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Providers of cloud environments must tackle the challenge of configuring their system to provide maximal performance while
minimizing the cost of resources used. However, at the same time, they must guarantee an SLA (service-level agreement) to the
users. The SLA is usually associated with a certain level of QoS (quality of service). As response time is perhaps the most widely
used QoS metric, it was also the one chosen in this work. This paper presents a green strategy (GS) model for heterogeneous cloud
systems.We provide a solution for heterogeneous job-communicating tasks and heterogeneous VMs that make up the nodes of the
cloud. In addition to guaranteeing the SLA, the main goal is to optimize energy savings. The solution results in an equation that
must be solved by a solver with nonlinear capabilities. The results obtained from modelling the policies to be executed by a solver
demonstrate the applicability of our proposal for saving energy and guaranteeing the SLA.

1. Introduction

In cloud computing, SLA (service-level agreement) is an
agreement between a service provider and a consumer where
the former agrees to deliver a service to the latter under
specific terms, such as time or performance. In order to
comply with the SLA, the service provider must monitor the
cloud performance closely. Studying and determining SLA-
related issues are a big challenge [1, 2].

GS is designed to lower power consumption [3] as much
as possible. The main objective of this paper is to develop
resource scheduling approaches to improve the power effi-
ciency of data centers by shutting down and putting idles
servers to sleep, as Intel’s Cloud Computing 2015 Vision [4]
does.

At the same time, GS is aimed at guaranteeing a nego-
tiated SLA and power-aware [3] solutions, leaving aside
such other cloud-computing issues as variability [2], system
security [3], and availability [5]. Job response time is perhaps
themost importantQoSmetric in a cloud-computing context
[1].That is also why theQoS parameter is chosen in this work.
In addition, despite good solutions having been presented

by some researchers in the literature dealing with QoS [6, 7]
and power consumption [8, 9], the model presented aims to
obtain the best scheduling, taking both criteria into account.

This paper is focused on proposing a static green alter-
native to solving the scheduling problem in cloud environ-
ments. Many of the cited solutions consist of creating dynam-
ically ad hoc VMs, depending on the workload, made up of
independent tasks or a parallel job composed of communi-
cating or noncommunicating tasks. This implies constantly
creating, deleting, or moving VMs.These processes consume
large amounts of time. Low ratios for return times and VM
management should lead to proposingmore static scheduling
methods between the existingVMs.The solution described in
this paper goes on this direction. However, this solution can
be merged and complemented with dynamic proposals.

Our additional contribution with respect to [10] is that
our solution tries to optimize 2 criteria at the same time:
scheduling tasks to VMs, saving energy, and consolidating
VMs to the nodes. Providing an efficient NLP solution for
this problem is a novelty challenge in the cloud computing
research field.
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Another important contribution of this paper is method
used to model the power of the virtual machines in function
of their workload. Relying on the work done in [11], where
the authors formulate the problem of assigning people from
various groups to different jobs and who may complete them
in the minimum time as a stochastic programming problem,
the job completion times were assumed to follow a Gamma
distribution. To model the influence of the workload, the
computing power of the virtual machine is weighted by a
load factor determined by an Erlang distribution (equivalent
to a Gamma). Finally, a stochastic programming problem is
obtained and transformed into an equivalent deterministic
problem with a nonlinear objective function.

The remainder of the paper is organized as follows. Our
contribution is based on the previous work presented in
Section 2. In the GS section (Section 3), we present our main
contributions, a sort of scheduling policy. These proposals
are arranged by increasing complexity. The experimentation
showing the good behavior of our cloud model is presented
in the Results section (Section 4). Finally, the Conclusions
and Future Work section outlines the main conclusions and
possible research lines to explore in the near future.

2. Related Work

There is a great deal of work in the literature on linear
programming (LP) solutions and algorithms applied to
scheduling, like those presented in [12, 13]. Another notable
work was performed in [14], where authors designed a Green
Scheduling Algorithm that integrated a neural network pre-
dictor in order to optimize server power consumption in
cloud computing. Also, the authors in [15] proposed a genetic
algorithm that takes into account both makespan and energy
consumption.

Shutting down servers when they are not being used is
one of the most direct methods to reduce the idle power.
However, the authors in [16] state that a power-off requires
an additional setup cost, resulting in long system delays.
Shutting down servers may sacrifice quality of service (QoS)
levels, thus violating the SLA. They put the server work
at a lower service rate rather than completely stopping
work during idle periods. This drawback can be reduced if
scheduling is performed for a large enough number of tasks,
as in our case.

In [17], the authors treat the problem of consolidating
VMs in a server by migrating VMs with steady and stable
capacity needs.They proposed an exact formulation based on
a linear program described by too small a number of valid
inequalities. Indeed, this description does not allow solving,
in a reasonable time or an optimal way, problems involving
the allocation of a large number of items (or VMs) to many
bins (or servers).

In [18], the authors presented a server consolidation
(Sercon) algorithmwhich consists ofminimizing the number
of used nodes in a data center and minimizing the number
of migrations at the same time to solve the bin (or server)
packing problem. They show the efficiency of Sercon for
consolidating VMs and minimizing migrations. Despite our

proposal (based on NLP) always finding the best solution,
Sercon is a heuristic that cannot always reach or find the
optimal solution.

