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Cellular/Molecular

GABA-A Receptor Inhibition of Local Calcium Signaling in
Spines and Dendrites

Joseph J. Marlin and Adam G. Carter
Center for Neural Science, New York University, New York, New York 10003

Cortical interneurons activate GABA-A receptors to rapidly control electrical and biochemical signaling at pyramidal neurons. Different
populations of interneurons are known to uniquely target the soma and dendrites of pyramidal neurons. However, the ability of these
interneurons to inhibit Ca>* signaling at spines and dendrites is largely unexplored. Here we use whole-cell recordings, two-photon
microscopy, GABA uncaging and optogenetics to study dendritic inhibition at layer 5 (L5) pyramidal neurons in slices of mouse PFC. We
first show that GABA-A receptors strongly inhibit action potential (AP)-evoked Ca** signals at both spines and dendrites. We find robust
inhibition over tens of milliseconds that spreads along the dendritic branch. However, we observe no difference in the amount of
inhibition at neighboring spines and dendrites. We then examine the influence of interneurons expressing parvalbumin (PV), somatosta-
tin (SOM), or 5HT3a receptors. We determine that these populations of interneurons make unique contacts onto the apical and basal
dendrites of L5 pyramidal neurons. We also show that SOM and 5HT3a but not PV interneurons potently inhibit AP Ca>" signals via
GABA-A receptors at both spines and dendrites. These findings reveal how multiple interneurons regulate local Ca®" signaling in

pyramidal neurons, with implications for cortical function and disease.
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Introduction

Rapid inhibition throughout the cerebral cortex is mediated by
ionotropic GABA-A receptors (Isaacson and Scanziani, 2011).
These receptors are found across the entire somatodendritic axis
of pyramidal neurons (Fritschy and Mohler, 1995; Kubota et al.,
2007). At the soma and axon, GABA-A receptor inhibition con-
trols the timing of action potential (AP) firing (Freund and Ka-
tona, 2007). At the dendrites, inhibition regulates both electrical
and biochemical signaling (Spruston, 2008; Palmer et al., 2012a).
For example, inhibitory inputs onto the apical dendrites limit
synaptic responses and local spiking (Kim et al., 1995; Larkum et
al.,, 1999; Murayama et al., 2009). However, the impact of
GABA-A receptors on local Ca®™ signaling is largely unexplored,
particularly at the level of spines.

APs from the soma backpropagate into dendrites of pyramidal
neurons to trigger Ca’" signals that shape excitability and syn-
aptic plasticity (Bloodgood and Sabatini, 2007). GABA-A recep-
tor inhibition of AP Ca*™ signals strongly regulates the induction
of synaptic plasticity (Hayama et al., 2013). Activation of these
receptors is often thought to broadly inhibit a given dendritic
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branch (Liu, 2004; Gidon and Segev, 2012). Consistent with this
idea, GABA-A receptors inhibit AP Ca®™ signals in the dendrites
of hippocampal pyramidal neurons (Tsubokawa and Ross, 1996;
Kanemoto et al., 2011). However, in layer 2/3 (L2/3) pyramidal
neurons, equivalent inhibition of AP Ca®" signals is highly
restricted to only a subpopulation of spines and not their
neighboring dendrites (Chiu et al., 2013). These findings raise
the intriguing possibility that GABAergic interneurons may be
able to precisely regulate local Ca** signaling within individ-
ual spines.

Multiple populations of interneurons are poised to activate
GABA-A receptors and inhibit pyramidal neurons. These in-
terneurons have distinct morphological, physiological, and mo-
lecular properties (Markram et al., 2004; Ascoli et al., 2008;
DeFelipe et al., 2013), and make unique subcellular connections
(Kawaguchi and Kubota, 1997; Somogyi et al., 1998; Di Cristo et
al., 2004). For example, parvalbumin-expressing (PV) in-
terneurons mainly contact the soma and axon initial segment.
In contrast, many somatostatin-expressing (SOM) interneu-
rons primarily innervate the distal dendrites. A third population
of interneurons expresses SHT3a receptors, but their subcellular
targeting is unexamined (Rudy et al., 2011). While little is known
about how these three types of interneurons regulate AP Ca*"
signals, recent results suggest that SOM interneurons selectively
inhibit a subset of spines and not their nearby dendrites (Chiu et
al., 2013).

Here we examine GABA-A receptor inhibition of AP Ca*"
signals at L5 pyramidal neurons in the mouse PFC. We first show
that activation of GABA-A receptors strongly inhibits AP Ca**
signals at both spines and dendrites. We find that inhibition oc-
curs over tens of milliseconds and broadly extends within indi-



Marlin and Carter  Dendritic Inhibition

vidual dendritic branches. We then show that PV, SOM, and
5HT3a interneurons make distinct functional connections onto
the apical and basal dendrites. Finally, we show that different
classes of interneurons have contrasting influences on AP Ca*"
signals. Together, these results indicate that multiple interneu-
rons regulate local Ca** signaling at both spines and dendrites.
Our findings have important implications for the role of rapid
dendritic inhibition at cortical pyramidal neurons.

Materials and Methods

Preparation. L5 pyramidal neurons and interneurons were studied in
acute coronal slices of the prelimbic medial PFC from P21-P30 wild-
type, heterozygous PV-Cre (Hippenmeyer et al., 2005), heterozygous
SOM-Cre (Taniguchi et al., 2011), or heterozygous 5HT3a-Cre (Gong et
al.,2007) male and female mice in a C57BL/6 or mixed background. Mice
were anesthetized with a lethal dose of ketamine and xylazine and per-
fused intracardially with ice-cold external solution containing the fol-
lowing (in mm): 65 sucrose, 75 NaCl, 25 NaHCO;, 1.3 NaH,PO,, 25
glucose, 2.5 KCI, 1 CaCl,, 5 MgCl,, 0.4 Na-ascorbate, and 2 Na-pyruvate
(295-305 mOsm), bubbled with 95% O,/5% CO,. Coronal slices (300
wm thick) were cut in ice-cold external solution and transferred to ACSF
containing the following (in mm): 120 NaCl, 25 NaHCO;, 1.3 NaH,PO,,
20 glucose, 2.5 KCl, 2 CaCl,, 1 MgCl,, 0.4 Na-ascorbate, and 2 Na-
pyruvate (295-305 mOsm), bubbled with 95% O,/5% CO,. After hold-
ing for 30 min at 35°C, slices were allowed to recover for 30 min at 24°C.
All experiments were conducted at 30—32°C. For all experiments, 10 um
NBQX, 10 um CPP, and 2 um CGP-55845 were added to block AMPA,
NMDA, and GABA-B receptors, respectively. For mapping experiments,
1 uMm TTX was added to block AP propagation and 100 um 4-AP was
added to restore presynaptic release. For some experiments, 10 um gaba-
zine was added to block GABA-A receptors. All chemicals were from
Sigma or Tocris Bioscience.

