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Abstract

We have generated a novel monoclonal antibody targeting human FGFR1c (R1c

mAb) that caused profound body weight and body fat loss in diet-induced obese

mice due to decreased food intake (with energy expenditure unaltered), in turn

improving glucose control. R1c mAb also caused weight loss in leptin-deficient ob/

ob mice, leptin receptor-mutant db/db mice, and in mice lacking either the

melanocortin 4 receptor or the melanin-concentrating hormone receptor 1. In

addition, R1c mAb did not change hypothalamic mRNA expression levels of Agrp,

Cart, Pomc, Npy, Crh, Mch, or Orexin, suggesting that R1c mAb could cause food

intake inhibition and body weight loss via other mechanisms in the brain.

Interestingly, peripherally administered R1c mAb accumulated in the median

eminence, adjacent arcuate nucleus and in the circumventricular organs where it

activated the early response gene c-Fos. As a plausible mechanism and coinciding

with the initiation of food intake suppression, R1c mAb induced hypothalamic

expression levels of the cytokines Monocyte chemoattractant protein 1 and 3 and

ERK1/2 and p70 S6 kinase 1 activation.
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Introduction

According to the World Health Organization (WHO), obesity has more than

doubled since 1980 and in 2008 at least 1.5 billion adults were overweight and 500

million were obese worldwide, resulting in an increased incidence of type 2

diabetes, cardiovascular disease and premature deaths (www.who.int). Recently,

the Fibroblast Growth Factor Receptor 1 (FGFR1) SNP rs7012413*T was found to

be associated with obesity in four different cohorts [1]. In addition, adipose tissue

FGFR1 mRNA and protein levels were elevated in obese subjects and Fgfr1 mRNA

levels were increased in the hypothalamus of diet-induced obese (DIO) rats [1],

showing that FGFR1 is a novel human obesity candidate gene that may affect

metabolism and control of food intake.

The mammalian Fibroblast Growth Factor (FGF) family consists of 22

members and there are 4 FGFRs identified existing in different splice variants with

different ligand-binding specificity, reviewed in [2,3]. Antagonizing FGFR1c with

the monoclonal antibody (mAb) IMC-A1 caused weight loss due to reversible

hypophagia in animals [4]. Paradoxically, an FGFR1-activating mAb has also been

found to cause body weight loss in mice via a combination of both decreased food

intake and increased energy expenditure [5].

Here, we describe the identification of a novel fully human FGFR1c targeting

mAb (R1c mAb) possessing both antagonistic and agonistic properties that caused

in DIO mice profound body weight and body fat loss via reversible hypophagia

leading to improved glucose control. Importantly, R1c mAb accumulated and

increased neuronal activity in the median eminence, adjacent arcuate nucleus and

in other circumventricular organs. As the basis for a plausible mechanism, R1c

mAb induced a specific subset of chemokines and activated ERK1/2 and p70 S6

kinase 1in the hypothalamus coinciding with the initial time-course of the food

intake suppression.

Materials and Methods

Ethics Statement

All animal experiments were approved by the Gothenburg Ethics Committee for

Experimental Animals.

Phage display identification of an anti-FGFR1c monoclonal

antibody

Phage display selections were performed according to the methods described in

Dobson et al using naïve human antibody libraries [6]. Multiple rounds of phage

display selection were performed using biotinylated human FGFR1c-extracellular

domain (ECD) produced by MedImmune, with deselection using unlabelled

human FGFR1b Fc-fusion protein (R&D Systems, Minneapolis, MN). To identify

antibodies capable of specific FGFR1c antagonism, crude bacterial peri-plasmic

extracts containing scFv antibodies from the selection outputs were prepared [6]
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and analyzed in an assay designed to measure the binding of FGF2 (produced by

MedImmune) to FGFR1c. Full length human FGF2 (UniProt: P09038), fused to a

C-terminal hexa-histidine tag, was expressed in E. coli Rossetta (DE3) pLysS

(Merck KGaA, Darmstadt, Germany). Expressed protein was purified by

immobilised nickel chromatography followed by size exclusion chromatography.

The binding of flag-tagged FGF2 to cryptate labelled FGFR1c-ECD-Fc (R&D

Systems) was detected using an XL665 labelled anti-Flag antibody (Cisbio, France)

and inhibitors of this interaction were identified. A similar assay to measure

inhibition of FGF2 binding to FGFR2c was used as negative screen. FGFR1c

specific ScFv were converted to IgG. FGFR1c specific IgG was further profiled in

FGF2 induced proliferation using BaF3huFGFR1c cells and a FGF2 induced Ca2+

release assay in NIH3T3huFGFR1c cells. The most potent in vitro antagonists were

selected to test in vivo. Fragment antigen-binding (FAb) fragments were generated

by papain (Sigma) digestion of R1c mAb IgG followed by MabSelect SuRe (GE

Healthcare) purification.

Receptor binding and specificity assay

Monomeric human FGFR1c (FGFR1bIIIc), FGFR2c (FGFR2bIIIc), FGFR3c, and

FGFR4 were produced by MedImmune. The extracellular domains of human

FGFRs were fused to a C-terminal FLAG epitope tag and a deca-histidine tag and

were expressed in human embryonic kidney (HEK) cells using an episomal

transient expression system. Purification was achieved by ultra-filtration followed

by immobilised nickel chromatography and size exclusion chromatography.

The Octet RED system (ForteBio, UK) was used for real-time, label-free analysis

of R1c mAb interaction with FGFR1c. All Octet experiments were run at RT and

reagents were prepared in 0.1% BSA, 0.02% Tween20 PBS, pH 7.4 kinetic buffer.

Streptavidin sensors were pre-soaked off-line in 200 ml of kinetic buffer and

loaded with biotinylated Protein G (Thermo Scientific, UK) prior to loading with

10 mg/ml of R1c mAb or a control mAb. The receptor association phase was

measured by incubating the sensor in a titration curve of FGFR1c ECD or kinetic

buffer blank for 10 min. The receptor dissociation phase was subsequently

measured by incubating all the sensors in kinetic buffer for 10 min. After data

processing to subtract reference trace, data analysis was performed using the Data

Analysis software package provided with the Octet RED system. Binding to the

other FGFRs was assessed by ELISA. Nunc maxisorp plates were coated with

0.5 mg/ml of FGFR overnight, blocked with 3% Marvel-PBS buffer and then

washed with PBS. Anti-FGFR or control antibodies, ranging from 0.4 to 100 nM,

were added and following incubation plates were washed and detection anti-

human Fc-HRP added. The HRP substrate TMB (3, 3’, 5, 5’-tetramethylbenzi-

dine) was added and the reaction stopped and read at OD 450 nm using an

Envision plate reader.
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FLIPR ligand induced Ca
2+

Release Assays

To study antibody effects on Ca2+ release stimulated by FGFs 1, 2, 4, 5, and 6,

NIH3T3 cells overexpressing human FGFR1c were seeded at a density of 7,000

cells per well in 25 ml of DMEM, 10% FBS, 2 mg/ml puromycin and incubated

overnight at 37 C̊/5% CO2. Media was then removed and 25 ml of Fluo-4 NW,

reconstituted as described by the manufacturer (Invitrogen, Carlsbad, CA)

including 2.5 nM probenicid, was added to each well and plates were incubated

for 30 min at 37 C̊/5% CO2. All reagents were prepared in 20 mM HEPES, 0.1%

BSA, HBSS assay buffer. After equilibrating the cells to RT for 10 min, R1c mAb

or control mAb was added to the plates and incubated for 15 min at RT. Final

assay concentrations were 0.5 nM FGF1, 0.5 nM FGF2, 4 nM FGF4, 40 nM FGF5,

or 4 nM FGF6. For FGF4 and FGF6 assays, heparin was added in the pre-

incubation step. FGF1, FGF2 and FGF5 assays did not require heparin. FGF

agonist was then added to the plates and Ca2+ transients were recorded

immediately on a FLIPR Tetra (Molecular Devices, UK). Fluorescence was excited

at 470_495 nm and emission was measured at 515_575 nm. Data was analyzed by

taking maximum peak height minus background and calculating % of maximum

response.

