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Abstract Gene expression is controlled through the recruit-
ment of large coregulator complexes to specific gene loci to
regulate chromatin structure by modifying epigenetic marks
on DNA and histones. Metastasis-associated protein 1
(MTAL1) is an essential component of the nucleosome remod-
elling and deacetylase (NuRD) complex that acts as a scaffold
protein to assemble enzymatic activity and nucleosome
targeting proteins. MTA1 consists of four characterised do-
mains, a number of interaction motifs, and regions that are
predicted to be intrinsically disordered. The ELM2-SANT
domain is one of the best-characterised regions of MTAIL,
which recruits histone deacetylase 1 (HDACI) and activates
the enzyme in the presence of inositol phosphate. MTA1 is
highly upregulated in several types of aggressive tumours and
is therefore a possible target for cancer therapy. In this review,
we summarise the structure and function of the four domains
of MTA1 and discuss the possible functions of less well-
characterised regions of the protein.

Keywords Metastasis associated protein 1 - Corepressor
complexes - Chromatin - Inositol phosphate - Transcriptional
regulation

1 Introduction

The class I histone deacetylase (HDAC) corepressor com-
plexes are multi-protein assemblies that contain one or more
enzymes that modify chromatin, components with nucleo-
some or DNA binding activity and proteins that function to
provide a scaffold to the complex. Five major HDAC-
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containing corepressor complexes have been described and
include nucleosome remodelling and deacetylase (NuRD) [1,
2], COREST [3], Sin3A [4, 5], MIDAC [6] and NCoR/SMRT
[4, 7]. Understanding the distinct features and architectures of
these complexes is likely to be important for the design of
specifically targeted therapeutics.

Metastasis-associated protein 1 (MTA1) and its homo-
logues MTA2 and MTA3 are essential components of the
NuRD corepressor complex (reviewed in [8—10]). The MTA
proteins do not have any intrinsic enzymatic activity but play a
key role in stabilising and assembling the complex. MTAL1
was first isolated from a metastatic breast cancer cell line and
has since been shown to be upregulated in several other
metastatic human cancers [11-13]. Elevated expression levels
of MTAL are strongly associated with the growth of aggres-
sive endometrial, breast and ovarian cancers, and can be used
as a prognosis marker in the progression of human cancers
[14-16].

Over half of the residues of MTAL1 are predicted to be
intrinsically disordered, and this has presented a major chal-
lenge in the structural characterisation of this protein (Fig. 1).
However, significant progress has been made in studying
domains of MTAI in complex with other proteins from the
NuRD complex. In this review, we examine the structural
insights that have been gained for MTA1, MTA2 and
MTA3. We also discuss domains and motifs of MTA1 that
have not been structurally characterised, but for which struc-
tural information is available from related proteins.

2 The NuRD corepressor complex
The NuRD corepressor complex consists of six protein sub-
units: HDAC1/2, MTA1/2/3, p66 o/f3, histone-binding pro-

tein 4/7 (RBBP4/7), methyl-CpG-binding protein 2/3
(MBD2/3) and chromatin-helicase-DNA-binding protein 3/4
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(CHD3/4). Deacetylase and helicase activities are combined
in this complex. HDAC1 and HDAC2 are single domain
deacetylase enzymes that remove the acetyl group from mod-
ified lysines resulting in an extra positive charge on histone
tails. This leads to a more compact chromatin structure as well
as removing binding sites for proteins that contain
bromodomains [17]. CHD3 and CHD4 contain subunits with
ATP-helicase activity that remodels nucleosomes [18, 19].
This activity dynamically controls the accessibility of chro-
matin to DNA binding proteins and additional coregulators.

Other proteins within the core NuRD complex support and
enhance these enzyme activities, as well as facilitating recruit-
ment to chromatin. RBBP4 and RBBP7 (RbAp48/46) are
~50 kDa WD40 domain proteins that interact with chromatin
and have been shown to bind to histone H4 tails [20]. p66c
and p663 (GATAD2A/B) contain GATA zinc finger domains
and are involved in binding to unmodified histone tails [21].
MBD?2 and MBD3 have been shown to bind to methylated
cytosine-guanosine dinucleotides (CpGs) [22]. MBD2 has
been found to localise at transcriptional start sites with meth-
ylated CpG islands, and this enrichment coincides with gene
repression. MTA1 and the closely related MTA2 and MTA3
proteins enhance and direct the activity of HDAC1 to modify
chromatin [1, 23]. MTA1 has been shown to directly interact
with RBBP4, HDACI1 and CHD4 within the NuRD complex
[24-27].

