
Rho GTPases in animal cell cytokinesis: An occupation by the 
one percent

Shawn N. Jordan1 and Julie C. Canman1,*

1Department of Pathology and Cell Biology, Columbia University, New York, NY 10032

Abstract

Rho GTPases are molecular switches that elicit distinct effects on the actomyosin cytoskeleton to 

accurately promote cytokinesis. Although they represent less than 1% of the human genome, Rho 

GTPases exert disproportionate control over cell division. Crucial to this master regulatory role is 

their localized occupation of specific domains of the cell to ensure the assembly of a contractile 

ring at the proper time and place. RhoA occupies the division plane and is the central positive Rho 

family regulator of cytokinesis. Rac1 is a negative regulator of cytokinesis and is inactivated 

within the division plane while active Rac1 occupies the cell poles. Cdc42 regulation during 

cytokinesis is less studied, but thus far a clear role has only been shown during polar body 

emission. Here we review what is known about the function of Rho family GTPases during cell 

division, as well as their upstream regulators and known downstream cytokinetic effectors.

Rho family guanosine triphosphatases or GTPases (including RhoA, Rac1, and Cdc42) act 

as molecular switches that choreograph complex cellular behaviors in eukaryotes. RhoA, the 

founding member of the Rho family, was originally isolated from Aplysia ganglia as a Ras 

homolog [1]. Soon after, Cdc42 was identified in budding yeast [2, 3], and then Rac1 was 

discovered as a target of botulinum toxins [4]. Similar to Ras, Rho GTPase signaling is 

misregulated in a multitude of human cancers (for review see [5–9]). Rho family small 

GTPases exert their control over the cell by each regulating distinct functions of the actin 

cytoskeleton [10, 11], as well as microtubule dynamics [12–15]. Recently, it has become 

clear that RhoA, Rac1, and Cdc42 act in concert to spatially and temporally regulate actin 

dynamics and orchestrate complex cellular processes [16]. These processes include cell 

motility, cell polarization, cell adhesion, chromosome inheritance, and, most importantly for 

this review, cytokinesis.

Rho GTPases are lipid-modified enzymes that function as master regulators in many signal 

transduction cascades. Lipid modification allows association with the plasma membrane, 

and GTP hydrolysis confers a binary molecular “switch” activity on Rho family proteins. 

When bound to GTP they are active and can interact with downstream effectors; when 

bound to GDP, however, they are inactive. Because the innate GTP hydrolysis activity of 

small GTPases is quite low, regulatory proteins further modulate Rho GTPases by 

catalyzing GTP hydrolysis and exchange of GDP for GTP. Three main classes of upstream 

regulatory proteins modulate small GTPases. Guanosine nucleotide dissociation inhibitors 
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(GDIs) maintain GTPases in their inactive state by binding to their GDP-bound form, 

sequestering them in the cytosol, as well as protecting them from proteolysis [17]. Guanine 

nucleotide exchange factors (GEFs) catalyze the exchange of GDP for GTP, thus activating 

GTPases [18]. GTPase activating proteins (GAPs) catalyze the intrinsic hydrolase activity of 

the GTPase, thus turning ‘off’ the GTPase [18]. Many of these regulators control the 

localized activity of Rho GTPases by themselves localizing to the sub-cellular domain of 

interest, often via transport by/or association with the microtubule and actin cytoskeletons. 

Thus spatial and temporal regulation of Rho GTPases and their regulators leads to local 

modulation of downstream effectors and directed alterations in actin dynamics.

Cytokinesis, the physical division of one cell into two daughter cells, is a quintessential 

example of Rho family GTPase coordination that requires a great deal of spatial and 

temporal synchronization driven by upstream regulators to ensure accuracy. Separation of 

the chromosomes must be coordinated with ingression of the plasma membrane in order to 

generate two distinct daughter cells, each with a single genomic complement. To position 

the division plane, the microtubule-rich mitotic spindle communicates with the cell cortex 

via Rho GTPase-mediated signal transduction pathways to locally activate the assembly and 

constriction of the actomyosin contractile ring at the cell equator [19]. The spindle thus 

coordinates nuclear and cytoplasmic division by localizing a number of Rho regulators to 

the division site.

