet clusters with watershed segmentation. Images from the top two rows of Figure 4 are shown. Left 
panel shows the unprocessed image (previously prepared by projection and median filter background correction of z-stacks following 
the procedure detailed in the Methods & Materials). Middle panel shows structures that fail to meet the criteria for identification as 
LDs (identical to right panel, Figure 4). Right panel shows all LDs originally accepted (yellow boundaries), and the result of applying a 
watershed segmentation to the rejected structures (blue boundaries). Scale, 5 µm.
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slow iterative algorithm (Spath 1996) run for a fixed (rather 
large) number of iterations.

Discussion

Colocalization of structures can be assayed by methods 
applied to pixels throughout the entire image (e.g., Pearson’s 

Correlation Coefficient) or by identifying objects and mea-
suring overlap. The first approach requires no special pre-
processing of the image but does not distinguish between 
object-localized fluorescence and non-object-localized flu-
orescence (for instance, the large, relatively uniform cyto-
plasmic pool of Rab7). If colocalization is assayed 
object-by-object using a measure of overlap (e.g., 

Figure 6. Comparison of Quantitation Techniques on Simulated Images. (A) Low density simulated cell images created with a low density 
of lipid droplets (LDs; 20% of cell area covered, as described in detail in the text. Left image shows the image before processing. Middle 
image is after thresholding and testing for circularity. Green and yellow circles indicate structures accepted as circular, exactly as in Figure 
4. Red and blue circles indicate structures not accepted as circular, and passed to the watershed routine for further segmentation. Right 
image is a composite showing circular structures without further processing and non-circular structures segmented by setting watershed 
boundaries to zero. (B) Simulated image was created and processed identically as in the panels in (A) but with LDs added until 70% of the 
usable area was covered (high density). Left panel shows the original image. Middle image shows identification of circular and non-circular 
structures color-coded as in (A). Right image is a composite showing circular structures without further processing, and non-circular 
structures segmented by setting watershed boundaries to zero. (C) Ten low-density images were created exactly as described for the left 
panel in (A) with random LD patterns (20% of usable image area covered). The number of simulated LDs was recorded for each image, 
and LD number was then determined as indicated. Shown for each condition is the mean ± SD of counted/actual LDs. Details on each 
method used are described in the text. (D) Ten high-density images were created and processed exactly as described for the left panel in 
(B) (70% of simulated cytoplasm covered). LD count was then determined by the indicated techniques as described for (C) and divided by 
the number LDs rendered. Shown is the mean ± SD of counted/actual LDs. Micron bar 50 pixels (5 simulated µm).
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by individual LDs), accurate segmentation becomes 
important. Examining colocalization at the level of indi-
vidual endosomes is important in defining and distinguish-
ing sorting endosomes that contain transferrin and LDL 
from recycling and late endosomes, which contain only 
one of the two markers (Dunn and Maxfield 1992). Each 
of these approaches has strengths and weaknesses and 
may be applied in particular cases. One case where the 
analysis of colocalization at the level of individual LDs 
could be important would be following lipid tracers in 
pulse-chase experiments or following the fates of distinct 
lipid species, which may go, in some cases, to distinct 
populations of LDs (Hsieh et al. 2012). In this case, the 

approaches described here may prove useful. A further 
advantage of identifying LDs with circular boundaries is 
that, in cells stained with volume dyes (e.g., Nile Red), it 
may be possible to estimate the volume of a subset of 
spherical LDs of known diameter, and to use these as cali-
bration standards to estimate the total volume of LDs on a 
per-cell basis. We are currently assessing the feasibility of 
this approach.
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Figure 7. Use of three-stage 
segmentation to assess colocalization 
of lipid droplets (LDs) with GFP-
tagged proteins. (A) HeLa cells 
were transfected with the indicated 
proteins and incubated for 24 hr with 
350 µM oleic acid, fixed and stained 
with Nile Red. GalTase-transfected 
cells were additionally treated with 
5 µg/ml nocodazole for 6 hr to 
break the Golgi into large numbers 
of mini-stacks. The left panels show 
the merged images. Note that the 
LD protein Tip47-GFP (green) 
colocalizes well with LDs (red), 
whereas GalTase-GFP and GFP-Rab7 
colocalize less well. Images were 
processed using the three-stage 
segmentation described in Figure 
5. Nile Red-stained structures, in 
which 30% or more of total pixels 
overlap with objects in the similarly 
processed GFP image (colocalized), 
are shown in the middle panels, and 
all of the other Nile Red-stained 
structures (not colocalized) are 
shown in the right panels. (B) Sum of 
fluorescence of LDs colocalized with 
each of the protein markers tested 
and divided by total LD fluorescence 
in the same cell. Each bar shows 
the mean calculated from at least 
12 cells ± SEM. All differences were 
significant using a student’s t-test 
(p<0.0001). The “Projected Images” 
(Left) were previously prepared 
by projection and median filter 
background correction of z-stacks, as 
detailed in the Materials & Methods. 
(C) Fraction of total isolated LDs 
colocalized with each of the protein 
markers tested. Each bar shows 
the mean of at least 12 cells ± SEM. 
All differences were significant as 
determined using a student’s t-test 
(p<0.0001). Scale, 5 µm.