3 MTA family proteins

MTALI is an 80-kDa protein that has four conserved domains
within the amino-terminal half of the protein. These are a
bromo-adjacent homology (BAH) domain; an egl-27 and
MTA1 homology domain 2 (ELM2); a Swi3, Ada2, NCoR
and TFIIIB domain (SANT); and GATA-zinc finger domain
(GATA) (Fig. 1). MTA1 and its homologues MTA2 and

Fig. 1 The domain structure of
MTAL. a Illustration of the
secondary structure of MTAI
highlighting the «-helices and (3-
strands as predicted by PSIPRED
[65]. Orange arrows indicate the BAH
regions of MTAL that interact
with other binding partners. b
Disorder prediction for MTA1.
The four characterised domains
fall into ordered regions whereas

MTA1

1 164

Interacting partners:

Chromatin?

el

ELM2

MTA3 share 63 and 72 % identity, respectively. The proteins
are essentially identical within these four structured domains
with the only notable difference being an extended loop within
the MTA1-BAH domain. MTAL is the largest protein in the
family with 715 residues; MTA2 has 668 residues; and MTA3
has 594 residues. The carboxy-termini are significantly more
divergent, which may explain why MTA1, MTA2 and MTA3
are found in mutually exclusive complexes and are implicated
in different signalling pathways [14].

MTAI can be differentially spliced, and the four conserved
domains are truncated or missing in the resulting isoforms
[28]. MTA1-short (MTAls) is one of the best-characterised
splice variants, being around half the size of full-length MTA1
and is truncated between the SANT and GATA domain. The
original carboxy-terminus is replaced with a 33-residue exten-
sion containing the nuclear receptor box motif (LxxLL). The
LxxLL motif interacts with the AF2 domain of ERx and
results in the localisation of ER« to the cytoplasm in
estrogen-positive breast cancer cells [29]. Another isoform
known as ZG29p contains just the carboxy-terminus of
MTA1 and is encoded by the last seven exons [30]. The
resulting protein is missing all four conserved domains. A
number of further isoforms have been characterised and con-
firm that the carboxy-terminus must contain at least one
nuclear localisation signal for MTA1 to be retained within to
the nucleus [28].

In addition to these four conserved domains, MTAI
contains two motifs that have the potential to promote
SH3-binding and five SPXX motifs that are highly
conserved across species [31-33]. Although these
MTAI1 motifs are yet to be fully characterised, consid-
erable insight into the structure and function of these
domains can be gained through sequence analysis.
Comparison with related protein families can be used
to better understand the assembly and function of the
core NuRD corepressor complex.
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4 Structurally characterised domains of the MTA family

There are an increasing number of structures of MTA family
domains in isolation and in complex with binding partners.
The first structural information for the MTA proteins was a
structure of the SANT domain from MTA3 that was deposited
in the protein databank (PDB code 2CRG) but without any
corresponding publication. More recently, Millard et al. deter-
mined the structure of the ELM2 and SANT domains from
MTAT1 bound to HDACI, revealing the nature of the interface
between the two proteins as well as highlighting a mechanism
of regulation through inositol phosphate signalling [26].
Finally, a carboxy-terminal fragment of MTA1 has been
crystallised bound to RBBP4 (RbAp48) [25]. Insights from
the structural as well as functional studies of these domains are
discussed below.

4.1 The SANT domain and HDAC activation by inositol
phosphates

The SANT domain is a relatively small domain of around 50
amino acids and is found in a number of proteins that are
involved in transcription regulation [34]. The domain was
originally identified in the nuclear receptor corepressor protein
NCORI and in chromatin modifying proteins SWI3 and
ADAZ2 [35]. The domain folds to form a three-helix bundle
around a small hydrophobic core and is highly similar to the
DNA-binding domain of Myb-related proteins.