The authors in [19] investigated resource optimization,
service quality, and energy saving by the use of a neural net-
work. These actions were specified in two different resource
managers, which sought to maintain the application’s quality
service in accordance with the SLA and obtain energy savings
in a virtual servers’ cluster by turning them off when idle
and dynamically redistributing the VMs using livemigration.
Saving energy is only applied in the fuzzy-term “intermediate
load,” using fewer resources and still maintaining satisfactory
service quality levels. Large neural network training times
and their nonoptimal solutions could be problems that can
be overcome by using other optimization techniques, such as
the NLP one used in this paper.

In [10], the authors modelled an energy aware alloca-
tion and consolidation policies to minimize overall energy
consumption with an optimal allocation and a consolidation
algorithm. The optimal allocation algorithm is solved as a
bin-packing problem with a minimum power consumption
objective. The consolidation algorithm is derived from a
linear and integer formulation of VM migration to adapt to
placement when resources are released.

The authors of [20] presented an effective load-balancing
genetic algorithm that spreads the multimedia service task
load to the servers with the minimal cost for transmitting
multimedia data between server clusters and clients for
centralized hierarchical cloud-based multimedia systems.
Clients can change their locations, and each server cluster
only handled a specific type of multimedia task so that two
performance objectives (aswe do)were optimized at the same
time.

In [21], the authors presented an architecture able to
balance load into different virtual machines meanwhile pro-
viding SLA guarantees. The model presented in that work
is similar to the model presented in this paper. The main
difference is in the tasks considered. Now, a more complex
and generalized model is presented. In addition, commu-
nicating and heterogeneous tasks as well as nondedicated
environments have been taken into account.

Our proposal goes further than the outlined literature.
Instead of designing a single criteria scheduling problem
(LP), we design an NLP scheduling solution which takes into
account multicriteria issues. In contrast to the optimization
techniques of the literature, our model ensures the best solu-
tion available. We also want to emphasize the nondedicated
feature of the model, meaning that the workload of the cloud
is also considered. This also differentiates from the related
work. This consideration also brings the model into reality,
providing more reliable and realistic results.

3. GS Model

The NLP scheduling solution proposed in this paper mod-
els a problem by giving an objective function (OF). The
equation representing the objective function takes various
performance criteria into account.
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GS tries to assign as many tasks as possible to the most
powerful VMs, leaving the remaining ones aside. As we will
consider clouds made up of various nodes, at the end of
the scheduling process, the nodes all of whose VMs are not
assigned any task can then be turned off. As SLA based on
theminimization of the return time is also applied, themodel
also minimizes the computing and communication time of
the overall tasks making up a job.

3.1. General Notation. Let a jobmade up of𝑇 communicating
tasks (𝑡𝑖, 𝑖 = 1, . . . , 𝑇), and a cloud made up of 𝑁 heteroge-
neous nodes (Node

1
, . . . ,Node

𝑁
).

The number of VMs can be different between nodes, so
weuse notation V

𝑛
(𝑣
𝑛
= 1, . . . , 𝑉

𝑛
, where 𝑛 = 1, . . . , 𝑁) to rep-

resent the number of VMs located to Node
𝑛
. In other words,

each Node
𝑛
will be made up by VMs VM

𝑛1
, . . . ,VM

𝑛𝑉
𝑛

.
Task assignments must show the node and the VM inside

the nodes task 𝑡𝑖 is assigned to. In doing so, Boolean variables
will also be used. The notation 𝑡

𝑖

𝑛V
𝑛

is used to represent the
assignment of task 𝑡𝑖 to Node

𝑛
VM VM

𝑛V
𝑛

.
The notation 𝑀

𝑖

𝑛V
𝑛

represents the amount of Memory
allocated to task 𝑡𝑖 in VM VM

𝑛V
𝑛

. It is assumed that Memory
requirements do not change between VMs, so 𝑀

𝑖

𝑛V
𝑛

=

𝑀
𝑖

𝑛V󸀠
𝑛

∀𝑛 ≤ 𝑁, and V
𝑛
, V󸀠
𝑛

≤ 𝑉
𝑛
. The Boolean variable 𝑡

𝑖

𝑛V
𝑛

represents the assignment of task 𝑡
𝑖 to VM

𝑛V
𝑛

. Once the
solver is executed, the 𝑡

𝑖

𝑛V
𝑛

variables will inform about the
assignment of tasks to VMs.This is 𝑡𝑖

𝑛V
𝑛

= 1 if 𝑡𝑖 is assigned to
VM
𝑛V
𝑛

, and 𝑡
𝑖

𝑛V
𝑛

= 0 otherwise.

3.2. Virtual Machine Heterogeneity. The relative computing
power (Δ

𝑛V
𝑛

) of a VM
𝑛V
𝑛

is defined as the normalized score
of such a VM. Formally, consider

Δ
𝑛V
𝑛

=
𝛿
𝑛V
𝑛

∑
𝑉

𝑖=1
∑
𝑉
𝑖

𝑘=1
𝛿
𝑖V
𝑘

, (1)

where∑𝑉
𝑖=1

∑
𝑉
𝑖

𝑘=1
Δ
𝑖V
𝑘

= 1. 𝛿
𝑛V
𝑛

is the score (i.e., the computing
power) of VM

𝑛V
𝑛

. Although 𝛿
𝑛V
𝑛

is a theoretical concept,
there are many valid benchmarks it can be obtained with
(i.e., Linpack (Linpack. http://www.netlib.org/linpack/) or
SPEC (SPEC. http://www.spec.org)). Linpack (available in C,
Fortran and Java), for example, is used to obtain the number
of floating-point operations per second. Note that the closer
the relative computing power is to one (in other words, the
more powerful it is), the more likely it is that the requests will
be mapped into such a VM.