This review provides a summary of what is currently known about the function and 

regulation of Rho family GTPases during cytokinesis in animal cells. We will focus mainly 

on the most widely studied positive regulator of cytokinesis, RhoA [19], but we will also 

cover what is known about the less well-studied members of the Rho family, Rac1 and 

Cdc42. In each section, we will discuss any GEFs and GAPs required for cytokinesis. 

RhoGDIs will not be discussed here in detail. While it is likely that RhoGDIs participate in 

cytokinesis (see [20, 21]), specific cytokinetic RhoGDIs per se have not yet been identified 

in metazoa. Nevertheless, RhoGDIs are shared by Rho family members and these regulators 

function to protect Rho GTPases from degradation [22]; thus overexpression or even local 

enrichment of one Rho family member could easily affect the activation state and stability of 

other Rho family members through competition for RhoGDIs. As many of the landmark 

studies on the role of Rho GTPases during cytokinesis rely heavily on the expression of 

constitutively active or dominant negative mutant forms of RhoA, Rac1, and/or Cdc42, it 

should be taken into consideration that some of the results produced by these studies may be 

due to indirect effects on other Rho family members [22].

Importantly, the story of Rho GTPase regulation during cytokinesis is not complete; there 

are many unknowns and confusing results, which we also attempt to cover here. Finally, 

although we emphasize cytokinesis, the same general paradigms may underlie Rho GTPase 

control of a multitude of complex cell behaviors.

A Conserved Positive Regulatory Role for RhoA in Cytokinesis

RhoA positively regulates cytokinesis in dividing embryos, meiotically dividing cells, and in 

many somatic divisions. An essential role for RhoA in cytokinesis was first shown in 
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dividing Xenopus embryos [20]. Embryos injected with a dominant negative or 

constitutively active form of RhoA or C3 exotransferase, a bacterial toxin that specifically 

ADP ribosylates and inactivates RhoA [23], fail to properly form a contractile ring and do 

not divide (see also [24]). Cytokinesis in Drosophila melanogaster embryos is also 

dependent on RhoA. Fly embryos either isolated from RhoA-null mutants, injected with C3, 

or expressing a dominant-negative RhoA, all show defects in cytokinesis [25, 26]. Further, 

RhoA is required for cytokinesis in the nematode Caenorhabditis elegans, as depletion of 

the worm RhoA ortholog (RHO-1) in embryos by RNA interference blocks cytokinesis with 

little to no cleavage furrow ingression [27, 28]. Microinjection of C3 into early zebrafish 

embryos or mouse eggs also blocks early cleavages [29, 30]. Thus RhoA plays a conserved 

role in embryonic cytokinesis across metazoa.

RhoA also plays a conserved role in meiotic cytokinesis in a multitude of animal systems 

(for review see also [31–33]). Injection of mouse eggs with C3 or anti-RhoA antibodies 

leads to a failure of polar body emission during meiosis II [30, 34]. In Xenopus eggs, C3 

expression prevents meiotic cytokinesis [35, 36]. Worm eggs likewise require RhoA activity 

for polar body emission (our unpublished results; [37]). Thus meiotic cytokinesis in animal 

systems is also dependent on RhoA.

In mammalian somatic cells, it is less clear whether there is an absolute requirement for 

RhoA during cytokinesis. In some cases, RhoA is obviously required for cell division. For 

example, treatment of rat kidney epithelial cells or Mouse T lymphoma cells with C3 

completely blocked cytokinesis [38, 39]. In addition, one study found that an isolate of NIH 

3T3 cells became binucleate following treatment with C3 [40], and RhoAf/f LoxP flanked 

homozygous mouse embryonic fibroblasts also fail in cytokinesis when RhoA deletion is 

induced [41]. In other cases, however, RhoA activity may be dispensable for division 

depending on the degree of cell adhesion (see more below). For example, poorly adherent 

cells, such as HeLa cells and some NRK cells, display major defects in cytokinesis and 

contractile ring constriction when treated with C3, while more adherent cells treated with 

C3, including a separate NIH 3T3 isolate and Rat1A cells can divide successfully [38, 42]. 

Many of the cells that successfully divided following C3 treatment nevertheless displayed 

abnormalities during constriction and/or had some minor rate of cytokinesis failure, so 

cytokinesis likely is not “normal” without RhoA activity [38]. In tissue specific knockout 

mice, a role for RhoA in cytokinesis is equally confusing. That is, the deletion of RhoA does 

not perturb keratinocyte division in vivo, but leads to multi-nucleation when deleted in 

primary cultured keratinocytes from the same mice [43]. Thus a clear role for RhoA activity 

in mammalian somatic cell cytokinesis is debatable.