The NMR structure of the MTA3-SANT domain con-
firmed the predicted helix-turn-helix arrangement (Fig. 2).
Inspection of the structure suggests that the SANT domain is
functionally divergent from the Myb DNA-binding domain
[36]. Important basic DNA recognition residues within helix 3
(or the recognition helix) are not conserved, suggesting that
the SANT domain would be unable to make sequence-specific
contacts to DNA. In addition, the SANT domain contains
three bulky hydrophobic residues at the carboxy-terminus of
helix 3 that would sterically hinder DNA binding. This sug-
gests that, despite the conserved fold, these domains have
evolved to perform different functions.

More recently, the structure of a longer fragment of MTA1
that includes both the ELM2 and SANT domains bound to
HDACI! has been solved by X-ray crystallography. This
structure shows that helix 3 of the SANT domain forms a
basic pocket at the interface between HDACI1 and MTAL,
near the active site of the enzyme [26]. This pocket has
implications for enzyme activation of class I HDACs (see
below).

Sequence alignments show that the SANT domain of
MTALI is highly related to the first of two SANT domains
from the nuclear receptor corepressor protein SMRT (also
known as NCOR2). The SMRT-SANT is a critical partner of
HDACS3 and is essential for HDAC3 activity [37]. The

structure of HDAC3 bound to SMRT-SANT has been solved
and shows that a inositol-(1,4,5,6)-tetrakisphosphate (IP4)
molecule can bind into a basic pocket at the interface between
the two proteins [38]. Importantly, IP4 has a key role in
activating the enzyme, since high salt treatment causes
HDACS3 to become inactive and adding back exogenous P4
leads to enhanced HDAC activity. The concentration of P4
required for activation of HDAC3 is comparable to the mea-
sured levels of inositol phosphates in the cell [39].

The residues coordinating P4 binding in HDAC3 and
SMRT are conserved in HDAC1 and MTA1-SANT, and a
similar basic pocket is present at the interface between the
two proteins. This pocket is formed through the contribu-
tion of a lysine and two arginine residues from HDACI,
and two lysine and two tyrosine residues from MTAI.
The similarity in size and charge of the pocket suggested
that an inositol phosphate molecule could be accommo-
dated. However, in the crystal structure, an inositol phos-
phate molecule is not present. Native mass spectroscopy
showed that the inositol phosphate is lost during purifica-
tion and is replaced during crystallisation by ordered
sulphate molecules (2 M ammonium sulphate was used
as a precipitant). As with HDAC3:SMRT, the addition of
IP4 to HDAC1:MTA1 enhances HDAC activity, and mu-
tation of the IP4 coordinating residues inhibits activation
[26].

Interestingly, the inositol phosphate interacting residues are
not only conserved in SMRT-SANT and MTA-SANT do-
mains but also in related corepressor proteins such as
RCORI1-3, MIER1-3 and RERE. These SANT domain-
containing proteins are recruited to distinct corepressor com-
plexes that recruit HDACI, and all could potentially form an
inositol-binding pocket. Since HDAC1 and HDAC?2 are high-
ly homologous, the binding of inositol phosphates will be a
common activating mechanism for HDACI, 2 and 3 (i.e. all
class I HDAC corepressor complexes).

4.2 The ELM2 domain and dimerisation of the NuRD
complex

The ELM2 domain within corepressor proteins such as
MTA1-3, RCOR1-3, MIER1-3 and RERE has been shown
to be required for the recruitment of HDACI and HDAC2 to
the respective corepressor complexes. The ELM2 domain is
positioned immediately amino-terminal to the SANT domain.
Structure prediction of the MTA1-ELM2 domain suggests
that the domain is largely intrinsically disordered (i.e. lacking
an intrinsically fixed structure), although there are predicted
helical regions at the carboxy-terminus. Circular dichroism
experiments show that the ELM2 domain contains essentially
no secondary structure when expressed in isolation [26].
However, when coexpressed with HDACI, the ELM2-
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SANT
MTA3 (2CRG)