3.3. Task Heterogeneity. In order tomodel task heterogeneity,
each task 𝑡

𝑖 has its processing cost 𝑃
𝑖

𝑛V
𝑛

, representing the
execution time of task 𝑡

𝑖 in VM
𝑛V
𝑛

with respect to the
execution time of task 𝑡𝑖 in the least powerful VM

𝑛V
𝑛

(in other
words, with the lowest Δ

𝑛V
𝑛

). It should be a good choice to

maximize 𝑡
𝑖

𝑛V
𝑛

𝑃
𝑖

𝑛V
𝑛

to obtain the best assignment (in other
words, the OF) as follows:

max(
𝑁

∑

𝑛=1

𝑉
𝑛

∑

V
𝑛
=1

𝑇

∑

𝑖=1

𝑡
𝑖

𝑛V
𝑛

𝑃
𝑖

𝑛V
𝑛

) . (2)

However, there are still a few criteria to consider.

3.4. Virtual MachineWorkload. The performance drop expe-
rienced by VMs due to workload saturation is also taken into
account. If a VM is underloaded, its throughput (tasks solved
per unit of time) will increase as more tasks are assigned to
it. When the VM reaches its maximum workload capacity,
its throughput starts falling asymptotically towards zero.This
behavior can be modeled with an Erlang distribution density
function. Erlang is a continuous probability distribution with
two parameters, 𝛼 and 𝜆. The 𝛼 parameter is called the shape
parameter, and the 𝜆 parameter is called the rate parameter.
These parameters depend on the VM characteristics. When
𝛼 equals 1, the distribution simplifies to the exponential
distribution. The Erlang probability density function is

𝐸 (𝑥; 𝛼, 𝜆) = 𝜆𝑒
−𝜆𝑥 (𝜆𝑥)

𝛼−1

(𝛼 − 1)!
∀𝑥, 𝜆 ≥ 0. (3)

We consider that the Erlang modelling parameters of
each VM can easily be obtained empirically. The Erlang
parameters can be obtained by means of a comprehensive
analysis of all typical workloads being executed in the server,
supercomputer, or data center to be evaluated. In the present
work, a common PC server was used. To carry out this
analysis, we continuously increased the workload until the
server was saturated. We collected measurements about the
mean response times at eachworkload variation. By empirical
analysis of that experimentation, we obtained the Erlang that
better fitted the obtained behaviour measurements.

The Erlang is used to weight the Relative computing
power Δ

𝑛V
𝑛

of each VM
𝑛V
𝑛

with its associated workload
factor determined by an Erlang distribution. This optimal
workload model is used to obtain the maximum throughput
performance (number of task executed per unit of time) of
each VM

𝑛V
𝑛

. In the case presented in this paper, the 𝑥-axis
(abscisas) represents the sum of the Processing cost 𝑃𝑖

𝑛V
𝑛

of
each 𝑡

𝑖 assigned to every VM
𝑛V
𝑛

.
Figure 1 shows an example in which we depict an Erlang

with 𝛼 = 76 and 𝜆 = 15. The Erlang reaches its maximum
when 𝑋 = 5. Provided that the abscissas represent the
workload of a VM, a workload of 5 will give the maximum
performance to such a VM in terms of throughput. So we are
not interested in assigning less or more workload to a specific
VM
𝑛V
𝑛

because otherwise, this would lead us away from the
optimal assignment.

Given an Erlang distribution function with fixed param-
eters 𝛼 and 𝜆, it is possible to calculate the optimal workload
in which the function reaches the maximum by using its
derivative function:

𝐸 (𝑥; 𝛼, 𝜆)
󸀠
= 𝑒
−𝜆−1∗𝑥

∗ 𝑥 (𝜆 − 1 ∗ 𝑥 − 𝛼 − 1) ∀𝑥, 𝜆 ≥ 0.

(4)



4 The Scientific World Journal

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20

𝛼 = 76, 𝜆 = 15

Figure 1: Erlang plots for different 𝛼 and 𝜆 values.

Accordingly, the optimal workload of the Erlang example
in Figure 1, with 𝛼 = 76 and 𝜆 = 15, is

𝐸 (𝑥; 76, 15)
󸀠
= 𝑒
−14∗𝑥

∗ 𝑥 (14𝑥 − 75) = 0

𝑥 =
75

14
.

(5)

Finally, in our case, provided that the VM workload,
defined as the sum of the processing costs (𝑃𝑖

𝑛V
𝑛

) of the tasks
assigned to a particular VM, must be an N number, the
optimal workload (𝑥) is

𝑥 = round(75
14

) = 5. (6)

Provided that Boolean variable 𝑡
𝑖

𝑛V
𝑛

= 1 is a boolean
variable informing of the assignment of 𝑡𝑖 to VM

𝑛V
𝑛

, and
𝑡
𝑖

𝑛V
𝑛

= 0 if not, the Erlang-weighted Δ
𝑛V
𝑛

would be

Δ
𝑛V
𝑛

𝐸(

𝑇

∑

𝑖=1

𝑃
𝑖

𝑛V
𝑛

𝑡
𝑗

V; 𝛼, 𝜆) . (7)

3.5. Task Communication and VM Selection. In this section,
the VM selection is also considered. In doing so, each
VM can be selected from a range of 𝑁 nodes, forming a
federated cloud. We want to obtain an OF that considers
the scheduling of heterogeneous and communicating tasks
to 𝑁 heterogeneous nodes made up of different numbers of
heterogeneous VMs.