How can the differences in a requirement for RhoA in somatic cell cytokinesis be 

explained? One possibility is that mammalian RhoA paralogs RhoB and RhoC function 

redundantly with RhoA during cytokinesis. However, this would not explain the C3 results 

as this toxin inhibits RhoA, RhoB, and RhoC [23]. It is also possible that cytokinesis in 

some mammalian cell types depends more heavily on regulation by other Rho family small 

GTPases (see more below).
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RhoA localizes to equatorial membrane before cell division occurs

The spatial and temporal localization of active (GTP-bound) RhoA suggests that it specifies 

the division plane. Immuno-localization studies have shown that RhoA protein accumulates 

at the division plane before the cell begins to divide in a number of mammalian cultured cell 

lines as well as in developing embryos across multiple phyla [44–49]. A zone of RhoA also 

predicts the division plane in monopolar cells dividing to produce anucleate cytoblasts [50]. 

The use of in vivo RhoA activity probes has confirmed an equatorial zone of active RhoA in 

the division plane precedes furrow formation in multiple cultured cell lines, echinoderm and 

Xenopus embryos [35, 51], and during polar body emission in Xenopus eggs [35, 52].

It is hypothesized that spindle microtubules dictate the site of cell division by specifying 

RhoA activation. Indeed, following microtubule depolymerization, GTP-bound RhoA does 

not properly localize to the cell equator [35, 53]. RhoA activity dynamics can also respond 

to the anaphase mitotic spindle. This was shown most elegantly with a micromanipulation 

assay akin to those done by Ray Rappaport [54], where the mitotic spindle was pushed with 

a small glass rod to displace it from the cell center leading to a corresponding displacement 

of the contractile ring [55]. Simultaneous monitoring of RhoA activity via a fluorescently 

tagged RhoA activity probe (GFP-Rhotekin Rho Binding Domain) revealed that the zone of 

RhoA activation moved in concert to the new position of the spindle and thus established a 

new division plane [35].

There are two sets of anaphase spindle microtubules that might activate RhoA in the 

equatorial plane: central spindle (or midzone) microtubules and astral microtubules. The 

central spindle is an anti-parallel array of highly stable microtubules that forms between the 

separating chromosomes in anaphase. Astral microtubules are dynamic microtubules that 

emanate circumferentially from the centrosomes. A subset of these astral microtubules grow 

from the chromosomal regions of the spindle towards the division plane and contact the 

equatorial cortex directly, and are more stable than most astral microtubules [56, 57]. It has 

been proposed that these more stable microtubules promote efficient cytokinesis via motor 

dependent delivery of a furrow-stimulating factor to the cell cortex at the division plane [53, 

56–63]. Experiments by von Dassow et al., however, rule out the necessity for direct contact 

via astral microtubules, at least in cleavage stage echinoderm embryos. They used the 

tubulin deacetylase inhibitor Trichostatin A (TSA) to specifically disrupt dynamic astral 

microtubules while affecting neither anaphase onset nor central spindle assembly [64]. 

Without astral microtubule-mediated contact between the cortex and the spindle, cytokinesis 

was able to proceed, as did the assembly of an equatorial zone of RhoA activity, though the 

zone of RhoA activity was broader than in controls [64]. This experiment suggests the zone 

of active RhoA in this system can be specified without microtubules contacting the cell 

cortex. The molecular mechanisms that permit the spindle to activate RhoA from a distance 

will be an exciting area of study in the future.