Transfection of BaF3 Cells and Proliferation Assays

BaF3 cells (murine interleukin-3 dependent pro-B cell line) overexpressing human

FGFR1c were kindly provided by Prof. David Ornitz (Washington University

School of Medicine, St Louis, Missouri, USA). BaF3huFGFR1c cells were

maintained in RPMI 1640 (Invitrogen) medium supplemented with 8.8%

Newborn bovine serum, 0.04% mouse IL3, 0.09% 2ME, 1.8% Glutamax-I and 1%

G418. BaF3huFGFR1c cells were transfected with a-Klotho or b-Klotho in pEF-

DEST51 expression vector (Invitrogen) by nucleofection using the Amaxa

Nucleofector Kit V (Lonza). Transfectants expressing a-Klotho or b-Klotho were

selected and maintained by incubation in the presence of 4 mg/ml blasticidin.

Proliferation of cells in the presence of FGF ligands was measured using a

Luminescent Cell Viability Assay (Promega, USA). Briefly, the transfectants were

washed to remove IL3 and plated to a density of 8,000 cells per well in 384-well

plates. BaF3huFGFR1c cells were used for the FGF2 assay, BaF3huFGFR1c/b-

klotho cells were used for the FGF19 and FGF21 assays, and BaF3huFGFR1c/a-

klotho cells were used for the FGF23 assay. The proliferation assay media was

RPMI 1640 (Invitrogen, Carlsbad, CA) medium supplemented with 8.8%

Newborn bovine serum, 0.09% 2ME, 1.8% Glutamax-I, 1% G418 and 10 ug/ml

heparin. The final FGF concentrations were 0.02 nM FGF2, 50 nM FGF19, 50 nM

FGF21, or 0.02 nM FGF23. The cells were stimulated with FGFs with or without

R1c mAb or control mAb and incubated at 37 C̊ for 72 h. Prior to addition of

CellTiterGlo reagent (Promega, USA), the cells were equilibrated to room

temperature for 30 min. Luminescence was read on an Envision Multilabel reader

(Perkin Elmer, UK).
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Animals, diets, food intake analysis and body composition

DIO C57BL/6J mice (Harlan, the Netherlands) had free access to a high-fat diet

(HFD) containing (energy percentage) 60% fat, 20% carbohydrates, and 20%

protein, with a total energy content of 5.2 Kcal/g (D12492; Research Diets, New

Brunswick, NJ) for 6–12 weeks before treatment starts. A pair-feeding experiment

was performed over four days in which one group of DIO mice dosed with a

single injection of R1c mAb were fed ad libitum and two groups of DIO mice

receiving a single injection of control mAb were fed either ad libitum or pair-fed

twice daily to match the food intake of R1c mAb treated DIO mice fed ad libitum.

Leptin-deficient ob/ob mice, leptin receptor-mutant db/db mice (Harlan), and

melanocortin receptor 4 (Mc4r)-deficient mice [7] were kept on regular chow diet

containing (energy percentage) 12% fat, 62% carbohydrates, and 26% protein,

with a total energy content of 3 Kcal/g (R3; Lactamin, Kimstad, Sweden) and

melanin-concentrating hormone receptor (Mchr)-deficient mice [8] were kept on

HFD (D12492; Research Diets). Cumulative food intake was analyzed in single

housed mice in an automated food intake analysis system (AstraZeneca, Mölndal,

Sweden). The mice were adapted to the system for at least 5 d before treatment

start and statistical analyses were performed on bi-hourly food intake during the

first 12 h post treatment start.

Body composition analysis was performed on isoflurane (Forene, Abbot

Scandinavia AB, Sweden) anesthetized mice with dual-energy X-ray absorptio-

metry (DEXA, PIXImus Lunar, GE Medical Systems, Madison, WI). At

termination (9–11 a.m.), plasma was isolated from isoflurane anesthetized mice

and organs were collected, weighed and snap frozen in liquid N2 and stored at

280 C̊.

Plasma biochemistry

Plasma total adiponectin levels were measured using a radioimmunoassay from

Linco Research (St. Charles, MO) and plasma leptin with an ELISA from Chrystal

Chem. Inc. (Downers Grove, IL). Plasma cholesterol levels were measured with a

kit from Roche Diagnostics (Mannheim, Germany), alanine aminotransferase

(ALT) with a kit from ABX Diagnostics (Montpellier, France), b-hydroxybutyrate

with a kit from Randox Laboratories (Antrim, UK) and non-esterified fatty acids

(NEFAs) with a kit from WAKO Chemicals (Neuss, Germany).

Oral glucose tolerance test

Oral Glucose Tolerance Tests (OGTTs) were performed 1 p.m. after a 4 h fast by

oral administration of 2 g glucose per kg body weight. Blood (12 ml) was sampled

from the tail vein at 0, 15, 30, 60 and 120 min for determination of glucose (2 ml,

Accu-Chek, Roche Diagnostics, Mannheim, Germany) and insulin (265 ml,

Ultra-sensitive mouse insulin ELISA kit, Crystal Chem. Inc., Downers Grove, IL)

levels.
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Indirect calorimetry and spontaneous locomotor activity

Oxygen consumption (vO2) and carbon dioxide production (vCO2) were

measured using a CLAMS open circuit calorimetry system (Oxymax, Columbus

Instruments, Columbus, OH). Energy expenditure (Kcal/h) was calculated:

(3.815+1.232RER)6vO2, where RER is the respiratory exchange ratio [volume of

CO2 produced per volume of O2 consumed (both ml/kg/min)] and vO2 is the

volume of O2 consumed per h per kg mass of the animal. The value of energy

expenditure was correlated to individual body weights. Horizontal spontaneous

locomotor activity was measured continuously in the CLAMS system.

Assessment of general behavior

An elevated zero maze system (Accuscan Instruments Inc., Columbus, OH) was

used to assess anxiety related behavior as previously described [9]. Mice were

acclimatized once to the system 3–4 h after dosing and analyzed 24 h later.

Memory and learning ability was assessed by a passive avoidance approach in the

Shuttle box system (Accuscan Instruments Inc., Columbus, OH) as described [9].

Assessments were performed 50 h after dosing and then repeated 75 h after

dosing. To assess signs of depression, a forced swim test approach was used in

water filled plexiglas cylinder (AstraZeneca R&D, Mölndal, Sweden). Active swim

time was assessed during the last 4 minutes of the test as previously described [9].

Assessment of depression was performed 50 h post dosing.