Model of HDAC1:MTA1 with docked IP4
(based on 4BKX)
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I

ELM2-SANT
HDAC1:MTA1 (4BKX)

SANT comparison
HDAC3:SMRT:IP4 (4A69)

HDAC3:SMRT with 1P4 (4A69)

SANT domain

MTAL DEMEEWSASEANLEEEALEKY QDFLPWKSLTSIIE DR
MTAZ DEMEEMSASEAMLBEEALEKY QDFLPWKSLASIVQF DR
MTA3 DEMEEMSASEASLBEEALEKY QDFLPWKSLTSIIE DR
RERE LIEKCHTEDEVKREVKGLRQY: KELLPNKETGELITF TPE
MIER1 EELSVMTEEBCRNEEQGLKAY( ANKVRTRSVGECVAF KSER
RCOR1 PFPDEMTVEBKVLEREQAFSFH Q—MLPDKSIASLVKF SWKTRS
SMRT_I QVMNMESEQEKE TIREKFMQH \S-FLERKTVAECVL YL TRKNEN
SMRT_II NESSRETEE ETAKKGdLEHGRNWSA \R-MVGSKTVSQCKNFFNYSKRON
MYB_R3 VKKTSETEEEDRIIYQAHKRLGNRWAE BAK - LLPGRTDNAIKNHWNSTMRRKV

Fig.2 The SANT domain and its role in inositol phosphate signalling. a
Solution structure of the SANT domain from MTA3 showing that the
domain adopts a three-helix bundle. b Crystal structure of HDAC1 (grey)
in complex with the ELM2 (cyan) and SANT (green) domains of MTAL.
¢ Crystal structure of HDAC3 (grey) in complex with the SANT (green)
domain of SMRT. d, e Electrostatic surface representations of HDAC1
and HDACS3 with their respective corepressor proteins MTA 1 and SMRT.

SANT domain forms a stable complex with the HDAC en-
zyme [26].

The crystal structure of the complex between HDACI1 and
the ELM2-SANT domain from MTA1 shows that the ELM2
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IP4 is modelled into the basic binding pocket at the interface between
HDACI and MTA1 in the same orientation as observed in the HDAC3:
SMRT crystal structure. f Sequence alignment of SANT domains from
other corepressor proteins. The MYB-DNA binding domain is included
for comparison. Arrows indicate the IP4 interacting residues in the
HDAC3:SMRT structure, and stars indicate the residues in MYB-R3
domain that mediate interaction with DNA (colour figure online)

domain is divided into two structural regions [26]. The amino-
terminal part of the ELM2 domain adopts an extended con-
formation that wraps around the HDAC making multiple
interactions. Close to the amino-terminus, there is a conserved
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sequence (consensus: EIRVGxxYQAXI; residues 166—177)
that binds in a conserved groove on the HDAC. This is
positioned close to the active site of the HDAC enzyme [26].

The carboxy-terminal region of the ELM2 domain
forms a four-helix bundle with a small hydrophobic
core and enlarges the interacting surface with HDACI
as it completes a path around the ‘back’ of the enzyme.
The four-helix bundle forms a homodimer and is there-
fore able to associate with a second HDACI:MTAI
complex (Fig. 3). The homodimerisation interface is
extensive with 14 non-polar side chains being contrib-
uted from each ELM2 domain. The highly complemen-
tary nature of this interface suggests that it is physio-
logically relevant. This means that the NuRD complex
contains two copies of both HDAC1 and MTAI

Fig. 3 The dimeric ELM2 A
domain of MTAL. a Structure of
dimeric MTA1 bound to two

copies of HDACI (grey). MTA1

is coloured by ELM2-specific

motif (magenta), ELM2

dimerisation domain (cyan) and

SANT domain (green). b

Alignment of the amino-terminus

of ten ELM2 domains

highlighting the conservation of

the ELM2-specific motif. ¢

Structure of the MTA1 dimer

interface with side chains shown

as sticks. d Sequence alignment

of ELM2 dimerisation domain

with other corepressor proteins. B

The secondary structure of MTA1 ELM2 specific motif

proteins, and given that HDAC1 and HDAC2 are highly
similar (83 % identical), it is likely that both HDACs
can coexist in a single NuRD complex.