RhoA GEFs and GAPs Occupy the Division Plane during Cytokinesis

Theoretical and in vivo studies have found that RhoA GTPase “flux” or cycling between 

GTP-RhoA and GDP-RhoA is critical to tightly focus a zone of active RhoA at the site of 

Jordan and Canman Page 4

Cytoskeleton (Hoboken). Author manuscript; available in PMC 2014 November 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cell division [21, 65]. This spatial regulation of RhoA activity during cytokinesis is thought 

to be driven by targeted RhoA GEFs and GAPs, many of which associate with the central 

spindle and cell cortex within the division plane (Figure 1). The oncogenic Rho family GEF 

Ect2 (epithelial cell transforming sequence 2) is required for cytokinesis in a multitude of 

species across phyla. Ect2 localizes to the central spindle in Drosophila [58, 66, 67], 

Xenopus eggs undergoing polar body extrusion [36], and in mammalian cultured cells [48, 

49, 60]. Ect2 associates with the central spindle by binding to MgcRacGAP, which forms a 

complex with the plus end directed kinesin MKLP1 (called Centralspindlin, see more below) 

[48, 49, 60, 67–69]. In C. elegans, RNAi-mediated depletion of ECT-2 disrupts the first 

embryonic cleavage [37, 70], and a hypomorphic ect-2 allele was shown to block 

cytokinesis in epidermal P cells [71]. Mutations in the Drosophila ortholog of Ect2 (Pebble) 

result in a failure to form a contractile ring and subsequent failure of cytokinesis [25]. 

Although in vitro Ect2 can function as a GEF for Cdc42, Rac1, and RhoA [72], disrupting 

Ect2 function phenotypically resembles RhoA disruption with a loss of contractile ring 

constriction. Therefore Ect2 is thought to predominantly function upstream of RhoA.

While Ect2 appears to be the primary regulator of RhoA activation during cytokinesis, other 

GEFs are likely to assist with RhoA activation to ensure efficient division, at least in 

cultured human cells. Like Ect2, MyoGEF also localizes to the central spindle, is required 

for cytokinesis, and promotes activation of RhoA in U2OS and HeLa cell lines [73, 74]. 

Another central spindle associated GEF, GEF-H1, has also been shown to participate in 

RhoA activation. Disruption of GEF-H1 leads to ectopic blebbing and furrowing, and 

increased cytokinesis failure in HeLa cells [75]. The RhoA GEF Vav3 is transiently 

upregulated during mitosis, and over-expression of Vav3 disrupts cytokinesis in a RhoA 

dependent manner [76]. How all of these RhoA GEFs work together to promote efficient 

cytokinesis, however, is not well understood.

Two GAPs have been implicated in regulating RhoA activity during cytokinesis to date: 

p190RhoGAP and MgcRacGAP. p190RhoGAP localizes to the contractile ring in a breast 

cancer cell line [77]. In vitro, p190RhoGAP can inactivate RhoA, Rac1, and Cdc42 [78]; 

however, during cytokinesis p190RhoGAP has been proposed to predominantly regulate 

RhoA [79, 80]. In support of this model, experiments with FRET-based activity probes for 

RhoA have shown that dominant negative p190RhoGAP expression increases the levels of 

active RhoA, while expression of control p190RhoGAP reduces the levels of active RhoA 

[80]. As would be expected with a RhoA GAP, the overexpression of p190RhoGAP blocks 

cytokinesis [77]. Further, endogenous p190RhoGAP degradation is required for cytokinesis 

[81], and this reduction in p190RhoGAP levels may also help promote activation of RhoA 

during cell division.

Although MgcRacGAP (male germ cell Rac GAP) is clearly essential for cytokinesis [27, 

28, 48, 49, 60, 65, 68, 69, 82–89], a role for MgcRacGAP in directly regulating RhoA is 

highly controversial. MgcRacGAP is targeted to the central spindle via association with the 

plus-end directed kinesin ZEN-4/MKLP1 (Figure 1) [90]. Disrupting this association leads 

to cytokinesis failure in most metazoan systems [28, 49, 58, 90]. Further, artificially 

targeting the fly ortholog of MgcRacGAP (RacGAP50C) to the cell membrane in S2 cells 

by fusing it to an integral membrane protein leads to ectopic furrowing at sites of enrichment 
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[84]. Thus MgcRacGAP is not only required but also sufficient in some systems for 

cytokinetic furrow formation.

The controversy over a role for MgcRacGAP in regulating RhoA during cytokinesis stems 

from extensive in vitro data that shows MgcRacGAP has strong GAP activity for Cdc42 and 

Rac1, but not for RhoA [27, 87, 91, 92]. Because of the importance of RhoA during 

cytokinesis, however, MgcRacGAP was first proposed to predominantly control RhoA 

activity [27, 58, 82], perhaps by promoting GTP turnover [21, 65]. One study in HeLa cells 

suggested that phosphorylation of the GAP domain of MgcRacGAP at S387 in anaphase by 

Aurora-B kinase can switch the specificity of the GAP activity from Rac1 to RhoA [93]. 