Pancreas a- and b-cell mass

Sample preparation and immunohistochemistry were performed according to Sun

et al [10]. Isolated pancreas were fixed in 10% buffered formalin and embedded in

paraffin wax within 24 h of removal. Head-to-tail sections (4 mm lengthwise)

were cut and incubated overnight at 37 C̊ on superfrost slides. Slides were

submerged sequentially in xylene followed by decreasing concentrations of

industrial methylated spirits for removal of paraffin wax. Slides were blocked in

5% (vol./vol.) goat serum in Tris buffered saline with 0.05% (vol./vol.) Tween

(TBST) for 20 min at room temperature then incubated sequentially with primary

(1:200 mouse anti-glucagon ab10988, Abcam, Cambridge, UK) and secondary

glucagon antibodies (1:200 rabbit anti-mouse IgG antibody:TRITC conjugate; T-

2402, Sigma), for 60 minutes followed by a further block in 5% goat serum in

TBST prior to sequential incubation in primary (1:50 Guinea pig anti-insulin,

Dako A0564) and secondary insulin antibodies (1:400 goat anti guinea pig

AlexaFluor 488, A11073, Invitrogen). Hoeschst (2 mM) was included in the final

incubation as a fluorescent nuclear stain and sections were mounted using

FluorSave mounting Reagent (Merck 345789). Six longitudinal sections, at 40

micron intervals were imaged per pancreas, with the SpGreen and SpOrange

filters respectively on a Zeiss Axio Imager M1 (Carl Zeiss, Jena, Germany)

operated through the Metafer software (MetaSystems, Waltham, MA, USA). A

custom designed Metafer software classifier enabled mapping of all pancreatic
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tissue. Definiens image analysis software (Munich, Germany) quantified all

fluorescent images. The results are expressed as a percentage of total pancreatic

area.

RNA preparation and quantitative real-time PCR

Total RNA was extracted using Qiazol and disruption of the sample in a Mixer

Mill 300 (Qiagen, Valencia, CA). RNA clean-up and DNase digestion were

performed using RNeasy Mini Kit (Qiagen). RNA content and quality was

assessed using Nanodrop (ThermoScientific, Wilmington, DE). First strand cDNA

was synthesized using the High Capacity cDNA Archive Kit (Applied Biosystems,

Foster City, CA). Real-time PCR analysis was performed with an ABI Prism 7900

Sequence Detection System (Applied Biosystems) using 59-FAM and 39-TAMRA

labeled fluorogenic oligonucleotide probes or primers designed for use for SYBR-

Green detection. Primers/probes were purchased from Sigma-Genosys (Haverhill,

UK). The relative expression levels were calculated by using the standard curve

method in order to define an arbitrary expression level. This data was then

normalized against mouse acidic ribosomal phosphoprotein P0 (m36B4)

expression for each sample. Sequences for primers and probes are presented in

Table 1.

Tissue and cell protein extraction and Western blot

Hypothalamus or white adipose tissue protein extracts were generated by

homogenization in ice cold T-PER protein extraction reagent (Pierce, Rockford,

IL) containing a protease inhibitor cocktail (Complete Mini and phosphoSTOP,

Roche Diagnostics), with a single-use pestle in a 1.5 ml Eppendorf Tube (VWR,

Radnor, PA). Homogenates were centrifuged (4 C̊, 20,0006g for 15 min) and the

protein content of the lysate quantitated using BCA Assay Reagent (Pierce).

Mouse embryonic hypothalamic N46 cells were from Cellutions Biosystems

(Burlington, Canada) and cultured in Dubecco’s Modified Eagle Medium

(DMEM) (Sigma) supplemented with 10% FBS (Hyclone, Erembodegem,

Belgium). Confluent cells were serum starved in medium containing 5 mg/ml

heparin for 16 h before experiment. Mouse 3T3-L1 fibroblasts (American Type

Culture Collection, Middlesex, UK) were maintained in DMEM supplemented

with 10% calf serum and 1% PEST (Invitrogen). Confluent 3T3-L1 cells were

differentiated in DMEM, 10% FBS (PAA gold), 1% PEST, 1 mM Dexamethasone

(Sigma), 0.5 mM IBMX (Sigma) and 0.17 mM insulin (Novo Nordisk, Denmark).

Cells were serum starved in OptiMEM I (Invitrogen) containing 0.5% essentially

fatty acid free BSA (Sigma) 16 h before experiment. Cells were incubated with or

without 50 mg/ml antibodies for 1 h with or without 10 ng/ml FGF2

(MedImmune) for 10 min (PBS was used as control). Cultured cells were lysed in

lysis buffer (50 mM Tris-HCl, pH 7.5, 1 mM EGTA, 1 mM EDTA, 50 mM

sodiumfluoride, 5 mM pyrophosphate, 0.27 M sucrose, 1% (v/v) Triton-X 100

and 1 mM sodium orthovanadate) with a protease inhibitor cocktail and
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phosphoSTOP as above. Primary antibodies for Western blot analyses were from

Abcam [pPDK #52893], Sigma [a-Tubulin #T6074] or from Cell Signaling

Technology (Beverley, MA), pFGFR (Tyr653/654 #3471), pPLCc1 (Tyr783

#2821), pFRS2a (Tyr436 #3861), pAkt (Ser473 #4058L), pERK1/2 (Thr202/

Tyr204 # 4377), pStat3 (Tyr705 #9131S), pp70S6K1 (Thr389 #9205), pMEK

(#9154S), pJak2 (Tyr1007/1008 #3776S), pJNK (#4668P), and pp38 MAPK

(T180/Y182 #4511P). HRP-conjugated polyclonal goat anti-Rabbit P0448

(DAKO) was used as secondary antibody except for the anti a-Tubulin antibody

where an HRP conjugated goat anti-mouse P0447 (DAKO) was used. Enhanced

chemiluminescence reagents (Pierce) were used for detection.

Table 1. Primer and Probe sequences for quantitative RT-PCR.

Gene Forward (59-39) Reverse (59-39) Probe (59-39)