The dimerisation of HDACI:MTA1 (through the ELM2
domain) positions the active site of the two HDACs on ap-
proximately the same face of the dimer. This orientation
situates the two active sites approximately 90 A apart and
could allow the complex to simultaneously target more than
one nucleosome.

4.3 The carboxy-terminus and interaction with RBBP4
RBBP4 and RBBP7 are WD40-repeat proteins that share

92 % identity and are integral components of the NuRD
complex [2]. These proteins act as histone chaperones and

IP binding site

ELM2 dimerisation
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associate with additional chromatin modifying complexes
including SIN3A, PRC2 and NURF [40—42]. RBBP4 and
RBBP7 have a seven-bladed (3-propeller architecture and
have at least two distinct binding sites for partner proteins:
the first on the top of the protein (structurally characterised as
the binding site for histone H3 and FOG1) and the second on
the side of the protein, involving o-helices at both the amino-
and carboxy-termini and an extended loop inserted into blade
6 (the binding site for histone H4 and Su(z)12) [20, 43, 44].

Several studies have used GST pull-down assays to map the
interaction between MTA1/2 and RBBP4/7. These have sug-
gested that there may be three non-overlapping regions in the
carboxy-terminus of MTA1 that mediate this interaction. One of
these includes the GATA-type zinc finger domain [45, 46]. More
recently, a short motif at the carboxy-terminus of MTA1 (resi-
dues 656-686) was structurally characterised as being able to
bind to RBBP4 [25] (Fig. 4). This fragment is helical on binding
to RBBP4 and binds in an acidic groove on the side of the WD40
domain. This groove was previously shown to bind to histone H4
[20]. Indeed, both fragments of MTA1 and histone H4 include
the motif KRAARR and both form analogous contacts to
RBBP4. Competition assays showed that MTA1 and histone
H4 compete for the same binding site on RBBP4, suggesting
that MTA1 modulates RBBP4 interaction with histones.

The second binding site was observed in the structure of the
Drosophila homologue Nurf55 bound to a histone H3 tail
peptide. In this structure, a peptide corresponding to histone
H3 binds at the top of the propeller [43]. There is no overlap
between the H3 and H4 binding sites, suggesting that MTA1
only competes for binding with histone H4. RBBP4 and
RBBP7 are found in many corepressor complexes such as
SIN3A, PRC2 and NURF, and the two distinct binding sites

RBBP4 with MTA1 (4PBZ)

Fig. 4 Histone tail interactions with WD40 domain containing proteins.
a MTAL (residues 670—691, shown in green) bound in a groove on the
side of RBBP4. This groove is formed by the amino- and carboxy-termini
and a loop from blade 6. b Histone H4 (yellow) bound to RBBP7 in the
same groove as MTA1. ¢ Histone H3 (magenta) has a distinct binding site

@ Springer

would increase their ability to recruit alternate binding partners
in different settings.

5 Structural insight into other domains of the MTA family

MTA contains additional domains and motifs that remain to be
structurally and functionally characterised. These domains
have been identified through sequence alignment with other
characterised proteins. Through sequence comparison and
modelling, we can speculate on how these domains will look
and how they will function.

5.1 The BAH domain

Hydrophobic cluster sequence analysis identified a single
copy of the BAH domain in MTA1 that spans residues 1—
164 [47]. The BAH domain was first described in the protein
Polybromo, a subunit of a 2-MDa chromatin remodelling
complex. Polybromo contains two BAH domains carboxy-
terminal to four bromodomains [48]. The BAH domain has
also been identified in a number of proteins involved in
transcriptional regulation including the yeast RSC chromatin
remodelling complex proteins (RSC1 and RSC2) and the
transcription factor ASH1. BAH domains are also found in
ORCI1, SIR3 and DNMT1 proteins. Sequence alignments
show that there are approximately 130 conserved amino acids
within BAH domains although some contain large insertions
of variable length.