This model is contentious, however, as S387 is not conserved across phyla. Recently, the 

Aurora-B specificity switch model has been directly challenged, as MgcRacGAP was found 

to maintain higher specificity towards Rac1 and Cdc42 with and without inhibition of 

Aurora-B, CDK1, or Polo kinase activity in HeLa cells [87]. Moreover, the S387D mutant 

proposed to mimic the Aurora-B driven switch [93], was found to eliminate all GAP activity 

rather than increase the specificity for RhoA [87].

In support of a role for MgcRacGAP in RhoA regulation, expression of CYK-4/

MgcRacGAP bearing mutations in, or deletion of, the GAP domain broadens the 

equatorially associated zone of RhoA activity and blocks cytokinesis in dividing Xenopus 

embryos and cultured mammalian cells [42, 65]. However, genetically in both flies and 

worms, RhoA disruption enhances GAP dead MgcRacGAP mutants, indicating RhoA 

activation probably functions in parallel to MgcRacGAP activity [28, 87, 94] (see more 

below). In other cellular contexts RhoA activity is highly interdependent upon both Rac1 

and Cdc42 activity (e.g. [16]). Therefore the effect of disrupting MgcRacGAP activity on 

RhoA during cytokinesis may not be direct. A recent publication proposed a complicated 

role for MgcRacGAP in activating RhoA via regulation of the GEF Ect2 [86], but there is 

currently no evidence that the GAP domain of MgcRacGAP can regulate Ect2 in vivo or in 

vitro. Undoubtedly the search for a clear and specific RhoA GAP with a conserved role in 

cytokinesis will be the subject of future research.

RhoA Effectors during Cytokinesis

During cytokinesis, RhoA functions upstream of both the assembly and constriction of an 

actomyosin contractile ring (Figure 2). RhoA activity elicits these events by simultaneously 

triggering both filamentous actin assembly and myosin-II motor activation [19]. RhoA 

promotes filamentous actin assembly via activation of the diaphanous-related formins, 

releasing these proteins from an auto-inhibited state [95, 96]. Once activated, diaphanous-

related formins nucleate and elongate the linear actin filaments required for the formation of 

a contractile ring [97–99]. To trigger myosin-II activation, RhoA is upstream of two key 

kinases: 1) Rho-associated protein kinase (ROCK) and 2) Citron kinase. ROCK and Citron 

[100] are related serine-threonine kinases that modulate actomyosin-based contractility by 

phosphorylating myosin light chain (MLC) and activating myosin-II filament assembly and 

thus the motor activity of myosin-II [101, 102]. Active myosin-II binds to diaphanous-

related formin-generated actin filaments and drives constriction of these filaments, much 

like the sliding filament model defining the contraction of muscle cells. ROCK also inhibits 
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myosin light chain phosphatase, which would otherwise dephosphorylate MLC and inhibit 

myosin-II motor activity [103]. In addition, ROCK activates LIM kinase, which 

phosphorylates and inactivates the actin depolymerizing factor cofilin prior to mitosis, thus 

stabilizing actin filaments [104, 105]. In this way, RhoA is thought to stimulate both the 

assembly and constriction of an actomyosin contractile ring.

The role of Citron Kinase during cytokinesis is less well conserved, and binding of Citron to 

RhoA does not seem to depend on GTP association [106]. Disruption of Citron in cultured 

mammalian cells or Drosophila S2 cells and neuroblasts results in a late cytokinesis defect 

with reduced levels of RhoA at the midbody [106], but does not block assembly or 

constriction of the contractile ring [46, 106–109]. Throughout Drosophila development, 

Citron kinase is required for cytokinesis in many tissues [94, 110]. However, Citron 

knockout mice and rats develop normally, and cytokinesis defects are predominantly 

observed in neuronal cells [111–114] and developing spermatocytes [115]. Thus, outside of 

flies, Citron likely plays a more specialized role or functions redundantly with other myosin-

II activators during cytokinesis in a tissue specific manner.

