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Abstract

There is a strong genetic basis for late-onset of Alzheimer’s disease (LOAD); thus far 22 genes/

loci have been identified that affect the risk of LOAD. However, the relationships among the 

genetic variations at these loci and clinical progression of the disease have not been fully explored. 

In the present study, we examined the relationships of 22 known LOAD genes to the progression 

of AD in 680 AD patients recruited from the University of Pittsburgh Alzheimer’s Disease 

Research Center. Patients were classified as “rapid progressors” if the MMSE changed ≥3 points 

in 12 months and “slow progressors” if the MMSE changed ≤2 points. We also performed a 

genome-wide association study in this cohort in an effort to identify new loci for AD progression. 

Association analysis between SNPs and the progression status of the AD cases was performed 

using logistic regression model controlled for age, gender, dementia medication use, psychosis, 

and hypertension. While no significant association was observed with either APOE*4 (p=0.94) or 

APOE*2 (p=0.33) with AD progression, we found multiple nominally significant associations 

(p<0.05) either within or adjacent to seven known LOAD genes (INPP5D, MEF2C, TREM2, 

EPHA1, PTK2B, FERMT2 and CASS4) that harbor both risk and protective SNPs. Genome-wide 

association analyses identified four suggestive loci (PAX3, CCRN4L, PIGQ and ADAM19) at 

p<1E-05. Our data suggest that short-term clinical disease progression in AD has genetic basis. 

Better understanding of these genetic factors could help to improve clinical trial design and 

potentially affect the development of disease modifying therapies.
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Introduction

Late-onset Alzheimer’s disease (LOAD), is a complex multifactorial neurodegenerative 

disease and the leading cause of dementia among the elderly [1]. Currently, there are 

approximately 5 million AD cases in the United States, and about 81.1 million cases 

worldwide [2]. Due to its long clinical course, AD is a major public health problem. Genetic 

susceptibility due to multiple genes and interactions among them influence the risk of AD, 

which has a strong genetic basis with heritability estimates up to 80% [3].

APOE is the major susceptibility gene for LOAD. Genome-wide association studies 

(GWAS) have identified 21 additional susceptibility loci including BIN1, INPP5D, MEF2C, 

CD2AP,HLA-DRB1/HLA-DRB5, TREM2, EPHA1,NME8, ZCWPW1, CLU, PTK2B, 

CELF1, MS4A6A, PICALM, SORL1, FERMT2, SLC2A4, DSG2, ABCA7, CD33, and 

CASS4[4-9]. Recently rare variants in TREM2 have also been reported to be associated with 

LOAD risk [10]. In addition to AD risk, genetic variation at these loci may also affect 

components of the natural history of the clinical dementia. However, the relationship 

between these known loci and dementia progression has not been explored extensively, 

highlighting the need to use other approaches in order to identify additional genes involved 

in the clinical and pathological manifestations of AD.

Large populations of well-characterized and longitudinally followed cases are necessary for 

such analyses. AD is characterized by gradual cognitive and functional decline, relating to 

the progressive degeneration of structure and chemistry of the brain over time. The patients’ 

ability to remember, understand, communicate and reason gradually declines, with largely 

non-uniform rates of progression[11]. Many factors can affect the rate of clinical 

progression, including brain atrophy rates[12-14], patterns of regional brain atrophy[15], 

ventricular enlargement[16], neuropsychological and cerebral profiles[17], vascular 

factors[18], and immunological factors[19].

Genetic factors may also affect the rate of AD progression [20, 21]. The known AD risk 

genes are good candidates for assessing whether their genetic variation affects the natural 

history of AD. In this study we used the rate of AD clinical progression, as indexed by 

change in MMSE score after 12 months follow-up as a phenotype and hypothesized that like 

disease risk, disease progression also has a genetic basis. We used our previously described 

GWAS data set [23, 24] to 1) examine the role of 22 known LOAD genes with AD 

progression in 680 well-characterized and longitudinally followed-up AD patients, and 2) to 

perform a GWAS analysis in an effort to identify additional loci for AD progression, 

irrespective if they are genome-wide significant or not, for hypothesis generation.
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Materials and Methods

Subjects

The AD patients were recruited from Alzheimer’s Research Program (ARP; 1983-1988) and 

the Alzheimer’s Disease Research Center (ADRC) at the University of Pittsburgh (1988 to 

present). A total of 1,886 Probable AD patients were examined between April 1983 and 

December 2005; details of the cohort are described elsewhere [22]. All subjects received an 

extensive neuropsychiatric evaluation including medical history and physical examination, 

neurological history and examination, semi-structured psychiatric interview, neuroimaging, 

and neuropsychological assessment.