Stereotaxic injections. P14—P17 mice were subcutaneously injected
with 0.02 mg/kg atropine 10 min before surgery and then deeply anes-
thetized with 40 mg/kg ketamine and 5 mg/kg xylazine. PFC injection site
coordinates were relative to bregma (dorsoventral axis, mediolateral axis,
and rostrocaudal axis: —2.3, +0.4, and +2.0 mm, respectively). Borosili-
cate pipettes with 5-10 um tip diameters were backfilled with 1 ul of
AAV2/9-EFla-dflox-hChR2(H134R)-mCherry (Penn Vector Core).
Twenty to 25 boluses of virus (23 nl each) were pressure injected (Nano-
ject II; Drummond), with 30 s spacing between injections, for a total
volume of 460-575 nl. After the final injection, the pipette was left in
place for an additional 5 min to allow the virus to diffuse away from the
pipette tip, and was then slowly removed from the brain. Animals were
returned to their cages for 1-2 weeks before recordings.

Electrophysiology. Whole-cell recordings were obtained from L5 pyra-
midal neurons located 450—550 um from the pia and identified by
infrared-differential interference contrast, as previously described
(Chalifoux and Carter, 2011b). Interneurons expressing ChR2-mCherry
were identified by their fluorescently labeled cell bodies. Borosilicate
pipettes (25 M) were filled with one of two internal solutions.
Current-clamp recordings used the following (in mm): 135 K-gluconate,
7 KCl, 10 HEPES, 10 Na-phosphocreatine, 4 Mg,-ATP, and 0.4 Na-GTP,
290-295 mOsm, pH 7.35, with KOH. Voltage-clamp recordings used
the following (in mm): 135 Cs-gluconate, 10 HEPES, 10 Na-
phosphocreatine, 4 Mg,-ATP, and 0.4 Na-GTP, 10 EGTA, 10 TEA-
chloride, and 2 QX314, 290-295 mOsm, pH 7.35, with CsOH. Both
solutions contained 30 um Alexa Fluor 594 to image morphology.
Current-clamp recordings also included 200 pum Fluo-5F to monitor
Ca*" signals. This concentration of Fluo-5F was chosen to maximize
detection of AP Ca*" signals while staying in the linear range of the
indicator (Yasuda et al., 2004). Dyes were allowed to diffuse throughout
the dendrites for at least 20 min before imaging.

Electrophysiology recordings were made with a Multiclamp 700B am-
plifier, filtered at 6 kHz for current clamp and 2 kHz for voltage clamp,
and sampled at 10 kHz. The series resistance was routinely measured in
voltage clamp and maintained at <20 M. All L5 pyramidal neurons
were regular spiking and responded to hyperpolarizing current steps
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with a voltage sag. Somatic APs were triggered with a threshold current
injection (2 ms duration), unless otherwise noted. For mapping and
imaging experiments, basal dendrites were selected ~150 um from the
soma and apical dendrites were selected ~100 wm distal to the bifurca-
tion point near the L1/L2 border.

Two-photon microscopy. Two-photon imaging was performed on a
custom microscope, as previously described (Chalifoux and Carter,
2010). A Ti:sapphire laser (Coherent) tuned to 810 nm was used to excite
Alexa Fluor 594 and Fluo-5F to image morphology and monitor AP
Ca?* signals, respectively. Line scans were acquired at 500 Hz, divided by
the total number of spines at each location (between 1 and 3, giving
sampling rates between 167 and 500 Hz). Reference frame scans were
routinely taken to correct for any spatial drifts over time at the imaging
location. Ca>™ signals were quantified as the change in Fluo-5F fluores-
cence [green (G)] normalized to the Alexa Fluor 594 fluorescence [red
(R)], giving units of AG/R. These signals were then normalized to the
G,,/R value measured with a saturating concentration of Ca** added to
the internal solution in a thin-walled pipette, giving final measurements
in units of AG/G,,,. Recordings were discarded if an increase in baseline
fluorescence was detected, which could indicate photo damage. Record-
ings were also discarded if AP Ca®" signals were <0.02 AG/G,,,, which
prevented reliable analysis of inhibition. All imaging experiments were
performed with a 60X 1.0 NA objective (Olympus).

GABA uncaging. The back aperture of the objective was filled with
collimated 473 nm light from a DPSS laser (OEM Laser) to form a spot
at the sample. The duration and power of the uncaging laser light was
controlled by a Pockels cell (Conoptics). A fast shutter (Uniblitz) was
used to protect the photomultiplier tubes from the uncaging laser
light. During two-photon imaging, a telescope of two plano-convex
lenses was used to focus the collected fluorescence through the shutter
aperture.

RuBi-GABA (20 uM) was prepared and bath applied in the dark.
GABA uncaging was achieved using a single laser pulse of 2 ms duration
and 4 mW power, unless otherwise noted. This duration and power was
found to be sufficient to block somatic APs or dendritic AP Ca*" signals
without causing any photo damage. In all experiments, the laser was
focused on either the soma or dendrites located within 40 wm of the slice
surface. In most experiments, the uncaging spot was centered on the
imaged spine—dendrite pair. In Figure 4, the uncaging spot was shifted
perpendicular to the main apical dendrite, perpendicular to the imaged
branch, or along the branch. In Figure 5, the uncaging spot was shifted to
a nearby branch or to the main apical dendrite. Ca?" imaging experi-
ments consisted of at least four standard interleaved trials: 1 = no AP +
no laser,2 = AP + nolaser, 3 = no AP + laser,and 4 = AP + laser. Trial
1 was used to detect photo-bleaching, Trial 2 was used to assess the
control AP Ca?™ signal, Trial 3 was used to measure the laser artifact, and
Trial 4 was used to assess the impact of inhibition on the AP Ca*" signal.
As needed, additional trials were used to vary uncaging power (Fig. 2),
time delay (Fig. 3), or location (Figs. 4, 5). GABA uncaging preceded the
somatic AP by 10 ms, coinciding with maximal inhibitory conductance,
unless otherwise noted. Timing experiments (Fig. 3) consisted of the 10
ms time point and one to three other time points. Each trial was repeated
up to 10 times and averaged for analysis.