Agrp CGGAGGTGCTAGATCCACAGA AGGACTCGTGCAGCCTTACAC CGAGTCTCGTTCTCCGCGTCGC

Cart CTGCAATTCTTTCCTCTTGAAGTG GGGAATATGGGAACCGAAGGT SYBR

Ccr2 AGAAGTTCCGAAGGTATCTCTCCAT CCCTATAGAAAACTGGGCACTGTT TTTTTCAGAAAGCACATTGCTAAACGTCTCTGC

Ccr5 CTTCATGTTAGATTTGTACAGCTCTCCTA CATCCTGCAAGAGCCAGAGTCT CCAGAGGAGGTGAGACATCCGTTC

Cd11c CCACTGTCTGCCTTCATATTCATG CATGGTCTAGAGCCAGGTCAAAG CCAAGACCCAACTAGGTGACCTCCGAAGTA

Crh GGAGCCGCCCATCTCTCT CGGGCCATTTCCAAGACTT SYBR

Cx3cl1 CGCGTTCTTCCATTTGTGTACTC GCACATGATTTCGCATTTCG CTGCCGGGTCAGCACCTCGG

Cxcl12 CTGAAAATCCTCAACACTCCAAACT GCACACTTGTCTGTTGTTGTTCTTC TGCCCTTCAGATTGTTGCACGGC

Cxcl5 GCTGGCATTTCTGTTGCTGTT GCTCCGTTGCGGCTATGA CGCTGCCGCAGCATCTAGCTGAAG

Il-1b AATCTATACCTGTCCTGTGTAATGAAAGAC TGGGTATTGCTTGGGATCCA CACACCCACCCTGCAGCTGGAGA

Ifnc CAGCAACAGCAAGGCGAAA CTGGACCTGTGGGTTGTTGAC AGGATGCATTCATGAGTATTGCCAAGTTTGA

Lif CAACCTCATGAACCAGATCAA AAAGATGGGAAGTCTGTCATGTT AGAGAGCATTGGCGCTGCCA

Mch TTCAGAAGGAAGATACTGCAGAAAGA GCTCTCGTCGTTTTTGTATTGTT SYBR

Mcp1/
Ccl2

GCTGGAGAGCTACAAGAGGATCA TCTCTCTTGAGCTTGGTGACAAAA AGCAGCAGGTGTCCCAAAGAAGCTGTAG

Mcp2/
Ccl8

AGCTACGAGAGAATCAACAATATCCA CAGAGAGACATACCCTGCTTGGT TGCCCCATGGAAGCTGTGGTTTTC

Mcp3/
Ccl7

CAAGAGCTACAGAAGGATCACCAGTA GACTTCCATGCCCTTCTTTGTC TCGGTGTCCCTGGGAAGCTGTTATCTT

Npy TACTCCGCTCTGCGACACTACA AATCAGTGTCTCAGGGCTGGAT SYBR

Orexin CTGCCGTCTCTACGAACTGTTG CGCTTTCCCAGAGTCAGGATA SYBR

Pgc-1a GTAGGCCCAGGTACGACAGC GCTCTTTGCGGTATTCATCCC ATGAAGCCTATGAGCACGAAAGGCTCAA

Pgc-1b CTCCAGGCAGGTTCAACCC GGGCCAGAAGTTCCCTTAGG CCCCCCAAAGCCTTCTGGACTGAGT

Pomc TGCTTCAGACCTCCATAGATGTGT GGATGCAAGCCAGCAGGTT SYBR

Ptgs1 TGGCCACATTTATGGAGATAAT GGACACCTGGTGGGTAGC CGTGGAACAGGCGTCCGTGT

Ptgs2 TCCAACCTCTCCTACTACACCA GGGTCAGGGATGAACTCTCT TGCTACGGGAGGAAGGGCCC

Socs3 CCGCGGGCACCTTTC TTGACGCTCAACGTGAAGAAGT CCGCGACAGCTCGGACCAGC

Tlr4 TCTGATCATGGCACTGTTCTTCTC TCTGATCCATGCATTGGTAGGT CCAGGAAGCTTGAATCCCTGCATAGAGGTAGT

Tnf-a ATGGCCCAGACCCTCACA TTGCTACGACGTGGGCTACA TCAGATCATCTTCTCAAAATTCGAGTGACAAGC

Ucp1 CTGGGCTTAACGGGTCCTG CTGGGCTAGGTAGTGCCAGTG AGCTCAAAGGTGAGCGTCCCTTCCTC

doi:10.1371/journal.pone.0112109.t001
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Immunohistochemical detection of c-Fos, human IgG and P-ERK in

the brain

Isoflurane anesthetized mice were transcardially perfused with heparinized saline,

followed by ice-cold 4% phosphate-buffered (pH 7.4) paraformaldehyde. Brains

were held at 220 C̊ in cryoprotectant (50% PBS, 30% ethylene glycol, 20%

glycerol), removed from the skull and cut into three blocks (forebrain, midbrain,

and hindbrain). After multiple washes with PBS, the blocks were soaked in a

sucrose solution (18% sucrose, 0.05% sodium azide in 1.0 M PBS) for

cryoprotection. Blocks were then frozen and cut into 30 mm coronal sections in a

cryostat microtome. Sections were separated into 5 series. For immediate

processing, sections were held in PBS at 4 C̊, and for long term storage, in a

cryoprotectant solution at 220 C̊. With appropriate washes in PBS between

incubations, free-floating sections were pretreated with 0.5% sodium borohydride

in PBS to minimize aldehyde cross-linking of the fixative. Sections were then

treated with a hydrogen peroxide solution (1.5% H2O2, 20% methanol, 0.25%

Triton X-100 in PBS) to minimize endogenous peroxidase activity. Sections were

finally placed in a blocking solution of 0.5% normal donkey serum in PBS

containing 0.5% Triton X-100 (PBST). The sections were incubated in primary

antibody (rabbit anti-c-Fos, 1:15 000; EMD Biosciences, La Jolla, CA, USA) in

primary diluent (PBST containing 0.1% gelatin and 0.05% sodium azide) for

24 hours at room temperature, or up to 48 hours at 4 C̊. They were then

incubated in secondary antibody (biotinylated donkey anti-rabbit, 1:500; Jackson

Immuno Research, West Grove, PA, USA) diluted in PBST for 2.5 hours at room

temperature. The sections were then treated with an avidin-biotin complex kit

(VECTASTAIN Elite ABC Kit, Vector Laboratories, Burlingame, CA, USA) for

1 hour at room temperature. Finally, the sections were visualized in a DAB

solution (0.5% 3,39-diaminobenzadine tetrahydrochloride, 1% cobalt chloride

and nickel chloride in stable hydrogen peroxide substrate buffer, Thermo

Scientific, Rockford, IL, USA) for 5 to 10 minutes at room temperature. For

double labeling, sections received a second incubation in the donkey serum

blocking solution. Sections were then incubated in primary antibody (rabbit anti-

human-IgG, 1:1000, AbD Serotec, Kidlington, UK; rabbit anti-pERK, 1:1000, Cell

Signaling Technology, Danvers, MA, USA) in primary diluent for 24 hours at

room temperature, or up to 48 hours at 4 C̊. They were then incubated in

secondary antibody (CY3 donkey anti-rabbit, 1:500, Jackson Immuno Research,

West Grove, PA, USA) for 2.5 hours at room temperature. Sections were washed

in PBS after every treatment step except between blocking with donkey serum and

incubation with primary antibody. All incubations were carried out with gentle

agitation from an orbital shaker. Sections were mounted onto Superfrost glass

slides using Prolong Gold Antifade Reagent with DAPI (Invitrogen, Grand Island,

NY, USA) as the mounting medium. Sections were viewed using a Zeiss Axioplan

fluorescence microscope (Carl Zeiss Microscopy, Thornwood, NY, USA). Counts

were performed visually.
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Figure 1. Characterization of anti-FGFR1c (R1c) mAb. (A) Octet association and dissociation kinetic profile for the interaction between R1c mAb and
varying concentrations of human FGFR1c. R1c mAb binding to human FGFR1c (R1c), FGFR1b (R1b), FGFR2c (R2c), FGFR2b (R2b), FGFR3c (R3c), or
FGFR4 (R4) in an ELISA. (B) R1c mAb inhibition of FGF1, 2, 4, 5, and 6 binding to NIH3T3 cells overexpressing human FGFR1c measured by Ca2+ release
in a FLIPR assay. (C) R1c mAb inhibition of FGF2, FGF19, FGF21, and FGF23 induced BaF3huFGFR1c cell proliferation. b-klotho was overexpressed in
the FGF19 and FGF21 assays and a-klotho was overexpressed in the FGF23 assay. n53 wells per treatment. Values are means ¡ SEM.

doi:10.1371/journal.pone.0112109.g001
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Statistics

The animals were randomized to experimental groups based on body weights

before treatment start. Differences between two groups were examined for

statistical significance using Mann-Whitney U-test. For multiple groups, Kruskal-

Wallis ANOVA was used followed by Mann-Whitney U-test. CLAMS P-values

Figure 2. FGFR1c mAb effects on FGFR and intracellular downstream signalling. Representative
Western blot analyses on FGFR1c (R1c) mAb (50 mg/ml), control mAb (50 mg/ml) and FGF2 (10 ng/ml)
treated (A) mouse embryonic hypothalamic N46 cells, (B) undifferentiated 3T3-L1 cells and (C) differentiated
3T3-L1 cells (D). White adipose tissue Western blot analyses after treatment of female diet-induced obese
(DIO) mice with a single injection of either R1c mAb or control mAb (10 mg/kg i.v.). The mice were fasted
during the treatment period.

doi:10.1371/journal.pone.0112109.g002
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were calculated using the MIXED procedure in SPSS. Values are presented as

means ¡ SEM. P,0.05 was considered significant.