The communication cost (in time) between tasks 𝑡𝑖 and
𝑡
𝑗 when in the same VM is denoted by 𝐶

𝑖𝑗 and should
be passed to the solver as an argument. For reasons of
simplicity, all communication links are considered to have
the same bandwidth and latency. Notation𝐶𝑖𝑗

𝑛V
𝑛

represents the
communication cost between task 𝑡

𝑖 residing in VM
𝑛V
𝑛

with
another task 𝑡

𝑗 (located in the same VM or elsewhere). Pro-
vided equivalent bandwidth between any two VMs, 𝐶𝑖𝑗

𝑛V
𝑛

=

𝐶
𝑗𝑖

𝑛V󸀠
𝑛

∀V, V󸀠 ≤ 𝑉. In other words, the communication cost does
not depend on the VM or the links used between the VMs.

VM communication links are considered with the same
bandwidth capacity. Depending on its location, we multiply
the communication cost between tasks 𝑡𝑖 and 𝑡

𝑗 by a given
communication slowdown. If 𝑡

𝑖
and 𝑡
𝑗
are located in the same

VM, the communication slowdown (denoted by Cs
𝑛V
𝑛

) is 1.
If 𝑡𝑗 is assigned to another VM in the same node than 𝑡

𝑖

(𝑡𝑗
𝑛V
𝑛

= 1, the Communication slowdown (Cs
𝑛V
𝑛

) will be
in the range [0, . . . , 1]. Finally, if 𝑡𝑗 is assigned to another
VM located in another node (𝑡𝑗

𝑛V
𝑛

= 1), the corresponding
communication slowdown term (Cs

𝑛V
𝑛

) will also be in the
range [0, . . . , 1]. Cs

𝑛V
𝑛

and Cs
𝑛V
𝑛

should be obtained with
respect to Cs

𝑛V
𝑛

. In other words, Cs
𝑛V
𝑛

and Cs
𝑛V
𝑛

are the
respective reduction (in percentage) in task communication
between VMs located in the same and different nodes
compared with task communication inside the same VM. To
sum up, Cs

𝑛V
𝑛

= 1 ≥ Cs
𝑛V
𝑛

≥ Cs
𝑛V
𝑛

≥ 0.
According to task communication, the idea is to add a

component in the OF that penalizes (enhances) the com-
munications performed between different VMs and different
nodes. Grouping tasks inside the same VM will depend
on not only their respective processing cost (𝑃𝑖

𝑛V
𝑛

) but also
the communication costs 𝐶𝑖𝑗

𝑛V
𝑛

and communication slowdowns
Cs
𝑛V
𝑛

, Cs
𝑛V
𝑛

, and Cs
𝑛V
𝑛

. We reward the communications done
in the same VM but less so the ones done in different
VMs while still in the same node. Finally, communications
between nodes are left untouched, without rewarding or
penalizing.

In the same way, if we modelled the OF in function of the
tak heterogeneity in (2), the communication component will
be as follows (only the communication component of the OF
is shown):

max(
𝑁

∑

𝑛=1

𝑉
𝑛

∑

V
𝑛
=1

𝑇

∑

𝑖=1

(𝑡
𝑖

𝑛V
𝑛

𝑇

∑

𝑗<𝑖

𝐶
𝑖𝑗

𝑛V
𝑛

(𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

+ 𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

+ 𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

))) .

(8)

And the OF function will be

max(
𝑁

∑

𝑛=1

𝑉
𝑛

∑

V
𝑛
=1

((

𝑇

∑

𝑖=1

𝑡
𝑖

𝑛V
𝑛

(𝑃
𝑖

𝑛V
𝑛

+

𝑇

∑

𝑗<𝑖

𝐶
𝑖𝑗

𝑛V
𝑛

(𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

+ 𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

+ 𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

)))

× Δ
𝑛V
𝑛

𝐸(

𝑇

∑

𝑗=1

𝑡
𝑗

𝑛V
𝑛

𝑃
𝑗

𝑛V
𝑛

; 𝛼, 𝜆))) .

(9)

3.6. Choosing SLA or Energy Saving. It is important to
highlight that the optimization goal is two criteria (SLA
and energy in our case). Thus, the user could prioritize
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the criteria. Assignments are performed starting from the
most powerful VM. When this becomes saturated, task
assignment continues with the next most powerful VM,
regardless of the node it resides in. When this VM resides
in another node (as in our case), the energy-saving criteria
will be harmed. It would be interesting to provide a means of
increasing criteria preferences in the model presented.

In order to highlight specific criteria (i.e., energy saving),
one more additional component must be added to the OF.
This component must enhance the assignment of tasks to the
same node by assigning tasks to the most powerful nodes
and not only to the most powerful VMs as before. This is the
natural procedure to follow, because the OF is a maximum.
Thus, the likelihood of less powerful nodes becoming idle
increases and this gives the opportunity to power them off,
hence saving energy.