Optogenetics. Channelrhodopsin-2 (ChR2) was activated in PV, SOM,
and 5HT3a interneurons to trigger inhibition of L5 pyramidal neurons.
For wide-field illumination, ChR2 was activated using a 473 nm LED
(Thorlabs) and 5X 0.9 NA objective (Olympus). The duration was varied
and power was measured as 4.4 mW at the back aperture of the objective.
For focused illumination, ChR2 was activated at axons using a similar
method to GABA uncaging. The laser spot was focused on the dendrites
of pyramidal neurons within 40 wm of the slice surface. The duration was
fixed at 2 ms and the power was 1 mW at the back aperture of the
objective. Ca?* imaging experiments consisted of the same four inter-
leaved trials: 1 = no AP + no laser, 2 = AP + nolaser, 3 = no AP + laser,
and 4 = AP + laser. ChR2 activation always preceded somatic AP firing
by 5 ms. To overcome somatic inhibition, a suprathreshold current in-
jection was used. We found that AP Ca>™ signals evoked by suprathresh-
old current injection were identical to those evoked by threshold current
injection (data not shown).
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Histology and fluorescence microscopy. Mice A
were anesthetized with a lethal dose of ket-
amine and xylazine and perfused intracardially
with ice-cold external solution, as described
above. Brains were transferred into an ice-cold
solution of 4% paraformaldehyde in 0.01 M
PBS and fixed for 20-24 h at 4°C. Slices were
prepared (Leica VT 1000S vibratome) at a
thickness of 70 wm, and mounted under glass
coverslips on gelatin-coated slides using Pro-
Long Gold antifade reagent with DAPI (Invit-
rogen). Images were acquired using an
automated microscope (Olympus VS120) with
a 10X 0.25 NA objective. Excitation wave-
lengths were 555 and 359 nm for TRITC and
DAPI, respectively.

Data analysis. Electrophysiology and imag-

Apical

ing data were acquired using National
Instruments boards and MATLAB (Math- Basal
Works). Image processing was performed us- 40 pm

ing Image] (NIH). Off-line analysis was
performed using Igor Pro (WaveMetrics).
Input resistance was measured using the D
steady-state hyperpolarization after a small
negative current injection. Membrane time
constants were measured using exponential fits
to these same voltage traces. AP width was
measured as the time delay at the half-maximal
values on the rising and falling phases. IPSC
and IPSP amplitudes were measured as the av-
erage around 0.5 ms of the peak response. IPSC
charge transfer was measured after baseline
subtraction during a 200 ms period after the
stimulus. IPSC decay times were measured us- G
ing exponential fits after the peak response. In
Ca*" imaging experiments, laser artifacts were
detected using Trial 3 (no AP + laser). Before
any analysis, these artifacts were corrected by
subtracting Trial 3 from Trial 4 (AP + laser).
This correction was vital for analyzing AP
Ca*" signals, as the artifacts could otherwise
obscure inhibition. AP Ca®" signal amplitudes
were measured over a 100 ms window after the
end of the shutter period. The impact of inhi-
bition was assessed by dividing the value of the
corrected Trial 4 (AP + laser) by the value of
Trial 2 (AP + no laser). In Figures 3-5, record-
ings were discarded if the control inhibition of
AP Ca?" signals in spines and dendrites was
<50%, to enable accurate comparisons at dif-
ferent time delays or spatial locations.
Electrophysiology and imaging summary
data are reported in the text and shown in fig-
ures as arithmetic mean = SEM. For clarity,
SEM is omitted from figures with three or
more overlaid AP Ca*" signals. In Figure 6,
summary data are shown as box-plots of the
median, interquartile range, and 10-90% range (whiskers). Compari-
sons between unpaired data were performed using Wilcoxon rank-sum
tests. Comparisons between paired data were performed using paired
Wilcoxon signed-rank tests. These nonparametric tests make no as-
sumptions about the data distribution. Significance was defined as p <
0.05, adjusted for multiple comparisons using the Bonferroni correction,
as indicated in figure legends.

Soma
Basal

Apical

Soma
Basal

Figure 1.

basal dendrites.

Results

Inhibition of AP Ca** signals by GABA-A receptors

We examined dendritic inhibition at L5 pyramidal neurons in
acute slices of mouse PFC. We used whole-cell recordings to fill
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GABA-A receptor inhibition of AP Ca** signals. A, Two-photon image of a L5 pyramidal neuron, showing apical
dendrites, soma, and basal dendrites, with magnification showing imaged spine (), dendrite (D), and line-scan path (dashed line).
B, Left, Schematic of recording configuration, where the blue spot indicates GABA uncaging at the soma. Right, Current-clamp
recording of AP alone (black), GABA uncaging alone (light blue), AP paired with GABA uncaging (red), and paired response after
addition of gabazine (GZ; gray), with expanded view of IPSP alone before and after the addition of GZ (dark blue). Blue arrows
indicate uncaging pulse and black arrows indicate AP firing at 10 ms delay. C, Similar to B with GABA uncaging at the apical
dendrite. D, Schematic of recording configuration, where the blue spot indicates GABA uncaging at the apical dendrite and the
dotted box indicates location of imaged spines and dendrites. E, Average Ca® ™ signals evoked in apical spines by AP alone (black)
or AP paired with GABA uncaging (red). F, Summary of impact of GABA uncaging on AP Ca®™ signals in apical spines (S) and
dendrites (D) in the absence and presence of gabazine. *p << 0.05. G-/, Similar to D—F with GABA uncaging and imaging at the

neurons with the fluorescent dye Alexa Fluor 594 (30 uMm) via
the patch pipette. After allowing for dye diffusion, we used
two-photon microscopy to image the soma and dendrites (Fig.
1A). We used a focused blue laser to uncage RuBi-GABA (20
uM) in the presence of AMPA, NMDA, and GABA-B receptor
blockers (Rial Verde et al., 2008; Chalifoux and Carter,
2011b). In current-clamp recordings at resting membrane po-
tentials, we found that GABA uncaging at the soma evoked
robust IPSPs that blocked AP firing and were abolished by the
GABA-A receptor antagonist gabazine (10 uMm; n = 4; Fig. 1B).
In contrast, GABA uncaging targeted to the apical dendrites
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Figure 2.

generated smaller IPSPs that did not prevent somatic AP firing
(n = 7; Fig. 1C).