Rac1: A Negative Regulator of Cytokinesis

Unlike RhoA, Rac1 has been proposed to negatively regulate contractile ring constriction 

during cytokinesis (Figure 2) [116]. During interphase, Rac1 activity stimulates membrane 

protrusion at the leading edge of the cell [10] by promoting actin nucleation through 

WAVE-mediated activation of the Arp2/3 complex, leading to the formation of a dynamic 

branched actin network [117]. During cytokinesis, ectopic activation of Rac1 disrupts 

division. In dividing mammalian cultured HeLa, Rat1A, NIH3T3, and NRK cell lines, 

expression of constitutively active Rac1 induces multinucleation [42]. Further, a FRET 

reporter for Rac1 activity in HeLa cells showed a reduction in activity at the division plane 

with increased signal in the polar cortical regions [51]. As expected for a negative regulator, 

the expression of dominant negative Rac1 does not block cytokinesis [42], nor does 

disrupting Rac1 activity by RNAi or mutation [27, 28, 86, 94]. Thus, Rac1 likely functions 

as a negative regulator during cell division.

Rac1 activity during cytokinesis is thought to be kept in check by the central spindle 

localized GAP MgcRacGAP (see also above). In C. elegans, the suppression of Rac1 

activity by mutation or RNAi can rescue cytokinesis failure caused by reduced GAP activity 

alleles of MgcRacGAP (cyk-4 in worms) [28, 86]. Similarly, in Drosophila, a tissue specific 

mutant lacking all three fly Rac isoforms can also suppress the rough eye phenotype caused 

by a loss of RacGAP50C (fly MgcRacGAP ortholog) or Sticky (Citron Kinase ortholog) 

function [94]. Further, in HeLa cells expressing a GAP dead version of MgcRacGAP, Rac1 

depletion can rescue the cytokinesis failure [87]. Lastly, in HeLa cells expressing GAP-dead 

MgcRacGAP, Rac1 activity remained high at the division plane during cytokinesis failure 

[42] (Figure 1). Thus, in contrast to RhoA, where inactivation of RhoA leads to inhibition of 

cytokinesis, the inactivation of Rac1 seems to be essential for cytokinesis to properly occur 

(Figure 2).
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What are the Rac1 effectors targeted for inactivation during cytokinesis? Genetic analysis in 

C. elegans embryos suggests that Rac1 must be inactivated to prevent activation of the 

Arp2/3 complex, which nucleates branched actin filaments [28]. In humans, a dominant 

activating mutation in WASp (another activator of the Arp2/3 complex) leads to neutropenia 

due to cytokinesis failure during neutrophil proliferation, further suggesting that Arp2/3 

complex activation is inhibitory to division [118]. It is possible that this branched actin 

competes with diaphanous-related formins for the “ingredients” required to assemble 

filamentous actin (such as profilin, G-actin, actin binding proteins). Equally possible is that 

branched actin is simply a poor substrate for myosin-II mediated constriction and therefore 

the Arp2/3 complex must be held inactive [119]. Rac1 inactivation by MgcRacGAP may 

also function to keep the activity of p21-activated kinases (PAKs) low during cytokinesis. 

Expression of constitutively active Pak1, a Rac1 effector that phosphorylates and suppresses 

myosin light chain kinase (MLCK), blocks cytokinesis when expressed in HeLa cells [42]. 

MLCK, an activator of myosin-II, localizes to the division plane, and participates in 

cytokinesis [120]. Thus Rac1 is a critical negative regulator of cytokinesis as multiple 

effectors act in opposition to efficient actomyosin ring constriction, perhaps by inhibiting 

contractility in the polar regions of the cell where Rac1 activity is enriched [42, 51].

Rac1 inactivation is likely also required to locally inhibit cell adhesion at the division plane 

in adherent HeLa cells [87, 121]. In a recent paper, ectopic GAP-dead MgcRacGAP 

expression resulted in cytokinesis failure, and division could be rescued by depleting Rac1 

or the downstream effectors Pak1/2 and ARHGEF7, two regulators of cell adhesion [87]. 

Further, expression of constitutively active Rac1 or GAP-dead MgcRacGAP led to ectopic 

cell adhesions in the division plane [87], suggesting that MgcRacGAP-dependent Rac1 

inhibition also facilitates contractile ring constriction by blocking equatorial cell adhesion 

[87, 121]. It is possible that different species or cell types use Rac1 inhibition to disable 

specific pathways during cytokinesis, and that other Rac1 activated pathways yet to be 

discovered are also negatively regulated during division.