The additional component can be defined in a similar way
as for the relative VM computing power (Δ

𝑛V
𝑛

) of a VM
𝑛V
𝑛

.
Instead, we obtain the relative node computing power of a
Node
𝑛
(Θ
𝑛
) as the normalized summatory of their forming

VMs. Θ
𝑛
will inform about the computing power of Node

𝑛
.

For𝑁 nodes, Θ
𝑛
is formally defined as

Θ
𝑛
=

∑
𝑉
𝑛

V
𝑛
=1
Δ
𝑛V
𝑛

∑
𝑁

𝑛=1
∑
𝑉
𝑛

V
𝑛
=1
Δ
𝑛V
𝑛

, (10)

where∑𝑁
𝑛=1

Θ
𝑛
= 1. To obtainΘ

𝑛
, the parallel Linpack version

(HPL: high performance Linpack) can be used. It is the one
used to benchmark and rank supercomputers for the TOP500
list.

Depending on the importance of the energy saving
criteria, a weighting factor should be provided to Θ

𝑛
. We

simply call this factor energy Energy Ξ. The Ξ will be in the
range (0, . . . , 1]. For an Ξ0, our main criteria will be energy
saving, and forΞ = 1, our goal is only SLA.Thus, the resulting
energy component will beΘ

𝑛
Ξ. Thus, for a given Node

𝑛
with

Θ
𝑛
, we must weigh the energy saving criteria of such a node

by the following factor:

𝑉
𝑛

∑

V
𝑛
=1

𝑇

∑

𝑖=1

𝑡
𝑖

𝑛V
𝑛

Θ
𝑛
Ξ. (11)

The resulting OF function will be

max(
𝑁

∑

𝑛=1

(

𝑉
𝑛

∑

V
𝑛
=1

𝑇

∑

𝑖=1

𝑡
𝑖

𝑛V
𝑛

Θ
𝑛
Ξ)

×

𝑉
𝑛

∑

V
𝑛
=1

((

𝑇

∑

𝑖=1

𝑡
𝑖

𝑛V
𝑛

(𝑃
𝑖

𝑛V
𝑛

+

𝑇

∑

𝑗<𝑖

𝐶
𝑖𝑗

𝑛V
𝑛

(𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

+ 𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

+ 𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

)))

× Δ
𝑛V
𝑛

𝐸(

𝑇

∑

𝑗=1

𝑡
𝑗

𝑛V
𝑛

𝑃
𝑗

𝑛V
𝑛

; 𝛼, 𝜆))) .

(12)

3.7. Enforcing SLA. For either prioritized criteria, SLA or
energy saving, there is a last consideration to be taken into
account.

Imagine the case where tasks do not communicate. Once
they are assigned to a node, one would expect them to be
executed in the minimum time. In this case, there is already
no need to group tasks in the VM in decreasing order of
power in the same node, because this node is no longer
eligible to be switched off. A better solution in this case would
be to balance the tasks between the VMs of such a node
in order to increase SLA performance. Note that this not
apply in the communicating tasks due to the communication
slowdown between VMs.

To implement this, we only need to assign every noncom-
municating tasks without taking the relative computing power
(Δ
𝑛V
𝑛

) of each VM into account.
We only need to replace Δ

𝑛V
𝑛

in (12) by Δ, defined as

Δ = if (

𝑇

∑

𝑗<𝑖

𝐶
𝑖𝑗

𝑛V
𝑛

≥ 0)Δ
𝑛V
𝑛

else 1.

(13)

For the case of noncommunicating tasks, by assigning a
Δ = 1, all the VMs have the same relative computing power
Δ
𝑛V
𝑛

. Thus, tasks are assigned in a balanced way.

3.8. Model Formulation. Finally, the OF function and their
constraints are presented. The best task scheduling assign-
ment to VMs which takes all the features into account
(GS policy) is formally defined by the following nonlinear
programming model:

max(
𝑁

∑

𝑛=1

(

𝑉
𝑛

∑

V
𝑛
=1

𝑇

∑

𝑖=1

𝑡
𝑖

𝑛V
𝑛

Θ
𝑛
Ξ)

×

𝑉
𝑛

∑

V
𝑛
=1

((

𝑇

∑

𝑖=1

𝑡
𝑖

𝑛V
𝑛

(𝑃
𝑖

𝑛V
𝑛

+

𝑇

∑

𝑗<𝑖

𝐶
𝑖𝑗

𝑛V
𝑛

(𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

+ 𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

+ 𝑡
𝑗

𝑛V
𝑛

Cs
𝑛V
𝑛

)))

× Δ𝐸(

𝑇

∑

𝑗=1

𝑡
𝑗

𝑛V
𝑛

𝑃
𝑗

𝑛V
𝑛

; 𝛼, 𝜆)))

(14a)

s.t.
𝑇

∑

𝑖=1

𝑀𝑛V
𝑛

𝑖
≤ 𝑀𝑛V

𝑛
∀𝑛 ≤ 𝑁, V

𝑛
≤ 𝑉
𝑛

(14b)

𝑁

∑

𝑛=1

𝑉

∑

V
𝑛
=1

𝑡
𝑖

𝑛V
𝑛

= 1 ∀𝑖 ≤ 𝑇. (14c)
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Equation (14a) is the objective function (OF) to be max-
imized. Note that OF is an integer and nonlinear problem.
Inequality in (14b) and equality in (14c) are the constraints of
the objective function variables. Given the constants 𝑇 (the
total number of requests or tasks), and 𝑀V for each VM