We next determined the ability of GABA-A receptors to in-
hibit AP Ca>" signals in spines and dendrites. To measure these
signals, we also filled neurons with the fluorescent Ca*" indicator
Fluo-5F (200 uMm), and used two-photon laser line scans through
neighboring spines and dendrites (Fig. 1A). To accurately deter-
mine the impact of inhibition, we found that it was critical to first
subtract the artifact generated by the uncaging laser (see Materials
and Methods; Chalifoux and Carter, 2011a). After making this
correction, we observed that GABA uncaging strongly reduced
AP Ca?”" signals in both the apical dendrites (fraction of con-
trol: spines = 0.21 * 0.08, p < 10 ~*% dendrites = 0.20 = 0.08,
p < 10™% n = 17; Fig. 1ID-F) and basal dendrites (spines =
0.22 = 0.07, p < 10 % dendrites = 0.24 = 0.04,p < 10 % n =
22; Fig. 1G-I). Importantly, this inhibition was also eliminated
by bath wash-in of gabazine (10 uM; fraction of control: apical
spines = 0.98 * 0.04, p > 0.9; apical dendrites = 1.07 = 0.07,p =
0.38; n = 8; basal spines = 0.97 £ 0.05, p > 0.9; basal dendrites =
1.02 = 0.04, p = 0.63; n = 5; Fig. 1 F,I). These results indicate
that GABA-A receptor activation potently inhibits AP Ca**
signals at spines and dendrites of L5 pyramidal neurons.
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Equivalent inhibition at nearby spines
and dendrites
. We next sought to determine the sensi-
5. tivity of AP Ca*™ signals in spines and
' dendrites to GABA-A receptor activa-
{ tion. Many previous studies indicate

Similar inhibition at nearby spines and dendrites. A, Schematic of recording configuration, where the blue spot
indicates GABA uncaging at the soma. B, IPSPs evoked by somatic GABA uncaging at different laser powers (red), and block with
gabazine (GZ; dark blue), where the blue arrow indicates uncaging pulse. ¢, Summary of IPSP amplitude versus uncaging laser
power. D, Similar to A with GABA uncaging at the apical dendrite, where the dotted box indicates location of imaged spines and
dendrites. E, Average Ca2 " signals evoked in apical spines (left) and dendrites (right) by AP alone (black) or AP paired with GABA
uncaging at different laser powers (red), where blue arrows indicate uncaging pulse and black arrows indicate AP firing at 10 ms
delay. F, Summary of impact of GABA uncaging at different laser powers on AP Ca%™" signals in spines (left) and dendrites (right).
*p < 0.0125. G, Summary of difference in inhibition at spines and dendrites, where values above zero indicate less inhibition at
spines, and values below zero indicate more inhibition at spines, showing no difference at any stimulus intensity.

that GABA-A receptors are present on
both spines and dendrites (Fritschy and
Mohler, 1995; Kubota et al., 2007). How-
ever, recent findings at L2/3 pyramidal
neurons suggest that spines can be more
sensitive to inhibition than their parent
dendrites (Chiu et al., 2013). To explore
this possibility, we assessed the amount of
inhibition generated by uncaging at dif-
ferent laser powers. We first measured IP-
SPs evoked by uncaging at the soma in
current-clamp recordings (Fig. 2A). As
expected, we found that IPSP amplitude
progressively increased with stronger
stimuli (0.5 mW = —0.31 * 0.04 mV; 1
mW = —0.70 = 0.13 mV; 2 mW =
—1.34 £0.21 mV;4 mW = —2.50 = 0.43
mV; n = 4 cells; Fig. 2B,C), indicating
that the amount of GABA-A receptor ac-
tivation scales with laser power.

We then measured inhibition of AP
Ca*" signals in the apical dendrites while
varying the laser power (Fig. 2D). We hy-
pothesized that heightened sensitivity to
inhibition at spines would be revealed at
lower powers. We found that AP Ca**
signals were progressively inhibited with
stronger stimuli at both spines (fraction of
control: 0.5 mW = 0.76 = 0.06, p = 0.004;
1 mW = 0.70 = 0.07, p = 0.006; 2 mW =
027 £ 0.11, p < 10 "% 4 mW = 0.18 =
0.06, p < 10 ™% n = 16) and their parent
dendrites (fraction of control: 0.5 mW =
0.81 £ 0.05, p = 0.003; 1 mW = 0.62 =
0.04,p <1042 mW = 0.41 + 0.07,p <
10 "% 4 mW = 0.14 = 0.06, p < 10 *; Fig. 2E, F). However, the
degree of inhibition in these compartments did not differ at any
laser power (spine — dendrite: 0.5 mW = —0.05 * 0.06, p = 0.67;
I mW = 0.08 £ 0.07, p = 0.46; 2mW = —0.14 * 0.07, p = 0.10;
4 mW = 0.04 = 0.06, p = 0.40; Fig. 2G). These results show that
AP Ca”" signals at spines and dendrites are similarly sensitive to
GABA-A receptor activation at these neurons.

Laser Power (mW)

Time course of inhibition at spines and dendrites
The timing of GABA-A receptor inhibition is thought to play a
key role in regulating Ca’*-dependent synaptic plasticity
(Hayama et al., 2013). To investigate the temporal profile of den-
dritic inhibition, we first assessed the time window over which
GABA uncagingblocks AP firing at the cell body (Fig. 3A). We varied
the timing of the uncaging pulse relative to the threshold current
injection (At = —5, 0, 5, 10, 20, 50, and 100 ms; Fig. 3B). Maximal
inhibition occurred at 10 ms, with little inhibition by 100 ms (prob-
ability of firing: 10 ms = 0.03 = 0.03; 100 ms = 0.69 * 0.16; n =7
cells; Fig. 3C). These results indicate that activation of GABA-A re-
ceptors inhibits AP firing over a brief time window.

We then examined inhibition of AP Ca*" signals by varying
the timing of the uncaging pulse in the apical dendrites relative to
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AP firing (Fig. 3D). We found that inhibi- A
tion of AP Ca** signals also depended on
timing at both spines and dendrites (Fig.
3E). Maximal inhibition occurred at 10
ms, with little inhibition by 100 ms at both
spines (fraction of control: 10 ms =
0.22 +0.03,p <10 '% n = 36; 100 ms =
1.01 = 0.06, p = 0.90, n = 16) and den-
drites (fraction of control: 10 ms = 0.19 =
0.04, p < 107'% 100 ms = 0.89 = 0.05,
p = 0.015; Fig. 3F). As a control, no inhi-
bition was observed when the AP pre- D
ceded the uncaging pulse by 5 ms
(fraction of control: spines = 0.96 * 0.06,

p = 0.32; dendrites = 0.93 = 0.08, p =

0.38; n = 11; Fig. 3F). We again found no
significant difference in the amount of in-
hibition at spines and dendrites at any de-

lay (spine — dendrite: —5 ms, p = 0.97,
n=11;0ms,p =0.95n=8 5ms,p =
0.57,n=9;10ms, p = 0.69,n = 36; 20 ms,
p=073,n=95msp=043,n=9; F
100 ms, p = 0.19, n = 16; Fig. 3G). These
results indicate that GABA-A receptor in-
hibition of AP Ca** signals at spines and
dendrites occurs in a window of tens of
milliseconds.