Follow-up measurements, definition of Rapid Progression

For the purpose of this study, the rate of progression was defined by the change in the Mini 

Mental State Examination (MMSE) score from baseline evaluation to the clinic visit 

approximately 1 year later. Subjects whose MMSE scores changed ≥3 points/year were 

classified as “rapid progressors” and those whose scores change ≤2 points/year were 

classified as “slow progressors” [22].

Genotyping and quality control (QC) of genotype data

Samples were genotyped using the Illumina Omni1-Quad chip as described previously [23, 

24] SNPs with call rate <98% and minor allele frequency (MAF)<1%, and failing to adhere 

to the Hardy-Weinberg equilibrium (HWE) test (P<1E-06) were removed. Genotypes for 

two APOE SNPs, rs429358 (E*4) and rs7412 (E*2) were determined either as previously 

described [25] or using TaqMan SNP genotyping assays. For GWAS, a total of 803,323 QC-

passed SNPs were selected for analysis.

Statistical analysis

We used t-tests and χ2-tests to analyze demographic and clinical differences between rapid 

progressors and slow progressors. The association between AD progression status and SNPs 

was tested using an additive logistic regression model that included age, dementia 

medication use (taking any cholinesterase inhibitor (AChEI) or memantine), psychosis (at 

any time during follow-up), hypertension and the top four principal components derived 

from our GWAS data as covariates. The Versatile Gene-based Associations (VEGA) 

analyses [26] were performed for the known 22 LOAD genes and 4 suggestive genes 

identified in this study. In these genes, LD -Select Tag SNP selection algorithm was 

implemented in Haploview [27] with an r2 cutoff of 0.8 to select independent SNPs within 

each gene plus 10kb on either side of the gene. All statistical tests were two-sided. All 

analyses were done in R and/or PLINK[28].

Results

Characteristics of rapid and normal progressors

There were 373 slow progressors and 307 rapid progressors among the 680 patients included 

in this analysis. Table 1 shows the demographic and clinical characteristics of the patients by 

progression type. The rapid progressors were younger (p=0.05), had more hypertension 
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(p=0.04) and less psychotic symptoms (p=0.01) and used less dementia medications 

(p=6.5E-05) than patients who were classified as slow progressors. Since the effect of 

genetic factors on AD progression may have been confounded by those variables, they were 

included in the additive logistic regression model.

Association of known LOAD genes with AD Progression

The associations of AD progression with genetic variations in known 22 LOAD genes are 

presented in Table 2. SNPs in 7 genes (INPP5D, MEF2C, TREM2, EPHA1, PTK2B, 

FERMT2, and CASS4) were associated with AD progression at the nominal cutoff of 

p<0.05. While the top SNPs in 4 genes were associated with slow AD progression 

(PERMT2/rs7160582, OR=1.62; p=1.08E-02., INPP5D/rs1057258, OR=1.48; p=0.01, 

PTK2B/rs4732720, OR=1.34; p=0.01, and TREM2/rs7748777, OR=1.34; p=0.011), SNPs in 

3 genes were associated with rapid progression (MEF2C/rs9293505, OR=0.275; p=0.03, 

EPHA1/rs11768549, OR=0.246; p=0.037, and CASS4/rs16979934, OR=0.596; p=0.033). In 

the gene-based analysis, 2 of these 7 genes remained significant (PERMT2, p=0.04) or had 

borderline significance (INPP5D, p=0.07).

New loci associated with AD Progression in GWAS

Next we examined our genome-wide association data in order to identify new loci for 

disease progression. Quantile-quantile (QQ) plot of the observed and expected p-values is 

shown in Supplementary Figure 1, and the Manhattan plot showing association signals is 

presented in Supplementary Figure 2. We identified four suggestive novel loci with 

p<1E-05. The top SNP, rs348987 (p=3.32E-06), was located near PAX3 on chromosome 2 

at position 119kb. There were 19 additional SNPs with p<0.05 in this region (Table 3).The 

other three top SNPs were, CCRN4L /rs13116075, p=7.94E-06 on chromosome 4, PIGQ /

rs2071979, p=8.17E-06 on chromosome 16 and ADAM19 /rs2277027, p=9.55E-06 on 

chromosome 5. The regional association plots containing SNPs within 500kb on either side 

of the top SNP in the 4 suggestive loci are shown in Supplementary Figures 3-6. We also 

performed gene-based analyses on the four genes and three of them (CCRN4L, PIGQ, 

ADAM19) demonstrated significant associations with AD progression (p<0.05).