The exception to the rule that Rac1 is inhibitory to cytokinesis may be during meiosis in 

mouse oocytes (for review see [33]). In mouse oocytes undergoing meiosis, expression of a 

dominant negative Rac1 construct blocks cytokinesis and polar body emission [122]. 

However, this dominant negative Rac1 also disrupts the asymmetric meiotic spindle 

anchoring to the cortex, a step required for polar body emission. Therefore, the effect on 

meiotic cytokinesis may be indirect [122]. In fact disrupting Rac1 activity after spindle 

anchoring does not affect cytokinesis in Xenopus eggs [52]; hence it is not clear if Rac1 

activation is required for cytokinesis in maternal meiosis.

Cdc42 during cytokinesis

Whether Cdc42 functions as a clear positive or negative regulator during all metazoan 

cytokinetic events is debatable, but there is evidence supporting a positive role for Cdc42 

during polar body emission. In most animal systems, simply disrupting Cdc42 activity (by 

RNAi for example) does not block cytokinesis [26–28, 123]. However, in many systems, 

constitutive activation of Cdc42 prevents division. In HeLa cells and early Drosophila 

embryos, constitutive activation of Cdc42 leads to giant, multinucleated cells indicative of 
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multiple rounds of cytokinesis failure [26, 124]. In Xenopus embryos, injection of either 

dominant negative or constitutively active forms of Cdc42 block cytokinesis. However the 

dominant negative injection is less penetrant, and very high protein levels are required for 

the effect (>10μM in the embryo) [24]. Constitutive activation of Cdc42 in rat kidney 

epithelial cells also results in cytokinesis failure [125]. On the other hand, Rac1 and Cdc42 

have some overlap in effectors (e.g. Pak1), thus disrupting the balance of Cdc42 within the 

cell could lead to non-specific activation of Rac1 effectors and induce cytokinesis failure. In 

HeLa cells, Cdc42 depletion leads to a reduction of f-actin and a broader zone of RhoA at 

the cell equator; however, even in this case cytokinesis still proceeds [125].

The localization and activity of Cdc42 during cytokinesis has not been studied in detail in 

animal cells. In asymmetrically dividing cells, Cdc42 is enriched in a polar cortical cap on 

one side of the cell where it functions in maintaining cell polarity [126–131], and this polar 

cap of CDC-42 is active, at least in C. elegans embryos [132]. Immuno-staining of cleaving 

mouse embryos revealed that Cdc42 localizes to the cortex during interphase, the mitotic 

spindle during mitosis, and the central spindle and midbody during cytokinesis [133]. A 

FRET-based activity probe for Cdc42 in dividing HeLa cells showed that Cdc42 activity is 

high at the plasma membrane during interphase, decreases upon entry into mitosis, and upon 

anaphase is suppressed at the membrane and increases at intracellular membrane 

compartments [51]. Taken together, a clear role for Cdc42 in regulating mitotic cytokinesis 

has not been shown.

On the other hand, Cdc42 activity is essential for polar body emission during animal cell 

meiosis [31–33]. In meiotic Xenopus eggs, expression of a dominant negative Cdc42 

prevents polar body emission [36, 52, 134]. In this system, a cap of active Cdc42 is 

encircled by a zone of active RhoA, which marks the site of contractile ring assembly, and 

the proper localization of both of these GTPases is required for meiotic divisions in the 

oocyte [36]. The cap of active Cdc42 is thought to promote local activation of the Arp2/3 

complex above the extruding polar body [134]. Cdc42 is also essential for polar body 

emission in mouse oocytes [36, 133, 135].

Polar body emission is one of the most extreme examples of asymmetric division throughout 

animal development, producing one large oocyte and a very small polar body in both 

meiosis I and II. Perhaps this cortical cap of Cdc42 activity at the top of the polar body 

functions to minimize the forces required for these highly polarized divisions. Indeed, 

Cdc42 is required to maintain cell polarity during asymmetric cell division in a multitude of 

animal systems (see above). It may be that Cdc42 plays a more specified role in positively 

regulating asymmetric cytokinetic events.

IQGAP, a scaffolding protein with actin stabilizing activity named for IQ motifs and a GAP-

like domain (which lacks enzymatic activity), has been proposed to be downstream of 

Cdc42 activity during mouse meiotic cytokinesis (for review on IQGAP proteins see [136]). 