Apical

Soma
Basal

Apical

Soma
Basal

AP Ca Signal
(Fraction of Control)

Spatial extent of inhibition in the
dendritic arbor

The impact of inhibitory inputs is thought
to depend on their location within and
across individual branches (Liu, 2004;
Hao et al., 2009; Gidon and Segev, 2012;
Jadi et al., 2012). We next sought to assess
the spatial extent of GABA-A receptor in-
hibition of AP Ca*" signals. It was first
important to determine the spatial resolu-
tion of GABA uncaging in our brain slices.
We recorded uncaging-evoked IPSCs at 0
mV while uncaging GABA in 10 uwm steps
moving away from the main apical den-
drite (Fig. 4A). We found that IPSC amplitude decreased with
distance from the dendrite (0 wm = 92 * 12 pA; 10 um = 45 =
5.6 pA; 20 um = 15 = 4.5 pA; 30 um = 6.5 = 2.0 pA; 40 um =
5.0 = 1.0 pA; n = 3 cells; Fig. 4 B, C). The average space constant
was 11.9 = 0.4 pm, indicating that GABA uncaging is highly
restricted in our preparation.

In related experiments, we also assessed inhibition of AP Ca?*
signals while uncaging GABA in 10 wm steps moving away from
the apical tuft (Fig. 4D). We found that this inhibition decreased
with distance at both spines (fraction of control: 0 um = 0.17 =
0.06,p <10 %10 um = 0.37 £ 0.12,p < 10 %20 um = 0.73 =
0.06, p < 10 7% 30 wm = 1.09 * 0.07, p = 0.36; n = 14) and
dendrites (fraction of control: 0 um = 0.19 = 0.05, p < 10 =310
wm = 0.29 + 0.09, p < 10 720 wm = 0.91 * 0.06, p = 0.15; 30
pum = 0.91 = 0.06, p = 0.07; Fig. 4E, F). These results indicate
that GABA uncaging directly activates GABA-A receptors within
an ~30 um radius in our recordings. Thus, any effect of GABA
uncaging on AP Ca*" signals beyond this radius must reflect the
spread of inhibition in the dendrites.

Having established the spatial resolution of our uncaging ex-
periments, we asked whether inhibition could spread along a
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dendritic branch. We compared the impact of GABA uncaging at
three locations along a single branch: centered on the imaged
spine, 40 wm distal, or 40 wm proximal, using the same laser
power at each location (Fig. 4G). We found that AP Ca*™ signals
were significantly inhibited at all three locations at both spines
(fraction of control: centered = 0.08 = 0.11, p = 0.001; distal =
0.29 £ 0.13, p = 0.001; proximal = 0.29 * 0.11, p = 0.002; n =
11) and dendrites (fraction of control: centered = 0.31 * 0.06,
p = 0.001; distal = 0.43 = 0.15, p = 0.003; proximal = 0.18 =
0.14, p = 0.001; Fig. 4H,I). Moreover, there was no significant
difference in inhibition at the three locations (centered vs. distal:
spines, p = 0.10; dendrites, p = 0.41; centered vs. proximal:
spines, p = 0.12; dendrites, p = 0.65; distal vs. proximal: spines,
p = 0.83; dendrites, p = 0.11). These results show that inhibition
spreads along an individual dendritic branch, indicating that the
reduction of AP Ca** signals can in principle also reflect the
activation of GABA-A receptors at nearby locations.

Compartmentalization of inhibition in distal dendrites
Inhibition is often thought to be confined to a single dendritic
branch, with adjacent branches functioning independently (Liu,
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2004; Gidon and Segev, 2012). We next examined whether inhi-
bition can spread between branches to influence AP Ca** signals
at spines and dendrites. We compared the impact of GABA un-
caging either centered on the imaged spine or targeted to another
branch located 40-75 uwm away from the imaging location (Fig.
5A). We found that AP Ca*" signals were strongly inhibited by
uncaging at the imaged spine (fraction of control: spines =
—0.02 = 0.07, p = 0.001; dendrites = —0.02 = 0.08, p = 0.001;
n = 11), but only weakly by uncaging at the other branch (frac-
tion of control: spines = 0.74 = 0.09, p = 0.019; dendrites =
0.75 = 0.07; p = 0.007; Fig. 5B, C). Moreover, GABA-A receptor
inhibition at these two locations was significantly different (cen-
tered vs. other branch: spines, p = 0.001; dendrites, p = 0.001).
These results suggest that inhibition via GABA-A receptors is
primarily confined to individual branches, and spreads across the
tuft to a smaller degree.

We then assessed whether activation of GABA-A receptors on
the main apical dendrite could also inhibit AP Ca** signals in the
apical tuft. We first examined the impact of GABA uncaging at

the main apical dendrite (Fig. 5D, E), and found a small impact
on AP Ca*" signals at both spines and dendrites (fraction of
control: spines = 0.83 = 0.04, p = 0.01; dendrites = 0.82 = 0.02,
p = 0.004; n = 9; Fig. 5F, G). We then measured AP Ca?* signals
in the apical tuft, comparing GABA uncaging at either the imaged
spine or 50—85 wm away on the main apical dendrite (Fig. 5H).
We found that AP Ca*™ signals were strongly inhibited by uncag-
ing at the imaged spine (fraction of control: spines = 0.13 % 0.05,
p < 10 % dendrites = 0.24 = 0.06, p < 10 "% n = 12), but only
modestly by uncaging at the main apical dendrite (fraction of
control: spines = 0.57 = 0.11, p = 0.001; dendrites = 0.70 *
0.13, p = 0.009; Fig. 51,]). Furthermore, GABA-A receptor inhi-
bition at these two locations was significantly different (centered
vs. main apical: spines, p = 0.007; dendrites, p = 0.002). These
results suggest that GABA-A receptor activation at the main api-
cal dendrite can also weakly reduce AP Ca** signals at distal
locations. Our findings support the idea of rapid and localized
inhibition of AP Ca®" signals at both spines and dendrites.
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Inhibition via three populations of cortical interneurons