Several structures of BAH domains have been solved
and show that the core of the domain is largely (3-sheet
in character (Fig. 5). Beyond this core, each protein has

NURF55 with H3 (2YBA)

on WD40 domain as shown in the structure of the Drosophila homologue
NURFS55. Histone H3 is likely to have a similar binding site on top of the
WD40 domain of RBBP4/7. All WD40 domains are shown in the same
orientation (colour figure online)
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Fig. 5 The structure of the BAH
domain. a The BAH domain from
ORCI (magenta) with bound
methylated H4 peptide (green). b
The BAH domain from RSC2
(cyan). ¢ The BAH domain
Polybromo (green). The
canonical core BAH domain is
coloured grey in each case. d Two
copies of SIR3-BAH (purple and
salmon) in complex with a
nucleosome. DNA is shown as a
cartoon, and the four histones are
shown as surface (grey). e
DNMT1 bound to DNA. The

BAH1 and BAH2 domains are D E

highlighted (yellow and light

green), and the rest of the protein

is shown as surface (pink). f

Alignment of the MTA1-BAH

with the sequences of BAH

domains for which their structure

is known. Forty residues in

DNMTIb (¥), 15 residues in SIR3

(**) and 38 residues in MTA1 are

not shown (***) (colour figure

online)

SIR3 with nucleosome (4LD9) DNMT1 with DNA (3PTA)
F -
BAH domain

ORC1_mouse ----- TFSWVGRPLPNRK-------- QFQQMYREICMKINDGSEIHIK' LIQG----EDNKKPYVAKLIELFQNGA-
SIR3_yeast  AKTLKDLDGWQVIITDDQGRVIDDNNRRRRGGENVFLKRIS-DGLSFG TFNDN----- VTETYSVYLIHEIRLNTL
DNMT1a_mouse ----- RISWLGQPMKIEENRT ---~~---~-~-- YYQKVSI-DEEMLE! SVIP----DDSSKPLYLARVTALWEDK-
DNMT1b_mouse ------ MPKVLEQIEEVDGRV--- ---YCSSITK-NGVVYRI YL PPE -*-LDAPEPYRIGRIKEIHCGKK
PB_chick B MYH YVEP----AEANLQPHIVCIERLWEDS-
RSC2_yeast -- ---HMDEVIV-NNISYH LLRN----QNDPQKPIVGQIFRLWKTP-
MTAL_RUMAN === === mm oo e M-AANMYR! YFEN----SSSN-PYLIRRIEELNKTA-
ORC1_mouse  ----- EVPPKKCARVQWEVRFLEIPVSKRHL------- LGRSPPAQEIFWYDCSDWDNKINVETIIGPVQVVALAPEE-VI
SIR3_yeast  ---NNVVEIWVFSYLRWBELKPKLYY--EQFR-**--KFFNEVNKSELYLTAE---LSEIWLKDFIA----~ VGQIL-PES
DNMT1a_mouse ----- NGQMMF - -HAHWBCAGTDTVL----------- GATSDPL--ELFLVGE---CENMQLSYIHSKVKVIYKAPS---E
DNMT1b_mouse KGKVNEADIKL--RLYKEYRPENTHRSYNG--------- SYHTDINMLYWSDE - --EAVVNESDVQGRCTVEYGEDLLESI
PB_chick  ~=m== AGEKWL--YGCWBYRPNETFH----------- LATRKFLEKEVEKSDY - --YNKVPVSKILGKCVVMEVKEYFKLC
RSC2_yeast  ----- DGKQWL--NACWMYRPEQTVH----------- RVDRLFYKNEVMKTGQ- - - YRDHLVSNLVGKCYVIHFTRYQRGN
MTA1_human — ----- NGNVEA--KVVCEYRRRDISSTLIALA-***-KLKHQLRHRELFLSRQ---LESLPATHIRGKCSVTLLNETESLK
ORCL_mouse  PVD---QKSEET-LFVKLSIWNKKD-~FAPLPP~ === == e oo
SIR3_yeast  QWNDSSIKIEDRDFLVRYACEPTAEKFVPIDIFQIIRRVKEMEPKQSDEYLKRVSVPV----=nnmmmom
DNMT1a_mouse NWA---MEGGKT-YFFQLWYNQEYARFESPP---------------——-———- KTQPTEDNKHKFC----