Automated Lipid Droplet Segmentation 901

Funding

The authors disclosed receipt of the following financial support for 
the research, authorship, and/or publication of this article: This 
work was funded by the National Science and Engineering Research 
Council of Canada [RGPIN 262240-11;  RGPAS 412298-11].

References

Adams CW, Abdulla YH, Bayliss OB (1971). Entry of esterified 
cholesterol into foam cells. Atherosclerosis 13:111-119.

Alexandrescu A (2010). The D Programming Language. Boston, 
Addison-Wesley Professional.

Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz 
J (1996a). Golgi dispersal during microtubule disruption: 
regeneration of Golgi stacks at peripheral endoplasmic reticu-
lum exit sites. Mol Biol Cell 7:631-650.

Cole NB, Smith CL, Sciaky N, Terasaki M, Edidin M, Lippincott-
Schwartz J (1996b). Diffusional mobility of Golgi proteins in 
membranes of living cells. Science 273:797-801.

Costantino S, Comeau JW, Kolin DL, Wiseman PW (2005). 
Accuracy and dynamic range of spatial image correlation and 
cross-correlation spectroscopy. Biophys J 89:1251-1260.

Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, Lodge 
R, Dejgaard K, Ly-Hartig TBN, Pepperkok R, Simpson 
JC, Presley JF (2008). Rab18 and Rab43 have key roles in 
ER-Golgi trafficking. J Cell Sci 121:2768-2781.

Dunn KW, Maxfield FR (1992). Delivery of ligands from sorting 
endosomes to late endosomes occurs by maturation of sorting 
endosomes. J Cell Biol 117:301-310.

Dunn KW, McGraw TE, Maxfield FR (1989). Iterative fraction-
ation of recycling receptors from lysosomally destined ligands 
in an early sorting endosome. J Cell Biol 109:3303-3314.

Farese RV, Walther TC (2009). Lipid droplets finally get a little 
R-E-S-P-E-C-T. Cell 139:855-860.

Fujimoto T, Parton RG (2011). Not just fat: the structure and func-
tion of the lipid droplet. Cold Spring Harb Perspect Biol 3: 
1-17.

Galassi M, Davies J, Theiler J, Gough B, Jungman G, Alken P, 
Booth M, Rossi F (2009). GNU Scientific Library Reference 
Manual: Third edition, for version 1.12, Network Theory Ltd.

Greenspan P, Mayer EP, Fowler SD (1985). Nile red: a selective 
fluorescent stain for intracellular lipid droplets. J Cell Biol 
100:965-973.

Harris LLS, Skinner JR, Wolins NE (2013). Imaging of neutral 
lipids and neutral lipid associated proteins. Methods Cell Biol 
116:213-226.

Hsieh K, Lee YK, Londos C, Raaka BM, Dalen KT, Kimmel AR 
(2012a). Perilipin family members preferentially seques-
ter to either triacylglycerol-specific or cholesterol-ester-
specific intracellular lipid storage droplets. J Cell Sci 125: 
4067-4076.

Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen 
L, Calafat J, Janssen H, Wubbolts R, Neefjes J (2001). The 
Rab7 effector protein RILP controls lysosomal transport by 
inducing the recruitment of dynein-dynactin motors. Curr 
Biol 11:1680-1685.

Krahmer N, Farese RV, Walther TC (2013). Balancing the fat: 
lipid droplets and human disease. EMBO Mol Med 5: 
973-983.

Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG (2005). 
Regulated localization of Rab18 to lipid droplets. J Biol Chem 
280:42325-42335.

Martin S, Parton RG (2008). Characterization of Rab18, a lipid 
droplet-associated small GTPase. Methods Enzymol 438: 
109-129.

Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, 
Slusarewicz P, Kreis TE, Warren G (1995). Characterization 
of a cis-Golgi matrix protein, GM130. J Cell Biol 6: 
1715-1726.

Ranall MV, Gabrielli BG, Gonda TJ (2011). High-content imag-
ing of neutral lipid droplets with 1,6-diphenylhexatriene. 
Biotechniques 51:35-42.

Roerdink JBTM, Meijster A (2001). The watershed trans-
form: definitions, algorithms and parallelization strategies. 
Fundamenta Informaticae 41:187-228.

Spath H (1996). Least-square fitting by circles. Computing 
57:179-185.

Thiam AR, Farese RV, Walther TC (2013). The biophysics and 
cell biology of lipid droplets. Nat Rev Mol Cell Biol 14: 
775-786.

Vincent L, Soille P (1991). Watersheds in digital spaces: an effi-
cient algorithm based on immersion simulations. IEEE Trans 
Pattern Anal Machine Intell 13:583-596.

Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida 
A, Cheng JX, Graham M, Christiano R, Frohlich F, Liu 
X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV, 
Walther TC (2013). Triacylglycerol synthesis enzymes medi-
ate lipid droplet growth by relocalizing from the ER to lipid 
droplets. Dev Cell 24:384-399.

Wolins NE, Quaynor BK, Skinner JR, Schoenfish MJ, Tzekov A, 
Bickel PE (2005). S3-12, Adipophilin, and TIP47 package 
lipid in adipocytes. J Biol Chem 280:19146-19155.