Results

Identification and in vitro characterization of the anti-FGFR1c

antibody

A monoclonal antibody directed against human FGFR1c (R1c mAb) was

identified by scFv phage display selection. On conversion to the IgG form, the R1c

mAb bound human and mouse FGFR1c and did not bind to the other FGF

receptors FGFR1b, FGFR2b and c, FGFR3c, or FGFR4 (Fig. 1A, data for mouse

not shown). R1c mAb inhibited FGF1, FGF2, FGF4, FGF5 and FGF6 induced Ca2+

release in NIH3T3 cells overexpressing human FGFR1c (Fig. 1B). R1c mAb also

inhibited FGF2, FGF19 and FGF21 induced proliferation of BaF3huFGFR1c cells

transfected with b-Klotho (FGF19 and FGF21) but did not affect FGF23 induced

proliferation of BaF3huFGFR1c cells transfected with a-Klotho (Fig. 1C). Thus,

we have generated an FGFR1c-specific monoclonal antibody which blocks ligand-

induced FGFR1c activation.

R1c mAb was able to inhibit the FGF2 induced phosphorylation of FGFR and

major downstream signaling components including PLCc1, p70S6K1, FRS2a,

MEK, ERK1/2, JAK2, STAT3, AKT, JNK, and p38 (Fig. 2A). Furthermore, R1c

mAb inhibited FGF2-induced phosphorylation of FGFR, PLCc1, FRS2a and

ERK1/2 in both undifferentiated and differentiated 3T3-L1 cells. Interestingly, R1c

mAb also induced phosphorylation of ERK1/2 in both undifferentiated and

differentiated 3T3-L1 cells (Fig. 2B–C). In addition, R1c mAb treatment induced

acute phosphorylation of MEK and ERK1/2 in white adipose tissue (WAT)

(Fig. 1D), indicating that R1c mAb has dual antagonist/agonist properties.

R1c mAb reverses obesity and glucose intolerance via decreased

food intake

Dosing DIO mice with a single i.p. injection of R1c mAb resulted in a significant

suppression of food intake commencing 4–6 h post-dose (Fig. 3A). R1c mAb

treatment decreased the average number of feeding bouts and the amount of food

consumed during each feeding bout 24 h post-treatment while the duration of

each bout was not affected up to 36 h post-treatment (data not shown). Thus,

although R1c mAb treatment markedly decreased total food intake, it did not

disrupt normal meal patterns. Using i.v. injection, food intake inhibition

commenced 2–4 h post-dosing, whereas using s.c. delivery, the onset of food

intake inhibition was delayed for more than 12 h (data not shown).

A single injection of R1c mAb (T1/2 at 10 mg/kg s.c.58 d) in DIO mice reduced

food intake below vehicle and control mAb levels for 14 days resulting in transient

body weight loss (Fig. 3B). A single injection of R1c mAb also reduced body

weights in lean chow fed mice (R1c mAb to 91.5¡1.4% vs. control mAb
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99.8¡0.7% (means ¡ SEM) of initial start weight (,20 g) 2.5 d after the

injection, *P,0.01, Mann-Whitney U-test, n56 per group, mAb 10 mg/kg i.v.).

Repeated R1c mAb dosing lead to sustained body weight loss in both male and

female DIO mice reaching levels of age-matched lean mice (Fig. 3C) associated

with reduced body fat mass (Fig. 3D).

Figure 3. FGFR1c mAb effects on food intake, body weight and body composition. (A) 24 h cumulative
food intake and Bi-hourly food intake during the first 12 h following a single injection of either R1c mAb or
control mAb in female DIO mice (n54, 10 mg/kg i.p. indicated with an arrow). *P,0.05 vs. control mAb, Mann
Whitney U-test. (B) Body weight (n54), percent body weight change (n54) and food intake (n51, group
housed animals) following a single injection of either vehicle, R1c mAb or control mAb in female DIO mice
(10 mg/kg s.c. indicated with an arrow). (C) Body weight and body weight change following repeated
injections of either R1c mAb or control mAb in female or male DIO mice (n57–8, 10 mg/kg i.p. once weekly
indicated with arrows) compared with untreated lean mice on chow diet (n58–10). (D) Quantitative
assessment of body fat mass and body lean mass by dual-energy X-ray absorptiometry in female DIO mice
(n57, 10 mg/kg i.p. day 0, 7, 14 and 21). *P,0.05, **P,0.01, and ***P,0.001 R1c mAb fat mass vs. control
mAb fat mass and #P,0.05, and ##P,0.01 R1c mAb lean mass vs. control mAb lean mass at corresponding
treatment day, Mann Whitney U-test. Values are means ¡ SEM.

doi:10.1371/journal.pone.0112109.g003
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R1c mAb treatment did not affect active time, latency to enter open

compartments nor the time spent in the closed or open compartments in a zero

maze assessment (data not shown). Furthermore, R1c mAb treated mice did not

display signs of impaired memory learning ability in a passive avoidance test or

Figure 4. FGFR1c mAb effects on glucose tolerance and pancreatic islet cell mass. (A) Oral glucose
tolerance test (OGTT) 15 d after repeated injections of either R1c mAb or control mAb in female or male DIO
mice (n57–8, three i.p. injections 10 mg/kg on day 0, 7 and 14). Glucose and insulin area under the curve
(AUC) were calculated. **P,0.01 and ***P,0.001 vs. respective control mAb, Mann Whitney U-test. (B)
Representative pancreatic islet staining of insulin (green), glucagon (red), and nucleuses (blue), and (C) b and
a cell quantification after repeated injections with either R1c mAb or control mAb in female DIO mice after 28 d
treatment (n57, 10 mg/kg i.p. day 0, 7, 14 and 21). N.S. 5 Non Significant. (D) Percent body weight change
after a single injection of R1c mAb in female DIO mice fed ad libitum (ad lib) or control mAb treated female
DIO mice fed ad lib or pair-fed (pf) twice daily to match the food intake in R1c mAb treated female DIO mice
fed ad lib (n56, 3 mg/kg s.c., indicated with an arrow). **P,0.01 R1c mAb ad lib vs. control mAb ad lib,
##P,0.01 control mAb pf vs. control mAb ad lib, and 1P,0.05 R1c mAb ad lib vs. control mAb pf, Mann
Whitney U-test. (E) Effects on 3 h fasting glucose levels before treatment start day 0 and after 4 d treatment.
**P,0.01 vs. Treatment day 0 within respective treatment group, Mann Whitney U-test. (F) Effects on 3 h
fasting insulin levels after 4 d treatment. *P,0.05, **P,0.01 vs. Control mAb fed ad lib, Mann Whitney U-test.
Values are means ¡ SEM.

doi:10.1371/journal.pone.0112109.g004
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any signs of depression in a forced swim test (data not shown), indicating that R1c

mAb did not induce general behavior changes in mice.

R1c mAb treatment improved oral glucose tolerance in both female and male

DIO mice (Fig. 4A) and pancreas histology revealed normal a- and b-cell

distribution and islet structure (Fig. 4B–C). R1c mAb treatment decreased the

WAT and liver weights and plasma ALT and leptin levels in DIO mice compared

with control mAb treatment while there was no effect on plasma levels of

triglycerides, NEFA or total adiponectin (Table 2). Interestingly, in a pair-feeding

experiment, pair-fed control mAb treated DIO mice lost the same amount of body

weight and reduced fasting glucose and insulin levels to similar extent as R1c mAb

treated DIO mice fed ad libitum (Fig. 4D–F). Thus, the R1c mAb induced

improvement in glucose control was most likely due to the reduction in food

intake and body weight loss.