Discussion

Among the known LOAD genes, INPP5D, MEF2C, TREM2, EPHA1, PTK2B, FERMT2 and 

CASS4 revealed nominal associations (p<0.05) with dementia progression and two of them 

(PERMT2 and INPP5D) survived in the gene-based analysis. Although none of the observed 

associations survived after adjusting for multiple comparisons, we believe they may provide 

insight for future studies as they are present in confirmed genes for LOAD, which in 

addition to affecting risk may also affect components of natural history of AD. Our findings, 

together with a recently published study showing association of PICALM/rs3851179 with 

dementia progression [29], supports this hypothesis ; Although we did not replicate this 

result in our samples for the same SNP (p =0.12), the direction of allelic effect was the 

same, suggesting that this may be a weak, but genuine association.
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Our GWAS analysis identified four suggestive loci (PAX3, CCRN4L, PIGQ and ADAM19) 

with significance of p<1E-05. The most significant association was identified 119kb from 

the 3′ region of the PAX3 gene on chromosome 2q35 (rs348987; p=3.32E-06). Although the 

associated SNPs were not present in an annotated gene in this region, the nearby PAX3 is a 

reasonable candidate gene that codes for a transcription factor. Down-regulation of PAX3 

has been attributed to altered signaling pathways involving cell cycle, apoptosis, cell 

adhesion, cytoskeletal remodeling, and development [30]. Mutations in PAX3 are associated 

with Waardenberg syndrome [31-33]. Furthermore, an intronic SNP in CASS4, a recently 

implicated gene for LOAD [9], has been suggested to affect the PAX3 binding motif [34]. 

The next most significant SNP (rs13116075; p=7.94E-06) was located in the CCRN4L gene 

on chromosome 4q31, which is expressed in the brain [35], and genetic variation in this gene 

has been shown previously to affect body mass index [36]. The third top SNP resides on 

chromosome 16p13 near PIGQ/RAB40C (rs2071979; p=8.17E-06). RAB40C is a member of 

the Rab family of small GTPases that play important roles in neuronal and glial metabolism 

[37]. Another nearby gene in this region, RAB11FIP3, interacts with and regulates Rab 

GTPases, suggesting a potential combined significance of these functionally related genes in 

AD progression.

Limitations of our study include the relatively small sample sizes in both the rapid and slow 

AD progression groups, and variability of duration of time of follow-up of the cases for 

cognitive decline. Dementia medications affect individuals’ rates of decline [22], although 

we adjusted for this in the logistic regression models. Further, clinical disease progression is 

very complex, and many unknown demographic and clinical variables (e.g. other medical 

illnesses and sources of disability) not assessed in this study may have confounded our 

results. Because of the relatively small sample size, our GWAS findings are meant for only 

hypothesis generation for future larger studies.

In conclusion, our data suggest that short-term clinical disease progression in AD has 

genetic basis as we observed nominal associations with some known LOAD genes. Our 

secondary GWAS analysis identified 4 suggestive loci that, although not meeting the 

genome-wide significant threshold of p<5E-08, are potential candidate genes for AD clinical 

progression that warrant follow-up studies in larger data sets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Demographic and clinical characteristics of rapidly progressive AD patients and normally progressive AD 

patients

slower
(n=373)

Rapid
(n=307)

t-test/χ2 p-value

Age 77. 6 + 6.0 76.6 + 6.3 2.0 0.05

Gender (male/female) 136/237 119/188 0.28 0.59

Education ( years) 12.78 + 3.1 12.96 + 3.0 −0.75 0.45

Baseline MMSE 19.00+ 4.75 18.82 + 5.50 0.45 0.65

Medication (Yes/No) 291/82 196/111 15.95 6.50E-05

Psychosis (Yes/No) 125/248 133/174 6.47 0.01

Heart Disease (Yes/No) 74/299 68/239 0.41 0.52

Diabetes Mellitus (Yes/No) 29/344 27/280 0.11 0.73

Hypertension (Yes/No) 196/177 136/171 4.26 0.04

Depression Yes/No) 59/314 52/252 0.08 0.77

*Age: patients’ age at entry; MMSE: the mean Mini-Mental state examination scores; Education: the years of getting education; Medication: taking 
any cholinesterase inhibitor (AChEI) treatment or not; psychosis: the presence or absence of psychotic symptom
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