𝑛V
𝑛

,
the solution that maximizes OF will obtain the values of the
variables 𝑡𝑖

𝑛V
𝑛

, representing the number of tasks assigned to
VM
𝑛V
𝑛

. Thus, the 𝑡
𝑛V
𝑛
𝑖
obtained will be the assignment found

by this model.
OF takes into account the processing costs (𝑃𝑖

𝑛V
𝑛

) and the
communication times (𝐶𝑖𝑗

𝑛V
𝑛

) of the tasks assigned to each
VM
𝑛V
𝑛

and the communication slowdownsbetweenVMsCs
𝑛V
𝑛

and nodes Cs
𝑛V
𝑛

. Cs
𝑛V
𝑛

= 1. Δ is defined in Section 3.7. And
𝐸(∑
𝑇

𝑗=1
𝑡
𝑗

𝑛V
𝑛

𝑃
𝑗

𝑛V
𝑛

; 𝛼, 𝜆) represents the power slowdown of each
VM due to its workload (defined in Section 3.4).

To sum up, for the case when the workload is made up of
noncommunicating tasks, if we are interested in prioritizing
the SLA criteria, OF 3.5 should be applied. If, on the contrary,
the goal is to prioritize energy saving,OF (14a) should be used
instead.

4. Results

In this section, we present the theoretical results obtained
from solving the scheduling problems aimed at achieving
best task assignment. Two representative experiments were
performed in order to test the performance of GS.

The experiments were performed by using the AMPL
(AMPL. A Mathematical Programming Language. http://
ampl.com) language and the SCIP (SCIP. Solving Constraint
Integer Programs. http://scip.zib.de) solver. AMPL is an
algebraic modeling language for describing and solving high-
complexity problems for large-scale mathematical computa-
tion supported by many solvers. Integer and nonlinear (our
model type) problems can be solved by SCIP, one of the
solvers supported by AMPL.

Throughout all the experimentation, the Erlang argu-
ments were obtained empirically by using the strategy
explained in Section 3.4.

As the objective of this section is to prove the correctness
of the policy, only a small set of tasks, VMs, and nodes was
chosen. The size of the experimental framework was chosen
to be as much representative of actual cases as possible, but
at the same time, simple enough to be used as an illustrative
example. So, the experimental framework chosen was made
up of 2 different nodes: one of them comprised 3VMs and the
other 1 VM; see Figure 2.The objective of this simulation was
to achieve the best assignment for 3 tasks. Table 1 shows the
processing cost 𝑃𝑖

𝑛V
𝑛

, relating the execution times of the tasks in
each VM. To show the good behavior of themodel presented,
each task has the same processing cost independently of the
VM. The model presented can be efficiently applied to real
cloud environments. The only weak point is that the model
is static. That means that homogenous and static workload
conditions must be stable in our model. Job executions in
different workload sizes can be saved in a database system,

Node 2Node 1

VM2VM3 VM1

???? ??

VM3

??

Cloud

Figure 2: Cloud architecture.

Table 1: Task processing costs.

Task 𝑡𝑖 Processing costs 𝑃𝑖
𝑛V
𝑛

Value
𝑡
1

𝑃
1

11
, 𝑃
1

12
, 𝑃
1

13
, 𝑃
1

21
1

𝑡
2

𝑃
2

1
, 𝑃
2

12
, 𝑃
2

13
, 𝑃
2

21
5

𝑡
3

𝑃
3

11
, 𝑃
3

12
, 𝑃
3

13
, 𝑃
3

21
1

Total processing cost (∑
𝑖
𝑃
𝑖

𝑛V
𝑛

) 7

providing a means for determining the SLA of such a job in
future executions.

4.1. Without Communications. In this section, a hypothetical
situation without communication between tasks is evaluated.
In this situation, our scheduling policy tends to assign the
tasks to the most powerful set of virtual machines (i.e., with
the higher relative computing power Δ

𝑛V
𝑛

, considering their
individual saturation in this choice).This saturation becomes
critical when more and more tasks are added. Here, the most
important term is the Erlang function, since it models the
behaviour of every virtual machine. Thus, taking this into
account, our scheduler knows the exact weight of tasks it can
assign to the VMs in order to obtain the best return times.
This phenomenon is observed in the following examples.

4.1.1. Without Communications and High Optimal Erlang.
Table 2 shows the parameters used in the first example. The
amount ofMemory allocated to each task 𝑡𝑖 in every VM𝑀

𝑛V
𝑛

(as we supposed this amount to be equal in all the VMs, we
simply call it𝑀𝑖).The relative computing power (Δ

𝑛VV) of each
VMand finally the𝛼 and 𝜆 Erlang arguments. Note that all the
VMs have the same Erlang parameters. The parameters were
chosen this way because any VM saturates with the overall
workload assigned. In other words, the total processing cost 7
is lower than the optimal Erlang workload 16.

Table 3 shows the solver assignment results. The best
scheduling assigns all the tasks to the same VM (VM

21
, the

only VM in node 2), because this VM has the biggest relative
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Table 2: Without communications. High optimal Erlang. VM con-
figurations.

Node VM
𝑛V
𝑛

𝑀
𝑖

Δ
𝑛VV Erlang

1 VM11 10 0.75 𝛼 = 3, 𝜆 = 8

1 VM12 10 0.35 𝛼 = 3, 𝜆 = 8

1 VM13 10 0.1 𝛼 = 3, 𝜆 = 8

2 VM21 10 0.85 𝛼 = 3, 𝜆 = 8

Table 3: Without communications. High optimal Erlang. Solver
assignment.