There was no significant difference between R1c mAb and control mAb treated

female DIO mice on total energy expenditure, spontaneous locomotor activity

(Fig. 5A), or core body temperature (data not shown) while RER was decreased

following R1c mAb treatment (Fig. 5B), indicating a switch to more fatty acid

oxidative metabolism during the weight loss observed during the acute treatment

period (Fig. 5C). The same findings were observed in male DIO mice after acute

R1c mAb treatment and when examined on day 13–15 after treatment start, no

significant changes were observed on energy expenditure, RER or spontaneous

locomotor activity (data not shown). R1c mAb treatment only modestly increased

brown adipose tissue (BAT) peroxisome proliferator-activated receptor c

coactivator-1 (Pgc-1)a and uncoupling protein 1 (Ucp1) (compared to control

mAb treated mice fed ad libitum) and Pgc-1b (compared to pair-fed control mAb)

mRNA levels (Fig. 5D). R1c mAb also elevated WAT Pgc-1b mRNA levels but the

WAT Ucp1 mRNA levels were below detection limits. Collectively, these data

show that the R1c mAb mediated body weight loss is primarily driven via a

reduction in food intake and not enhanced energy expenditure.

Table 2. FGFR1c (R1c) mAb effects on organ weights and plasma biochemistry.

Liver WAT Triglycerides NEFA b-hydroxybutyrate ALT Leptin Adiponectin

(g) (g) (mM) (mM) (uM) (ukat/l) (ng/ml) (ug/ml)

Females

Control
mAb

1.13¡0.02 3.14¡0.13 0.28¡0.01 0.30¡0.01 360.1¡33.0 1.15¡0.13 28.0¡2.4 0.87¡0.05

R1c mAb 1.09¡0.06 1.24¡0.23*** 0.29¡0.03 0.28¡0.01 353.8¡21.9 0.77¡0.05* 9.8¡3.5 0.82¡0.07

Males

Control
mAb

1.71¡0.14 2.04¡0.15 0.50¡0.06 0.46¡0.02 299.1¡40.1 1.35¡0.15 22.1¡3.0 0.49¡0.03

R1c mAb 1.12¡0.04** 0.94¡0.08*** 0.47¡0.03 0.44¡0.01 297.7¡46.4 0.63¡0.04*** 3.7¡1.3 0.43¡0.02

Female or male DIO mice were treated with either R1c mAb or control mAb (n57–8, 10 mg/kg i.p. once weekly for 3 w, males or 4 w, females). *P,0.05,
**P,0.01, ***P,0.001 vs. control mAb, Mann Whitney U-test. Values are means ¡ SEM.

doi:10.1371/journal.pone.0112109.t002
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Role of hypothalamic neuronal circuits for the effects of R1c mAb

R1c mAb also decreased the body weight in leptin-deficient ob/ob mice, leptin

receptor-mutant db/db mice, melanocortin 4 receptor (Mc4r)-deficient mice and

melanin-concentrating hormone receptor 1 (Mchr1)-deficient mice (Fig. 6A). In

addition, R1c mAb did not affect hypothalamic mRNA expression levels of

cocaine- and amphetamine-regulated transcript (Cart), pro-opiomelanocortin

(Pomc), neuropeptide Y (Npy), corticotropin-releasing hormone (Crh), Mch, or

Orexin (Hcrtr) in DIO mice compared with control mAb treated DIO mice fed

Figure 5. FGFR1c mAb effects on energy expenditure and spontaneous locomotor activity. (A) Energy
expenditure, spontaneous locomotor activity and (B) respiratory exchange ratio measured with a CLAMS
open circuit indirect calorimetry system following a single injection with either R1c mAb or control mAb in
female DIO mice (n57, 10 mg/kg i.p. indicated with an arrow). ***P,0.001 vs. Control mAb, linear mixed
model, N.S. 5 Non Significant. (C) Body weight change during the treatment period (42 h). **P,0.01 vs.
control mAb, Mann Whitney U-test. (D) mRNA expression in brown adipose tissue (BAT) and ovarian white
adipose tissue (WAT) 4 d after a single injection of R1c mAb in female DIO mice fed ad libitum (ad lib) or
control mAb treated female DIO mice fed ad lib or pair-fed (pf) twice daily to match the food intake in R1c mAb
treated female DIO mice fed ad lib (n56, 3 mg/kg s.c.). *P,0.05 vs. control mAb ad lib group; #P,0.05 vs.
control mAb pf group, Mann Whitney U-test. Values are means ¡ SEM.

doi:10.1371/journal.pone.0112109.g005
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Figure 6. FGFR mAb effects in genetically obese mice and hypothalamic expression of neuropeptides and cytokines. (A) Change in body weight
one week after a single injection of R1c mAb or control mAb (n58 for ob/ob, n54 for others, 10 mg/kg s.c.) in mice lacking leptin (ob/ob), functional leptin
receptor (db/db), melanocortin 4 receptor (Mc4r-/-) or melanin-concentrating hormone receptor 1 (Mchr1-/-), compared to DIO mice. *P,0.05 and ***P,0.001
vs. control mAb, Mann Whitney U-test. (B) Neuropeptide mRNA expression and (C) Cytokine mRNA expression in hypothalamus, 4 d after a single injection
of R1c mAb in female DIO mice fed ad libitum (ad lib) or control mAb treated female DIO mice fed ad lib or pair-fed (pf) twice daily to match the food intake in
R1c mAb treated female DIO mice fed ad lib (n56, 3 mg/kg s.c.). *P,0.05, **P,0.01 vs. control mAb ad lib group; #P,0.05 vs. control mAb pf group, Mann
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either ad libitum or pair-fed to match the food intake of R1c mAb treated DIO

mice (Fig. 6B and data not shown). Hypothalamic mRNA expression of agouti-

related protein (Agrp), increased in both R1c mAb and pair-fed control mAb

treated DIO mice compared to control mAb treated DIO mice fed ad libitum

(Fig. 6B). These results indicate that R1c mAb might cause food intake inhibition

via other mechanisms than the classical hypothalamic neuronal circuits known to

be of importance for regulation of food intake.

Effects of R1c mAb on hypothalamic cytokine levels

In conditions like cachexia, cytokines are strongly implicated in the mechanism

controlling the cessation of food intake, reviewed in [11]. Interestingly, R1c mAb

markedly elevated Monocyte chemoattractant protein (Mcp)1, Mcp2 (Ccl7), Mcp3

(Ccl8) and C-X-C motif chemokine 5 (Cxcl5) mRNA levels in the hypothalamus

4 d post-dosing while the mRNA expression levels of tumor necrosis factor a

(Tnfa), interleukin (Il)-1b, Il-6, C-C chemokine receptor (Ccr)2, Ccr5, Cd11c,

stromal-cell derived factor 1 (Cxcl12), Cx3cl1, interferon c (Ifnc), leukemia

inhibitory factor (Lif), prostaglandin-endoperoxide synthase (Ptgs, cyclooxygen-

ase)1, Ptgs2, suppressor of cytokine signaling 3 (Socs3), or toll-like receptor 4

(Tlr4) were unaltered compared to pair-fed control mAb treated DIO mice (Fig. 6

and data not shown). Thus, R1c mAb treatment induced expression of a specific

subset of chemokines in the hypothalamus.

Detailed studies showed that Mcp1 and Mcp3 mRNA levels were elevated in the

hypothalamus already 3 h after R1c mAb i.v. injection, coinciding with initiation

of food intake suppression. The Mcp1 and Mcp3 expression levels were highly

elevated 12 h post-injection and remained increased 5 d post-injection while the

related cytokine Mcp2 was not increased by R1c mAb at any time point (Fig. 6D).

Furthermore, Tnfa mRNA levels were elevated in the hypothalamus 12 h and 5 d

post-injection, whereas Il-1b was only significantly increased 12 h after R1c mAb

injection compared with fasted control mAb treated DIO mice. Importantly,

fasting in itself did not affect hypothalamic mRNA expression levels of Mcp1,

Mcp2, Mcp3, or Il-1b (Fig. 6D). Liver Mcp1 mRNA expression and plasma MCP1

levels were not elevated by R1c mAb treatment at any time point (data not

shown). Thus, R1c mAb induced a rapid and marked elevation in hypothalamic

Mcp1 and Mcp3 cytokine expression in a time frame that coincides with initiation

of food intake suppression.