DNMT1b_mouse QDY--SQGGPDR-FYFLEAYNSKTKNFEDPPNHAR - - - -
PEN---FRDEDV-YVCESRYSAKTKSFKKIKLWTMP--V-----SSVRFVPRDVPLPVVRVASVFA----
P-D- - -MKEGPL-FVCEFRYNESDKTFNKIRTWKAC- - L - - - - -PEEIRDLDEATIPVNG-RKFFKYPSP
S-Y---LEREDF-FFYSLVYDPQQKTLLADK ===~~~ ===

PB_chick
RSC2_yeast
MTA1_human

a divergent fold including 3, helices, (-strands and
ordered loops. This diversity may be a requirement of
each protein to perform different functions. Structure
prediction suggests that MTA1 will fold to form a (3-
barrel core with two long insertions.

The BAH domain of MTAL1 is most closely related to the
two BAH domains of Polybromo. The proximal BAH domain
of Polybromo has a six-stranded (3-barrel core, the centre of

which is completely filled with hydrophobic residues [49]. A
key feature of the domain is the long carboxy-terminal exten-
sion that effectively ‘wraps’ around the outside of the protein
to stabilise two extended loops and the rest of the protein.
Sequence comparison of the Polybromo-BAH domain with
MTAI1 suggests that the MTA 1-BAH carboxy-terminal exten-
sion is shorter and is immediately followed by the ELM2
domain.
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Fig. 6 The GATALI zinc finger
bound to DNA. a The fold of the
domain (green) is stabilised by
the central zinc atom (grey
sphere). b Sequence alignment
showing the residues conserved
between GATA1 and the
predicted zinc finger domain of
MTAI (residues 393-450)
(colour figure online)

GATA type zinc finger (1GAT)

The BAH domains in RSC2, ORC1 and SIR3 have been
shown to mediate interactions with chromatin. If this were
also the case for the BAH domain from MTA1, this would
provide an attractive explanation as to how chromatin is
recruited to the corepressor complex allowing the HDAC to
target acetylated lysines in the histone tails.

The BAH domain from the yeast RSC2 protein has been
shown to bind histone H3 [50]. However, sequence compar-
ison shows that the two tryptophan residues in the RSC2-
BAH involved in binding the unmodified histone H3 peptide
are not conserved in the MTA1-BAH domain suggesting that
MTAI1 cannot bind histone H3 in the same way as RSC2.

The yeast SIR3 protein not only interacts with his-
tone tails but the BAH domain also makes extensive
contacts with the nucleosome [51-54]. The crystal struc-
ture of the complex shows that acetylated amino-
terminus of SIR3-BAH domain is critical for interaction
with histones H4 and H2B [53, 54]. The amino acids in
SIR3 that mediate interactions with the nucleosome
show very limited conservation in the MTA1-BAH do-
main, making it difficult to predict that MTA1 would
bind nucleosomes in an analogous fashion.

The ORC1-BAH domain has also been shown to bind to
histone H4. In this case, binding only occurs when the histone tail
is dimethylated at lysine 20 (H4K20me2) [55]. The dimethylated
side chain is bound within an aromatic cage on the surface of the
ORCI-BAH domain. Again, sequence comparisons with the
MTA1-BAH domain show that tyrosine and tryptophan residues
important for binding H4K20me2 are not conserved.

These structures support the BAH domain as a histone-
binding domain but the diversity within the family only allows
a tentative suggestion that the BAH domain of MTA1 could
bind to histone tails. Indeed, the two BAH domains from the
chromatin-associated DNMT1 methyltransferase have not
been shown to mediate direct interactions with chromatin
[56]. Instead, they appear to contribute indirectly to substrate
recognition by DNMTI.

Whilst it remains to be seen whether the MTA1-BAH domain
directly recruits chromatin, the location of the domain immedi-
ately adjacent to the ELM2 domain means that it will be
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positioned very close to the active site of the HDAC enzyme
[26]. Therefore, it seems inevitable that it will play some role in
substrate interaction.