Having established the properties of GABA-A receptor inhibition
of AP Ca*" signals, we next sought to determine which interneu-
rons are responsible for this local effect in the apical and basal
dendrites. Distinct interneuron populations are well known to
make unique contacts onto cortical pyramidal neurons (Kawa-
guchi and Kubota, 1997; Somogyi et al., 1998; Di Cristo et al.,
2004). We examined PV, SOM, and 5HT3a interneurons, which
together comprise the vast majority of cortical interneurons
(Rudy et al,, 2011). To independently manipulate these popula-
tions, we used transgenic mice that express Cre recombinase
under the regulatory elements of these molecular markers (Hip-
penmeyer et al., 2005; Gong et al., 2007; Taniguchi et al., 2011).
We first injected AAV9-dfloxed-ChR2-mCherry into the PFC of
these mice, waited 1-2 weeks for expression, and imaged red
fluorescence in slices. We found all three types of interneurons
were distributed across the deep and superficial layers of PFC
(Fig. 6A). We then performed whole-cell recordings of labeled
cells to characterize their morphology (Fig. 6B) and physiology
(Fig. 6C). We found that PV interneurons (n = 11) had signifi-
cantly lower input resistance, faster time constants, and shorter
AP width than SOM (n = 12) and 5HT3a (n = 9) interneurons

(Fig. 6D—F). These physiological properties are consistent with
studies in other rodents (Kawaguchi, 1993), and suggest this is a
viable approach for studying the functional roles of these differ-
ent interneurons.

We then used optogenetics to assess the functional connec-
tions of PV, SOM, and 5HT3a interneurons onto L5 pyramidal
neurons. We expressed ChR2 in interneurons by injecting AAV9-
dfloxed-ChR2-mCherry into the PFC of Cre-expressing trans-
genic mice. After allowing 1-2 weeks for expression, we used
wide-field illumination to activate presynaptic interneurons and
evoke IPSCs at postsynaptic pyramidal neurons held at 0 mV in
voltage clamp (Fig. 7A). We found that IPSCs increased in am-
plitude with stimulus duration and were completely blocked with
gabazine (10 uM; Fig. 7B). Interestingly, we discovered that
normalized IPSCs from each interneuron population dis-
played distinct kinetics (Fig. 7C). The time to peak was fastest
at PV connections, and slowest at 5HT3a connections (PV =
8.6 £ 0.2 ms; SOM = 11.3 = 0.8 ms; 5HT3a = 15.3 = 1.0 ms;
PV vs. SOM, p = 0.002; PV vs. 5HT3a, p = 0.002; SOM vs.
5HT3a, p = 0.015; n = 6; Fig. 7D). Similarly, the decay time
was fastest at PV connections and slowest at 5SHT3a connec-
tions (PV = 12.3 = 1.2 ms; SOM = 24.9 = 1.4 ms; 5HT3a =
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42.1 = 3.0 ms; PV vs. SOM, p = 0.002; PV vs. 5HT3a, p =
0.002; SOM vs. 5HT3a, p = 0.002; Fig. 7E). We hypothesized
that these distinct kinetics could in part reflect differential
targeting by these three populations of interneurons in the
apical and basal dendrites.

Dendritic targeting of inhibitory connections

We next used optogenetics to map the functional connections of
PV, SOM, and 5HT3a interneurons onto the dendrites of L5
pyramidal neurons. We used a focused blue laser to release GABA
from axons at the apical and basal dendrites, while measuring
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Distinct IPSCs evoked by multiple interneurons. A, Schematic of recording configuration, showing a pyramidal neuron (black) receiving putative connections from a nearby interneuron

(gray), where the blue circle indicates wide-field illumination of ChR2-expressing interneurons. B, IPSCs evoked at pyramidal neurons by wide-field activation of PV (left), SOM (middle), or 5HT3a
(right) interneurons at different pulse durations, and block by gabazine (GZ; dark blue), where the blue arrows indicate light pulse. €, Peak-scaled IPSCs evoked by each interneuron using the 4 ms
light pulse. D, E, Summary of time to peak (D) and decay (E) of IPSCs evoked by different interneurons. *p << 0.025.

IPSCs in voltage-clamp recordings at 0 mV (Fig. 8A). To ensure
local responses, we included TTX (1 um) to block APs and 4-AP
(100 M) to restore presynaptic release (Petreanu et al., 2009;
Little and Carter, 2012; MacAskill et al., 2012). We found that PV
interneurons contacted the basal dendrites, but generated no re-
sponse in the apical dendrites (Fig. 8B). In contrast, SOM and
5HT3a interneurons made contacts at both the apical and basal
dendrites. Importantly, the ratio of charge transfer at the apical
and basal dendrites was significantly different across the three
populations (apical/basal ratio: PV = 0.007 = 0.05; SOM = 1.4 =
0.19; 5HT3a = 5.5 £ 2.0; PV vs. SOM, p < 10 3, PV vs. 5HT3a,
p < 1073 SOM vs. 5HT3a, p = 0.002; n = 7; Fig. 8C). These
results indicate that PV, SOM, and 5HT3a interneurons make
unique dendritic connections, suggesting they may have distinct
effects on AP Ca*" signals.

Further analysis revealed that IPSC kinetics depended on both
the type of interneuron and dendritic location (Fig. 8D). The time
to peak was slower for connections onto the apical dendrites, but
did not differ between interneurons (apical: SOM = 20.4 * 1.1
ms; 5HT3a = 23.2 £ 1.8 ms; SOM vs. 5HT3a, p = 0.32; basal:
PV =123+ 1.5ms; SOM = 14.1 = 0.5 ms; 5HT3a = 15.2 £ 1.5
ms; PV vs. SOM, p = 0.13; PV vs. 5HT3a, p = 0.10; SOM vs.
5HT3a, p = 0.62; Fig. 8E). The decay time was much slower for
connections onto the apical dendrites, and also slower for SOM
and 5HT3a interneurons at the basal dendrites (apical: SOM =
143 = 21 ms; 5HT3a = 213 £ 36 ms; SOM vs. 5HT3a, p = 0.12;
basal: PV = 19.0 = 3.3 ms; SOM = 39.3 + 4.4 ms; 5HT3a, 37.1 =
3.9ms; PV vs. SOM, p = 0.007; PV vs. 5HT3a, p = 0.007; SOM vs.
5HT3a, p = 0.87; Fig. 8F ). These findings indicate that wide-field
IPSCrise and decay times depend on both the type of presynaptic
interneuron and dendritic targeting. These results indicate that

PV, SOM, and 5HT3a interneurons make strong connections
onto L5 pyramidal neurons, but have distinct targets and may
serve unique functions.