Whitney U-test. (D) Cytokine mRNA expression in hypothalamus 3 h, 12 h and 5 d after a single injection of R1c mAb in female DIO mice fed ad lib
compared to control mAb treated mice fed ad lib or fasted for the duration after the treatment (n56, 10 mg/kg i.v.). *P,0.05 and **P,0.01 vs. control mAb ad
lib group; #P,0.05 and ##P,0.01 vs. control mAb fasted group, Mann Whitney U-test. Values are means ¡ SEM.

doi:10.1371/journal.pone.0112109.g006

FGFR1c MAb Ameliorates Obesity via Central Mechanisms

PLOS ONE | DOI:10.1371/journal.pone.0112109 November 26, 2014 18 / 26



Figure 7. R1c mAb effects on c-Fos activation, human IgG accumulation and phosphorylation of ERK1/2 and p70S6K1 in the brain. (A)
Representative photomicrographs and (B) Quantification of R1c mAb induced neuronal activity as measured by c-Fos labelling 3 h after a single injection of
R1c mAb or control mAb in female DIO mice (n53–5, 10 mg/kg i.v., all mice fasted during the 3 h treatment period). *P,0.05, **P,0.01 vs. control mAb,
Mann Whitney U-test. Values are means ¡ SEM. (C) Accumulation of R1 mAb as shown by representative confocal microscope images detecting human
IgG 7 h after a single injection of R1c mAb in female DIO mice (10 mg/kg i.p.). (D) Western blot analyses of phosphorylation of ERK1/2 and p70S6K1 in the
hypothalamus 3 h and 12 h post-injection with R1c mAb in female DIO mice fed ad libitum (al) compared to control mAb treated mice fed al or fasted for the
duration after the injection. All mAbs were delivered at 10 mg/kg, i.v. and a-Tubulin is given as protein loading control. (E) Representative confocal
microscope images showing phosphorylated ERK (p-ERK) 7 h after a single injection of R1c mAb or control mAb in female DIO mice (10 mg/kg i.p., all mice
fasted during the 7 h treatment period). AP, area postrema; ARC, arcuate nucleus; ME, median eminence; NTS, nucleus tractus solitaries; PVH,
paraventricular hypothalamic nucleus; SFO, subfornical organ.

doi:10.1371/journal.pone.0112109.g007
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R1c mAb accumulation and activation of neurons and kinases in

the brain

To further explore which specific neuronal circuits and areas within the brain that

were affected by R1c mAb treatment, we first measured the expression of the

immediate early gene c-Fos, a reliable marker of neuronal activity. Interestingly, in

the area postrema and subfornical organ, there was a strong R1c mAb induced

neuronal c-Fos activation 3 h (Fig. 7A–B) and 12 h after an i.v. injection and 7 h

after an i.p. injection (data now shown). In contrast, the c-Fos signal in the

paraventricular nucleus of the hypothalamus was similar in both R1c and control

mAb treated mice (Fig. 7B). We could further confirm accumulation of human

IgG in the median eminence with a distinct labeling of tanycytes at the base of the

3rd ventricle and adjacent arcuate nucleus, as well as in the subfornical organ and

area postrema (Fig. 7C).

We hypothesized that if the dramatic increase in hypothalamic expression of

certain cytokines upon R1c mAb treatment was physiologically important, we

could expect to also see hypothalamic activation of ERK1/2 and p70S6K1

signaling pathways shown to be important for regulation of food intake [12–15].

R1c mAb increased hypothalamic phosphorylation of ERK1/2 and p70S6K1 12 h

post-injection, with a trend also 3 h post-injection (Fig. 7D). The increased

phosphorylation of ERK1/2 and p70S6K1 was not apparent 30 min post-injection

when food intake was not affected (data not shown). Thus, activation of protein

kinases ERK1/2 and p70S6K1 was associated with the initial time-course of food

intake suppression caused by R1c mAb treatment. In addition, using double-

labeling immunohistochemistry for p-ERK1/2 and c-Fos, R1c mAb treatment was

found to increase the phosphorylation of ERK1/2 in each of the three

circumventricular organs, particularly in the area postrema and subfornical organ

Figure 8. FGFR1c FAb fragment effects on FGFR1 down-stream signalling and body weight. (A) Representative Western blot analyses on FGFR1c
(R1c) Fab, control FAb, R1c mAb, control mAb (50 mg/ml) and FGF2 (10 ng/ml) treated undifferentiated 3T3-L1 cells. (B) Body weight following repeated
injection of either R1c FAb or control FAb fragments in female DIO mice (160 mg/kg/day, sc, BID, n54). *P,0.05, R1c FAb vs. control FAb at corresponding
treatment day, Mann Whitney U-test. Values are means ¡ SEM.

doi:10.1371/journal.pone.0112109.g008
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compared to control mAb treated mice (Fig. 7E). Immunoreactivity seemed to be

mainly concentrated in dendritic/axonal processes rather than in neuronal

cytoplasm. Thus, increased phosphorylation of ERK1/2 implicates the ERK1/2

MAP kinase pathway within neurons of the circumventricular organs and in the

mediobasal hypothalamus in the food intake suppressing effect of R1c mAb

treatment.

R1c mAb agonism could be due to induced FGFR1c homodimerization leading

to ERK1/2 phosphorylation similar to endogenous agonists [16]. In an attempt to

see if FGFR1c antagonism only could cause weight-loss, a FAb fragment of the R1c

mAb was generated. In contrast to R1c mAb, R1c FAb did not induce

phosphorylation of ERK1/2 in 3T3-L1 cells but still antagonized FGF2 induced

ERK1/2 phosphorylation (Fig. 8A). In addition, R1c FAb still caused body weight

loss in DIO mice (Fig. 8B), showing that FGFR1c antagonism alone can cause

body weight loss.

Discussion

Previously described FGFR1c monoclonal antibodies affecting body weight in

animals have been claimed to be either purely antagonistic (IMC-A1) [4] or

agonistic [5]. Here we describe that an anti-FGFR1c monoclonal antibody can

possess both antagonistic and agonistic properties. R1c mAb was found to

selectively bind FGFR1c and to prevent binding of FGF1, FGF2, FGF4, FGF5, and

FGF6 to FGFR1c and to inhibit FGF2, FGF19, and FGF21 induced proliferation.

R1c mAb also antagonized FGF2 induced phosphorylation of FGFR and multiple

downstream signaling molecules in both neuronal N46 cells and 3T3-L1 cells.

Unexpectedly, R1c mAb also increased phosphorylation of ERK1/2 in both

undifferentiated and differentiated 3T3-L1 cells and in WAT after in vivo

treatment similar to the agonistic FGFR1 mAb described by Wu et al [5].

Recently, another ‘‘FGF21 mimetic’’ mAb targeting b-Klotho was found to

decrease body weight and improve glucose homeostasis in cynomolgus monkeys

[17]. At present, it is a bit unclear how R1c mAb can have dual antagonistic/

agonist actions but it does not seem to be related to absence or presence of b-

Klotho since b-Klotho was present in differentiated 3T3-L1 cells but not in

undifferentiated 3T3-L1 cells (data not shown). However, R1c FAb did not induce

ERK1/2 phosphorylation in 3T3-L1 cells, indicating that R1c mAb agonistic

action is due to induced FGFR1c homodimerization.