Node VM
𝑛V
𝑛

Task assignment
1 VM11 0
1 VM12 0
1 VM13 0
2 VM21 𝑡

1, 𝑡2, 𝑡3

computing power (Δ
𝑛VV). This result is very coherent. Due to

the lack of communications, the model tends to assign tasks
to the most powerful VMwhile its workload does not exceed
the Erlang optimum (a workload of 10 tasks). As in our case,
the total workload is 7, and VM

21
could host evenmore tasks.

4.1.2. Without Communications, Low Optimal Erlang, and
Preserving SLA. In this example (see Table 4), the VMs have
another Erlang. However, the task processing costs do not
change, so they remain the same as in Table 1. In this case,
each VM becomes saturated when the assignment workload
weight is higher than 5 (because 5 is the optimal workload).

The best assignment in this case is the one formed by
the minimum set of VMs with the best relative computing
power Δ

𝑛VV (see Table 5 column Task Assignment SLA). The
assignment of the overall tasks to only one VM (although it
was the most powerful one) as before will decrease the return
time excessively, due to its saturation.

4.1.3. Without Communications, Low Optimal Erlang, and
Preserving Energy Saving. Provided that the most important
criterion is the energy saving, the assignment will be some-
what different (seeTable 5, columnTaskAssignment Energy).
In this case, OF (14a) with Ξ = 1was used.Then, as expected,
all the tasks were again assigned to VM

21
of Node

2
.

4.2. With Communications. Starting from the same VM
configuration shown on Table 4, in this section we present
a more real situation where the costs of communications
between tasks are also taken into account. It is important to
highlight that in some situations, the best choice does not
include the most powerful VMs (i.e., with the highest relative
computing powerΔ

𝑛V
𝑛

).Thus, the results shown in this section
must show the tradeoff between relative computing power
of VM, workload scheduling impact modeled by the Erlang
distribution, and communication efficiency between tasks.

4.2.1. High Communication Slowdown. This example shows
the behaviour of the model under large communication costs

Table 4:Without communications. Low optimal Erlang. Preserving
SLA. VM configurations.

Node VM
𝑛V
𝑛

𝑀
𝑖

Δ
𝑛VV Erlang

1 VM11 10 0.75 𝛼 = 5, 𝜆 = 1

1 VM12 10 0.35 𝛼 = 5, 𝜆 = 1

1 VM13 10 0.1 𝛼 = 5, 𝜆 = 1

2 VM21 10 0.85 𝛼 = 5, 𝜆 = 1

Table 5:Without communications. Low optimal Erlang. Preserving
SLA. Solver assignment.

Node VM
𝑛V
𝑛

SLA Energy
Task assignment Task assignment

1 VM11 𝑡
1, 𝑡3 𝑡

2

1 VM12 0 𝑡
1, 𝑡3

1 VM13 0 0
2 VM21 𝑡

2 0

Table 6: High slowdown. Communication configurations.

Task 𝑡𝑖 Task 𝑡𝑗 Communication costs 𝐶𝑖𝑗

𝑡
1

𝑡
2 0.2

𝑡
1

𝑡
3 0.6

𝑡
2

𝑡
3 0.3

𝐶𝑠
𝑛V
𝑛

0.2
𝐶𝑠
𝑛V
𝑛

0.1

between VMs (see Table 6). This table shows the commu-
nication costs between tasks (𝐶𝑖𝑗) and the communication
slowdown when communications are done between VMs
in the same node (Cs

𝑛V
𝑛

) and the penalty cost when com-
munications are performed between different nodes (Cs

𝑛V
𝑛

).
Note that the penalties are very high (0.2 and 0.1) when the
communications are very influential.

The solver assignment is shown in Table 7. In order
to avoid communication costs due to slowdowns, the best
assignment tends to group tasks first in the same VM and
second in the same node. Although VM

21
should become

saturated with this assignment, the high communication cost
compensates the loss of SLA performance, allowing us to
switch off node 1.

4.2.2. Low Communication Slowdown. Now, this example
shows the behaviour of our policy under more normal com-
munication conditions. Here, the communication penalties
between the different VMs or nodes are not as significant
as in the previous case because Cs

𝑛V
𝑛

and Cs
𝑛V
𝑛

are higher.
Table 8 shows the communication costs between tasks and
the penalty cost if communications are performed between
VMs in the same node (Cs

𝑛V
𝑛

) or between different nodes
(Cs
𝑛V
𝑛

).
In this case, the solver got as a result two hosting VMs

(see Table 9) formed by the VM
11
(with the assigned tasks 𝑡2

and 𝑡
3) and VM

21
with task 𝑡

1. In this case, due to the low
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Table 7: High slowdown. Solver assignment.

Node VM
𝑛V
𝑛

Task assignment
1 VM11 0
1 VM12 0
1 VM13 0
2 VM21 𝑡

1, 𝑡2, 𝑡3

Table 8: Low slowdown. Communication configurations.

Task 𝑡𝑖 Task 𝑡𝑗 Communication costs 𝐶𝑖𝑗

𝑡
1

𝑡
2 0.2

𝑡
1

𝑡
3 0.6

𝑡
2

𝑡
3 0.3

𝐶𝑠
𝑛V
𝑛

0.9
𝐶𝑠
𝑛V
𝑛

0.8

Table 9: Low slowdown. Solver assignment.