Inhibition of AP Ca** signals by multiple interneurons

Having established the dendritic targeting of PV, SOM, and
5HT3a interneurons, we next tested their impact on AP Ca*"
signals in L5 pyramidal neurons (Fig. 9A). These current-clamp
experiments were performed in the absence of TTX and 4-AP,
which would otherwise disrupt AP firing. However, our measure-
ments of AP Ca*" signals continued to provide a measure of local
inhibition. Our voltage-clamp results predicted that PV in-
terneurons would have a minimal contribution to dendritic in-
hibition, whereas SOM and 5HT3a interneurons would have a
large impact at the apical and basal dendrites. Consistent with this
prediction, we found that PV interneurons did not inhibit AP
Ca*" signals in either the apical dendrites (fraction of control:
spines = 1.03 £ 0.05, p = 0.58; dendrites = 0.98 = 0.05, p = 0.93;
n = 17) or basal dendrites (fraction of control: spines = 0.89 =
0.05, p = 0.051; dendrites = 0.98 = 0.06, p = 0.65; n = 19; Fig.
9B,E,F). In contrast, we found that SOM interneurons blocked
AP Ca’" signals in the apical dendrites (fraction of control:
spines = 0.09 * 0.04; p < 10 ~>; dendrites = —0.02 = 0.05; p <
10 % n = 19) and reduced them in the basal dendrites (fraction
of control: spines = 0.48 * 0.08, p < 10 ~°; dendrites = 0.45 =
0.08, p < 10 % n = 19; Fig. 9C,E, F). Last, we found that 5HT3a
interneurons also blocked AP Ca** signals in the apical dendrites
(fraction of control: spines = 0.01 % 0.03, p < 10 ~*. dendrites =
0.00 = 0.03,p < 10 ~% n = 15), and inhibited them in the basal
dendrites (fraction of control: spines = 0.59 * 0.14, p = 0.007;
dendrites = 0.63 = 0.11, p < 10 % n = 14; (Fig. 9D-F).
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Finally, we examined whether any interneurons yielded differ-
ential inhibition at nearby spines and dendrites of L5 pyramidal
neurons. We found that SOM and 5HT3a interneurons yielded
stronger inhibition in both apical spines (apical vs. basal: SOM,
p <1077 5HT3a, p = 0.002) and their parent dendrites (apical
vs. basal: SOM, p < 10 % 5HT3a, p < 10 % Fig. 9E,F). How-
ever, we found no difference in inhibition at spines and dendrites
across all interneuron types and dendritic domains (spine vs.
dendrite: PV apical, p > 0.9; PV basal, p = 0.18; SOM apical, p =
0.10; SOM basal, p = 0.77; 5SHT3a apical, p = 0.85; 5HT3a basal,
p = 0.54; pooled data, r* = 0.71; Fig. 9G). Our findings establish
how different populations of interneurons target the dendrites of
L5 pyramidal neurons and robustly inhibit AP Ca** signals in
both spines and dendrites.

Discussion

We have characterized GABA-A receptor inhibition of AP Ca**
signals at L5 pyramidal neurons in the mouse PFC. Using GABA
uncaging, we first showed similar inhibition via GABA-A recep-
tors at spines and dendrites. We also found that inhibition is

limited to tens of milliseconds and confined within a dendritic
branch. Using optogenetics, we then showed that PV, SOM, and
5HT3a interneurons make distinct contacts onto the apical and
basal dendrites. Finally, we found that SOM and 5HT3a interneu-
rons strongly inhibit AP Ca®" signals at both spines and den-
drites. These findings provide new insights into rapid inhibition
at spines and dendrites of pyramidal neurons, and underscore the
importance of different populations of interneurons in regulat-
ing cortical function.

GABA-A receptors are found at both the dendrites and spines
of cortical pyramidal neurons (Fritschy and Mohler, 1995;
Kubota et al., 2007). Activation of GABA-A receptors is well
known to inhibit synaptic responses and local spiking (Llinés et
al., 1968; Kim et al., 1995; Miles et al., 1996; Larkum et al., 1999;
Murayama et al., 2009; Lovett-Barron et al., 2012; Miiller et al.,
2012). However, much less is known about inhibition of Ca**
signals in spines and dendrites, which help to regulate excitability
and plasticity (Bloodgood and Sabatini, 2007). At hippocampal
pyramidal neurons, GABA-A receptors can strongly inhibit AP
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Ca?*t signals in the apical dendrites (Tsubokawa and Ross, 1996;
Kanemoto et al., 2011; Hayama et al., 2013). Here we observed
widespread inhibition of AP Ca*™ signals in the apical and basal
dendrites of L5 pyramidal neurons. Importantly, neighboring
spines and dendrites were inhibited to the same degree across a
range of GABA uncaging parameters. These results support the
idea that GABA-A receptors control AP Ca”" signals across the
dendritic arbor.

The precise timing of GABA-A receptor inhibition is thought
to regulate Ca**-dependent synaptic plasticity (Hayama et al.,
2013). We found that inhibition of AP Ca*" signals peaked at 10
ms and had largely decayed by 100 ms. Moreover, the time course
of inhibition was indistinguishable at neighboring spines and
dendrites. Interestingly, this narrow time window is similar to
GABA-A receptor inhibition of EPSPs (Koch et al., 1983). This
time window also coincides with that of rapid disynaptic inhibi-
tion via GABAergic interneurons in cortical circuits (Isaacson

and Scanziani, 2011). In contrast, we and others have shown that
the slower metabotropic GABA-B receptor inhibition of Ca**
signals peaks after hundreds of milliseconds (Pérez-Garci et al.,
2006; Chalifoux and Carter, 2011b; Palmer et al., 2012b). These
studies highlight two distinct epochs for GABAergic inhibition of
electrical and biochemical signaling in the dendrites of cortical
pyramidal neurons.

GABA-A receptor inhibition is often predicted to be confined
to individual dendritic branches (Liu, 2004; Hao et al., 2009;
Gidon and Segev, 2012; Jadi et al., 2012). Our uncaging experi-
ments allowed us to test this prediction by focally activating
GABA-A receptors at different locations in the dendrites. Because
of scattering and diffusion, GABA can spread over tens of mi-
crometers around a centered location. Inhibition within a 30 um
radius can reflect direct GABA-A receptor activation; inhibition
outside this radius reflects spread along dendrites. We found that
robust inhibition spreads proximally and distally within individ-
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ual dendritic branches. We observed weaker influence from
neighboring branches, suggesting that inhibition is spatially con-
fined. We also found weaker influence from the main apical den-
drite, which could reflect partial block of the backpropagating
AP. Consistent with this idea, we found that AP Ca?" signals in
the main apical dendrite were inhibited but not blocked by local
GABA uncaging. Notably, we observed broader inhibition than
equivalent experiments in hippocampal pyramidal neurons
(Kanemoto et al., 2011; Hayama et al., 2013), which could reflect
differences in GABA uncaging parameters or brain slice prepara-
tions. These results show that GABA-A receptor inhibition of AP
Ca’" signals at spines and dendrites primarily occurs within a
single branch.