R1c mAb treatment modestly increased Pgc-1a, Pgc-1b and Ucp1 mRNA levels

in BAT but did not affect total energy expenditure in contrast to the agonistic

FGFR1 mAb described by Wu et al [5]. R1c mAb had however marked effects on

food intake and FGFR1 is expressed in many areas in the brain including areas

where R1c mAb accumulated such as the circumventricular organs, and in the

hypothalamus [18] and Fgfr1c has been shown to be the dominant isoform of

Fgfr1 in the hypothalamus [4]. R1c mAb treatment caused potent body weight

loss in DIO mice and the weight loss could be accounted for entirely by decreased
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food intake in a pair-feeding experiment. We further showed that R1c mAb also

caused marked body weight loss in ob/ob and db/db mice and in mice lacking the

Mc4r or Mchr1. In addition, R1c mAb did not affect hypothalamic expression

levels of Cart, Npy, Crh, Mch, Hcrtr/Orexin, or Agrp indicating that R1c mAb

could cause food intake inhibition via other mechanisms than through classical

hypothalamic neuronal circuits known to be of importance for regulation of food

intake [19].

Although we cannot exclude that circulating immune cells could play a role in

the R1c mAb mediated increase in hypothalamic expression levels of Mcp1, Mcp3,

Tnfa, and Il-1b, circulating levels of MCP1 and liver expression of Mcp1 were

unaffected, indicating a centrally mediated effect. CNS inflammation has

paradoxically been found to promote both positive and negative energy balance

[20]. HFD feeding promoted low grade hypothalamic inflammation in

experimental animals [21–26] while pharmacological or genetic inhibition of JNK

[21], IKKb/NF-kB [24,25], toll-like receptor 4 (TLR4) [23], or myeloid

differentiation factor 88 (MyD88) [22] decreased food intake leading to body

weight loss. Furthermore, short-term HFD feeding has been found to cause

hypothalamic reactive gliosis and neuronal injury in mice and hypothalamic

gliosis was also observed in obese humans [26]. On the other hand, conditions

associated with cachexia such as certain types of cancer, anorexia, fever,

anhedonia or exposure to bacterial endotoxins have also been associated with

increased levels of pro-inflammatory cytokines [11]. Lipopolysaccharide (LPS) -

or muramyl dipeptide-induced anorexia increased hypothalamic gene expression

of several cytokines [27] and central administration of MCP1, RANTES, IL-8, or

IL-1b has been shown to decrease food intake [28,29]. Both MCP1 and its

receptor CCR2 are expressed in astrocytes and neurons in the hypothalamus and

peripheral LPS administration was found to increase MCP1 binding in the

hypothalamus [30,31]. R1c mAb treatment did not affect core body temperature,

energy expenditure, spontaneous locomotor activity, muscle wasting, general

behavior or systemic MCP1 levels arguing against general inflammation-induced

cachexia as a mechanism for R1c mAb mediated inhibition of food intake and

body weight loss. Rather, the R1c mAb mediated marked induction of Mcp1 and

Mcp3 in the hypothalamus coinciding with the initiation of food intake

suppression could have direct effects on food intake inhibition. Interestingly,

Shirazi et al recently showed that glucagon-like peptide 1 (GLP-1, exendin-4)

mediated suppression of food intake and body weight was mediated by central

elevation of IL-6 and IL-1 [32], indicating that specific hypothalamic cytokines

could play a broader role in controlling food intake and body weight in response

to different pharmacotherapies than previously appreciated.

FGF1 and FGF2 have been implicated in the central regulation of food intake.

FGF1 levels were markedly increased in the cerebrospinal fluid following a meal or

i.p. injection of glucose and i.c.v. administration of FGF1 or FGF2 decreased food

intake in rats [33–35]. Administration of polyclonal anti-FGFR1 antibodies into

the bilateral lateral hypothalamic area increased food intake in rats [36],

indicating that the R1c mAb mediated decrease in food intake could at least partly
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be due to an FGFR1c agonistic action. Alternatively, the effect of R1c mAb on

food intake inhibition may be due to an FGFR1c antagonistic action as also

demonstrated using an antagonistic R1c FAb fragment. FGF1 and FGF2 are

abundant in the brain [18] and additional administration via i.c.v. injections of

FGF1 or FGF2 [33–35] may result in high ligand concentrations in the brain.

Excessive ligand concentrations may act in an antagonistic mode and other FGFRs

than FGFR1c may be important for the FGF signalling [37].

Clearly, effects of R1c mAb on the area postrema could be responsible for its

food intake and body weight-reducing effects, as this circumventricular area in the

caudal brainstem is intimately related to both ascending and descending

medullary structures involved in the control of food intake and energy balance

regulation, such as the nucleus of the solitary tract and the hypothalamus. The

strong activation of subfornical organ neurons was unexpected, as the role of this

circumventricular structure in food intake and energy balance regulation is less

well known. However, more recently a case has been made for such a role on the

basis of strong effects of relevant peptides such as leptin and orexin on neurons in

the subfornical organ [38–40]. It would be certainly worthwhile to pursue the role

of this area in the weight-reducing effects of the R1c mAb in addition to the

activation of tanycytes lining the ventral portions of the 3rd ventricle with

communication to the basomedial hypothalamus. Interestingly in this respect,

FGF2 was recently found to enhance proliferation of hypothalamic 3rd ventricle a-

tanycytes in vivo [41]. Additionally, Balland et al recently showed that re-

establishing ERK signalling in median eminence tanycytes (which is decreased in

DIO), restored both leptin transport to the hypothalamus and leptin sensitivity

[42]. It would thus be interesting for future studies to see if R1c mAb treatment

could affect leptin transport to the hypothalamus and leptin sensitivity in the

obese state.

R1c mAb treatment activated the FGFR1c downstream signalling proteins

ERK1/2 and p70S6K1 via phosphorylation in the hypothalamus associated with

the initial time-course of hypothalamic cytokine induction and suppression of

food intake and we could also detect phosphorylation of ERK1/2 in the

circumventricular organs. Leptin has also been found to activate ERK in the

hypothalamus and pharmacological blockade of ERK reversed the anorectic and

weight-reducing effects of leptin [14]. Similarly, amylin and cholecystokinin

(CCK) have been found to activate ERK in area postrema and nucleus tractus

solitarius, respectively and ERK inhibition attenuated the ability of amylin and

CCK to reduce food intake [13,15]. Overexpression of constitutively active

p70S6K1 in mediobasal hypothalamus has been shown to decrease food intake

protecting against HFD-induced obesity, fat deposition and insulin resistance

[12]. Thus, R1c mAb mediated suppression of food intake could be due to

activation of ERK1/2 and p70S6K1 in the hypothalamus.

R1c treatment markedly improved glucose tolerance in DIO mice. This was

most likely due to the decrease in food intake and body weight loss since pair-fed

control mAb treated DIO mice displayed similar improvements in fasting plasma

glucose and insulin levels as R1c mAb treated DIO mice. Furthermore, R1c mAb
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treatment did not influence pancreatic b and a cell mass or islets morphology.

Pancreatic overexpression of dominant-negative FGFR1c using the Ipf1/Pdx1

promoter has previously been shown to decrease the number of b-cells, change

islets morphology, and to cause diabetes in mice [43]. Marked overexpression of

dominant-negative FGFR1c already in the developing pancreas may have caused

developmental pancreas derangements as compared to treatment of DIO mice

with R1c mAb.

In summary, we have generated a novel human monoclonal antibody directed

against FGFR1c, R1c mAb, having dual antagonistic/agonistic properties.

Treatment of DIO mice with R1c mAb ameliorated obesity and glucose

intolerance due to decreased food intake and body weight loss. The decreased

food intake was associated with increased hypothalamic Mcp1 and Mcp3

expression and phosphorylation of ERK1/2 and p70S6K1.
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