In worm zygotes, IQGAP is required for polar body emission [137]. However, in mouse 

oocytes undergoing meiosis, IQGAP localizes to a contractile ring around the base of the 

polar body during cytokinesis where RhoA is active [133], and is not enriched at the polar 

body cortex where active Cdc42 was shown to be enriched in Xenopus eggs [36]. In mitotic 
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cytokinesis, IQGAP also localizes to the contractile ring [133, 138] where RhoA is likely the 

predominantly active Rho family small GTPase. Therefore, it is unclear if IQGAP is a 

Cdc42 effector during cytokinesis in animal cells.

Summary

Though Rho GTPases represent less than 1% of the human genome, these small proteins 

exert disproportionate control over cytokinesis [18]. Crucial to this master regulatory role is 

their occupation of specific regions within the cell at specific times during cytokinesis to 

ensure the assembly of a contractile ring at the proper time and place. RhoA occupies the 

division plane and is the main positive Rho family regulator of cytokinesis. At the division 

plane, RhoA stimulates both linear actin assembly and myosin-II motor activity to promote 

the assembly and constriction of a contractile ring. In contrast, Rac1 is a negative regulator 

of cytokinesis in most metazoan systems, and preliminary studies have shown active Rac1 is 

excluded from the division plane but occupies the cell poles. Rac1 inhibition at the division 

plane is important to prevent Arp2/3 complex activation and to disassemble cell adhesions to 

allow for contractile ring constriction. The function and spatial regulation of Cdc42 activity 

is less well understood, but thus far, it seems Cdc42 may contribute positively to highly 

asymmetric meiotic divisions. The intricate and highly spatially regulated interplay among 

all Rho family GTPases is essential for a cell to efficiently execute a multitude of behaviors, 

and it seems cytokinesis is no exception.

The future of understanding how Rho family small GTPases contribute to the spatial 

regulation of cytokinesis will be to: 1) determine the localization of active Rac1 and Cdc42 

during cytokinesis at high resolution in multiple model systems, 2) identify the GEFs that 

activate Cdc42 and Rac1 and the GAPs that inactivate Cdc42 and RhoA activity during 

division, 3) understand the functional coordination among Rho family GTPases throughout 

cytokinesis and 4) discover the cytokinetic downstream effectors that mediate Rho GTPase 

family function, especially for Rac1 and Cdc42. It is undoubtedly an exciting time in the 

field.

Dedication

We dedicate this review to the late Ray Rappaport and his wife Barbara Rappaport, the 

godparents of cytokinesis. Their inspirational work has served as the foundation for all of us 

who appreciate the beauty and complexity of studying cell division.
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Figure 1. Rho GTPase signaling at the central spindle
Active Rho GTPases form spatially distinct activity zones within dividing animal cells 

(upper). GTP-bound RhoA localizes to the division plane. GTP-bound Rac*, on the other 

hand, has been found to be enriched in the polar regions of the cell and excluded from the 

division plane. Equatorial Rho family GTPase activity is regulated by GEFs and GAPs, 

many of which localize to the microtubule-rich central spindle (lower, close-up view). 

Together, MKLP1 and MgcRacGAP form a complex (called Centralspindlin) that 

participates in bundling of central spindle microtubules. *The polar enrichment of active 

Rac during cytokinesis has only been shown in cultured mammalian cells. **Cdc42 activity 

has been shown to be enriched in the polar region of one side of the cell during asymmetric 

cell divisions but has not been closely examined during symmetric divisions.
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Figure 2. Rho GTPase signaling transduction pathways during cytokinesis
Rho GTPase regulators drive the accumulation of active, GTP-bound RhoA and inactive 

GDP-bound Rac1. Active RhoA promotes cytokinesis by coordinating diaphanous related 

formin (DRF)-mediated formation of linear filamentous actin with contractile force driven 

by myosin-II motor activity. Active Rac1 inhibits cytokinesis by promoting Arp2/3 

complex-mediated assembly of branched actin and preventing the disassembly of equatorial 

cell adhesion. Thus MgcRacGAP inactivates Rac1 within the division plane. The only 

potential downstream effector of Cdc42 during cytokinesis described thus far is IQGAP, but 

the role of Cdc42 during cytokinesis is still unclear.
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