Our initial uncaging experiments established GABA-A recep-
tor inhibition of AP Ca®" signals at both spines and dendrites.
We then sought to determine the types of GABAergic interneu-
rons that are responsible for this inhibition. PV, SOM, and
5HT3a receptors are nonoverlapping markers that label the vast
majority of cortical interneurons (Rudy et al., 2011). Previous
studies have largely focused on PV and SOM interneurons, which
are thought to target either the axosomatic or dendritic regions,
respectively (Kawaguchi and Kubota, 1997; Somogyi et al., 1998;
Di Cristo et al., 2004). 5HT3a interneurons represent a distinct
population, whose subcellular targeting has not been examined
(Rudy et al., 2011). The combination of Cre transgenic mice and
conditional viruses allowed us to study these three populations
with whole-cell recordings and optical stimulation.

We first established how PV, SOM, and 5HT3a interneurons
synapse onto L5 pyramidal neurons. Using wide-field illumi-
nation, we found that all three interneurons make functional
connections, with the time course of IPSCs fastest for PV in-
terneurons and slowest for SHT3a interneurons. In principle,
these kinetics could reflect dendritic targeting, with more distal
inputs having slower IPSCs. Using subcellular mapping with fo-
cused illumination (Petreanu et al., 2009; Little and Carter, 2012;
MacAskill et al., 2012), we found that PV inputs make limited
connections with the basal dendrites, whereas SOM and 5HT3a
inputs are more pronounced in the apical dendrites. Interest-
ingly, IPSCs in the basal dendrites were much faster for PV in-
terneurons, suggesting the possibility of differences in GABA-A
receptor composition (Vicini, 1999). In contrast, IPSCs in the
apical dendrites were not significantly different for SOM and
5HT3a interneurons. Because IPSCs evoked by wide-field illumi-
nation reflect weighted inputs from across the somatodendritic
axis, our findings suggest that targeting of 5SHT3a interneurons to
apical dendrites contributed to their slower IPSCs.

Our mapping experiments predicted that SOM and 5HT3a
interneurons could inhibit AP Ca** signals in the apical and
basal dendrites. We found that both interneurons inhibited these
signals in spines and dendrites, with no differences between these
two compartments. Inhibition was more pronounced at the api-
cal dendrites, consistent with larger IPSCs at this location. This
inhibition may also reflect inhibitory connections along the main
apical dendrite, which can reduce distal signaling. To our knowl-
edge, this is the first demonstration of 5SHT3a interneurons in-
hibiting dendritic Ca*™ signaling. In contrast, we found that PV
interneurons had no influence on AP Ca*™ signals, consistent
with weak IPSCs in the basal dendrites and selective targeting of the
perisomatic regions (Kawaguchi and Kubota, 1997). These results
highlight how different populations of interneurons uniquely in-
hibit the subcellular compartments of pyramidal neurons.

Several of our findings contrast with a recent study on
GABA-A receptor inhibition at L2/3 pyramidal neurons in the
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PFC (Chiuetal.,, 2013). That study found that one-photon GABA
uncaging and SOM interneuron activation selectively inhibited
AP Ca*" signals in a subset of spines. Using similar methods, we
found robust inhibition at nearly all imaged spines of L5 pyrami-
dal neurons, with no difference from parent dendrites. One pos-
sible explanation is that the influence of dendritic inhibition
varies with the type of pyramidal neuron. For example, L2/3 py-
ramidal neurons have more hyperpolarized resting potentials,
thereby reducing the driving force for GABA-A receptors. Con-
sistent with this idea, the overall magnitude of inhibition appears
smaller at L2/3 pyramidal neurons (data not shown; Chiu et al.,
2013). Technical differences could also play a role, including the
power and timing of the laser and presence of the laser artifact.
For example, we observed that smaller uncaging powers or longer
time intervals greatly reduce the amount of GABA-A receptor
inhibition.

With these results in mind, it is interesting to compare subcel-
lular responses to excitatory and inhibitory inputs at pyramidal
neurons. Glutamate receptors are concentrated at spines, where
single excitatory inputs evoke highly compartmentalized electri-
cal and biochemical signals (Bloodgood and Sabatini, 2007).
GABA-A receptors are also present at a subset of spines, which
can receive inhibitory inputs (Kubota et al., 2007; Chiu et al.,
2013). However, these receptors are more prominent at den-
drites, where interneurons also make multiple contacts (Tamas et
al., 1997; Silberberg and Markram, 2007). Consequently, inhibi-
tion is often thought to have a more extended influence along
dendritic branches (Liu, 2004; Gidon and Segev, 2012). Our find-
ings support this idea, showing that SOM and 5HT3a interneu-
rons broadly inhibit AP Ca** signals. Our results indicate that
GABA-A receptor inhibition can regulate bioelectrical signaling
at both spines and dendrites.

Recent results highlight the roles of different GABAergic in-
terneurons in cortical function (Kerlin et al., 2010; Letzkus et al.,
2011; Adesnik et al., 2012; Gentet et al., 2012; Lee et al., 2012;
Wilson et al., 2012; Kuhlman et al., 2013). In the PEC, these
interneurons are thought to critically support cognitive behavior
(Sohal et al., 2009; Yizhar et al., 2011; Kvitsiani et al., 2013; Cour-
tin et al., 2014). Disruption of these interneurons is also thought
to play a key role in neuropsychiatric disorders (Rubenstein and
Merzenich, 2003; Lewis et al., 2005). Our findings provide new
insights into the influence of SOM and 5HT3a interneurons at
the cellular and subcellular levels. In the future, it will be inter-
esting to examine specific subpopulations of PV, SOM, and
5HT3a interneurons found in different layers (Rudy et al., 2011).
For example, 5HT3a receptor-expressing interneurons include
both neurogliaform cells (Tamas et al., 2003; Olah et al., 2009)
and VIP-expressing interneurons (Lee et al., 2013; Pfeffer et al.,
2013; Pietal., 2013), which have distinct functions. Finally, it will
also be important to explore how dendritic inhibition changes
with patterned activity (Silberberg and Markram, 2007; Pouille et
al., 2009) and neuromodulation (Couey et al., 2007; Brombas et
al., 2014), which further regulate its influence on cortical pyra-
midal neurons.
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