Node VM
𝑛V
𝑛

Task assignment
1 VM11 𝑡

1, 𝑡3

1 VM12 0
1 VM13 0
2 VM21 𝑡

2

differences between the different communication slowdowns,
task assignment was distributed between the two nodes.

4.2.3. Moderate Communication Slowdown. We simulated a
more normal situation, where the communication slowdown
between nodes is higher than the other ones. From the same
example, it was only reduced Cs

𝑛V
𝑛

to 0.4 (see Table 10).
As expected, the resulting solver assignment was different
from that in the previous case. Theoretically, this assignment
should assign tasks to the powerful unsaturated VMs, but as
much as possible to the VMs residing on the same node. The
solver result was exactly what was expected. Although the
most powerful VM is in node 2, the tasks were assigned to
the VMs of node 1, because they all fit in the same node.That
is the reason why a less powerful node like node 1, but one
with more capacity, is able to allocate more tasks than node 2
due to the communication slowdown between nodes. These
results are shown in Table 11.

5. Conclusions and Future Work

This paper presents a cloud-based system scheduling mech-
anism called GS that is able to comply with low power
consumption and SLA agreements. The complexity of the
model developed was increased, thus adding more factors
to be taken into account. The model was also tested using
the AMPL modelling language and the SCIP optimizer. The
results obtained proved consistent over a range of scenarios.
In all the cases, the experiments showed that all the tasks were
assigned to the most powerful subset of virtual machines by
keeping the subset size to the minimum.

Table 10: Moderate slowdown. Communication configurations.

Task 𝑡𝑖 Task 𝑡𝑗 Communication costs 𝐶𝑖𝑗

𝑡
1

𝑡
2 0.2

𝑡
1

𝑡
3 0.6

𝑡
2

𝑡
3 0.3

𝐶𝑠
𝑛V
𝑛

0.9
𝐶𝑠
𝑛V
𝑛

0.4

Table 11: Moderate slowdown. Solver assignment.

Node VM
𝑛V
𝑛

Tasks assignment
1 VM11 𝑡

2, 𝑡3

1 VM12 𝑡
1

1 VM13 0
2 VM21 0

Although our proposals still have to be tested in real sce-
narios, these preliminary results corroborate their usefulness.

Our efforts are directed towards implementing those
strategies in a real cloud environment, like the OpenStack
[22] or OpenNebula [23] frameworks.

In the longer term, we consider using some statistical
method to find an accurate approximation of the workload
using well-suited Erlang distribution functions.
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and J. Conde, “State-based predictions with self-correction on
Enterprise Desktop Grid environments,” Journal of Parallel and
Distributed Computing, vol. 73, no. 6, pp. 777–789, 2013.

[13] A. Goldman and Y. Ngoko, “A MILP approach to schedule
parallel independent tasks,” in Proceedings of the International
Symposium on Parallel and Distributed Computing (ISPDC ’08),
pp. 115–122, Krakow, Poland, July 2008.

[14] T. Vinh, T. Duy, Y. Sato, and Y. Inoguchi, “Performance
evaluation of a green scheduling algorithm for energy savings
in cloud computing,” in Proceedings of the IEEE International
Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW ’10), pp. 1–8, Atlanta, Ga, USA, April 2010.

[15] M. Mezmaz, N. Melab, Y. Kessaci et al., “A parallel bi-objective
hybrid metaheuristic for energy-aware scheduling for cloud
computing systems,” Journal of Parallel and Distributed Com-
puting, vol. 71, no. 11, pp. 1497–1508, 2011.

[16] Y. C. Ouyang, Y. J. Chiang, C. H. Hsu, and G. Yi, “An
optimal control policy to realize green cloud systems with SLA-
awareness,” The Journal of Supercomputing, vol. 69, no. 3, pp.
1284–1310, 2014.

[17] T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, and C. A.
F. de Rose, “Server consolidation with migration control for
virtualized data centers,” Future Generation Computer Systems,
vol. 27, no. 8, pp. 1027–1034, 2011.

[18] A. Murtazaev and S. Oh, “Sercon: server consolidation algo-
rithm using live migration of virtual machines for green
computing,” IETE Technical Review (Institution of Electronics
and Telecommunication Engineers, India), vol. 28, no. 3, pp. 212–
231, 2011.

[19] A. F. Monteiro, M. V. Azevedo, and A. Sztajnberg, “Virtualized
Web server cluster self-configuration to optimize resource and
power use,” Journal of Systems and Software, vol. 86, no. 11, pp.
2779–2796, 2013.

[20] C.-C. Lin, H.-H. Chin, and D.-J. Deng, “Dynamic multiservice
load balancing in cloud-based multimedia system,” IEEE Sys-
tems Journal, vol. 8, no. 1, pp. 225–234, 2014.

[21] J. Vilaplana, F. Solsona, J. Mateo, and I. Teixido, “SLA-aware
load balancing in a web-based cloud system over OpenStack,”
in Service-Oriented Computing—ICSOC 2013 Workshops, vol.

8377 of Lecture Notes in Computer Science, pp. 281–293, Springer
International Publishing, 2014.

[22] OpenStack, http://www.openstack.org/.
[23] OpenNebula, http://www.opennebula.org.