5.2 GATA-type zinc finger domain

MTA1 contains a GATA-type zinc finger domain positioned
carboxy-terminal to the SANT domain. GATA-type zinc fin-
gers are found in many eukaryotic transcription factors where
they contribute to sequence-specific DNA recognition [57].
The zinc finger domain is composed of around 30 amino acids
with four conserved cysteines coordinating a structural zinc
ion [58] (Fig. 6). The domain interacts directly in the major
groove of the DNA but also makes many interactions with the
phosphate backbone of the DNA. The carboxy-terminus in-
teracts in the adjacent minor groove of the DNA [58].

Sequence comparison shows that the GATA-type zinc fin-
ger in MTAL is rather different from GATAL. It is likely that it
retains DNA-binding activity, but given the lack of conserva-
tion of the relevant residues, it will probably either recognise a
different sequence from GATA1 or, perhaps more likely, may
bind to DNA without sequence specificity.

5.3 Additional domains and intrinsically disordered regions

MTA1 contains additional motifs that remain to be structurally
and functionally characterised [31]. The xPPxP motif appears
twice in MTA1 and could potentially be recognised by SH3
domains. The SH3 binding motif (xPPxP) is recognised by a
60 amino acid domain that is widely found in cytoskeletal
elements and signalling proteins [59]. The proline-rich motif
typically adopts a left-handed polyproline helix conformation
and is recognised by the SH3 domain with characteristic 3-
barrel fold [60].

Towards the carboxy-terminus of MTAI, there are five
SPXX motifs and these have been proposed to be sites of
MTAI1 phosphorylation [61]. The phosphorylation pattern on
MTA1 was shown to dynamically change at each of these sites
during the first 24 h of differentiation. One of the short forms
of MTA1 (MTA1s) has been characterised as being
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phosphorylated by casein kinase [62]. The phosphorylation of
MTAT1 at this site was shown to be important for repressing
estrogen-induced ER transactivation.

Further MTA 1 motifs include a methylation site, which has
shown to be involved in recruiting CHD4 and two nuclear
localisation motifs [27, 63].

6 Conclusions

MTAL is a key scaffold protein in the NuRD corepressor
complex and plays a vital role in both assembling the complex
and activating the HDAC enzymes. MTA1 directly contacts
many of the core NuRD components. A number of these
interactions occur within the structurally conserved domains
of MTAL, but others are directed through intrinsically disor-
dered regions that become ordered on binding and are key to
forming a stable NuRD complex.

Three domains of MTA1 have now been characterised by
NMR and X-ray crystallography. The ELM2 and SANT do-
mains have been shown to recruit HDAC1 and/or HDAC2
through an extensive interface that excludes 1,278 A? from
solvent exposure [26]. The extensive nature of this interface
begins to address why the NuRD complex is so stable, as the
components have previously been shown to remain intact on
isolation from cells and show resistance to high salt treatment
[3]. The stability of a core NuRD complex appears to be a
common feature in other corepressor complexes such as the
NCoR, SIN3 and PRC2 complexes [40, 41, 64].

The other structurally characterised motif (KRAARR) of
MTAI lies towards the carboxy-terminus. This motif has been
shown to interact with RBBP4 and modulates binding to
histone H4 [25]. This competition highlights the role of
MTAL as an essential scaffold component of the NuRD com-
plex that mediates many key interactions.

In addition to its role as a scaffold protein, MTA1 also plays
an important role in activating HDACs through forming one
half of the binding site for inositol phosphates that have been
shown to serve as activator molecules for class | HDACs.

Intriguingly, a many of the core NuRD complex proteins
have the potential to interact with DNA and chromatin. The
RBBP, p66, MTA and MBD proteins all have domains that are
likely to interact with either histone tails, nucleosome or
DNA. This permits the NuRD complex to use a large reper-
toire of modules to target nucleosome remodelling and
deacetylase activity to chromatin. A full understanding of
the activity and mechanism of the NuRD complex will require
more challenging structural studies of the intact complex and
how it interacts with its chromatin substrate. Such studies are
likely also to provide further insights into strategies to target
the complex therapeutically.
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