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Abstract We compare methods for estimating optimal dynamic decision rules from
observational data, with particular focus on estimating the regret functions defined
by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331–355, 2003). We for-
mulate a doubly robust version of the regret-regression approach of Almirall et al.
(in Biometrics 66:131–139, 2010) and Henderson et al. (in Biometrics 66:1192–
1201, 2010) and demonstrate that it is equivalent to a reduced form of Robins’ ef-
ficient g-estimation procedure (Robins, in Proceedings of the Second Symposium on
Biostatistics. Springer, New York, pp. 189–326, 2004). Simulation studies suggest
that while the regret-regression approach is most efficient when there is no model
misspecification, in the presence of misspecification the efficient g-estimation proce-
dure is more robust. The g-estimation method can be difficult to apply in complex
circumstances, however. We illustrate the ideas and methods through an application
on control of blood clotting time for patients on long term anticoagulation.
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1 Introduction

A dynamic treatment regime is a decision rule, or set of decision rules, which deter-
mines how a treatment should be assigned to a patient over time. Typically a patient
is observed at regular intervals, and at each visit a treatment decision or action A is
made in response to measurements of state S taken at that visit together with the his-
tory of previous decisions and measurements. An optimal dynamic treatment regime
is one which maximises an overall outcome Y measured at the end of a sequence of
visits.

Since the seminal work of Murphy [15] there has been growing interest in bio-
statistical applications of decision rule methodology. Recent work includes Arjas and
Saarela [1], Dawid and Didelez [6], Moodie et al. [13], Zhao et al. [21, 22]. The
focus of most work has been on testing for treatment effects, typically for binary A

and with rather few measurement times. Even in very simple circumstances there can
be severe statistical challenges in this area (Chakraborty et al. [3]; Hernan et al. [10];
Moodie and Richardson [14]; Zhang et al. [20]).

Motivated by an application on anticoagulation, we suppose the treatment deci-
sion A is essentially continuous rather than categorical, and our interest is in estima-
tion of optimal decisions rather than testing. We concentrate on the regret functions
proposed by Murphy [15], which are defined in Sect. 2 and form a particular case
of the so-called advantage learning class of approaches. A variety of methods have
been proposed for estimation from observational or trial data (e.g. Moodie et al. [12];
Almirall et al. [2]; Henderson et al. [8]; Zhang et al. [20]; Zhao et al. [21, 22]). Some
of these rely on knowledge or assumptions on the process by which decisions on
treatment A are reached, which is straightforward for a randomised trial, and some
of which rely on modelling the evolution of the states S as time proceeds. A partic-
ular case of the former is the g-estimation procedure proposed by Robins [17], and
beautifully summarised by Moodie et al. [12]. A special case of the latter is the so-
called regret-regression approach that was proposed independently by Almirall et al.
[2] and Henderson et al. [8]. These methods all formulate the problem in terms of the
structural nested mean models (SNMMs) described by Robins [17]. An alternative
approach based on marginal structural models has been proposed by Orellana et al.
[16], which allows the estimation of simple dynamic treatment rules. For example,
the decision when to start a treatment may be based on state measurements progress-
ing beyond a threshold, which must be determined. We will focus on the SNMM
approaches in this paper.

An estimation method is doubly robust if it gives consistent parameter estimates
whenever either the state mechanism S or the action process A has been modelled
correctly. The g-estimation method is founded, as stated, on knowledge of the deci-
sion or action process A. If there is also assumed knowledge of the state S mechanism
then a doubly robust form can be constructed (Robins [17]). It is of interest therefore
to ask whether a doubly robust form of the regret-regression approach can be found.
In Sect. 3 below we propose such a modification and we show how it is closely linked
to doubly robust g-estimation. In Sect. 4 we use simulation to compare performance
of various methods in terms of efficiency and robustness, and in Sect. 5 we illustrate
use in treatment of patients on long term anticoagulation therapy.
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2 Modelling Dynamic Treatment Regimes

We assume that we have data from n independent individuals, each observed accord-
ing to the same visit schedule consisting of K visits. At visit j , measurements are
taken which define the current state Sj of the patient and a treatment decision Aj is
made. After K visits an outcome Y is measured. Our aim is to use the observed data
to determine the optimal dynamic treatment regime to maximise the outcome Y . As
an illustration we will use data from a study investigating patients taking the antico-
agulation treatment warfarin to avoid abnormal blood clotting. Here measurements
of blood-clotting potential are taken at each visit, defining Sj , and a dose of warfarin
is prescribed, defining the action Aj . The final outcome Y is the time spent with
blood-clotting time within a target range over the entire course of follow-up.

Taking a potential outcomes (or counterfactual) approach (see for example Green-
land et al. [7]), let Aj be the set of all possible actions that could be taken at visit j ,
and let ¯Aj = A1 × · · · × Aj be the set of all possible treatment regimes up to visit j .
For āj−1 ∈ ¯Aj−1, S̄j (āj−1) = (S1, S2(a1), . . . , Sj (āj−1)) denotes the potential state
history under the treatment regime āj−1. Similarly, Y(āK) denotes the potential out-
come under the treatment regime āK ∈ ¯AK .

We make the consistency assumption that the observed state history S̄K = (S1,

. . . , SK) is equal to the potential state history S̄(āK−1) under the observed treatment
regime āK = ĀK = (A1, . . . ,AK) and that the observed outcome Y is equal to the
potential outcome Y(āK) under the observed treatment regime āK = ĀK . In short,
this means that the method by which treatments are assigned does not affect the val-
ues of the future states or the outcome (see Cole and Frangakis [5], for a thorough
discussion of the consistency assumption). Throughout this paper we will therefore
replace potential outcomes notation, e.g. E(Y |S̄(aK−1), āK) for the expected value
of the potential outcome Y(āK) conditional on the treatment regime āK and potential
state history S̄(āK−1), with the observed outcomes notation E(Y |S̄K, ĀK).

We also make the assumption of no unmeasured confounders, which means that
the choice of treatment to be received does not depend on potential future states or
the potential outcome except through observed state and treatment history. When
no drop-out occurs this assumption is equivalent to exchangeability. It enables us to
estimate causal effects from observational data (see Hernán and Robins [11], for a
discussion of the exchangeability assumption). We make a third assumption of posi-
tivity, that the optimal treatment regime has a positive probability of being observed
in the data or, in the case of a continuous treatment, that it is identifiable from the
observed data (see Cole and Hernán [4], for a discussion of positivity and Henderson
et al. [8], for the extension in the continuous case). All three assumptions are standard
in causal inference.

Let S̄j = (S1, . . . , Sj ) be the observed measurement history up to and including
visit j , and Āj = (A1, . . . ,Aj ) be the history of actions taken up to visit j . A dynamic
treatment regime d is defined by a set of decision rules, d = (d1(S1), . . . , dj (S̄j ,

Āj−1), . . . , dK(S̄K, ĀK−1)), which prescribe an action to be taken at each visit given
all information available at the time of the visit, including the current state Sj . The
optimal dynamic treatment regime dopt is the one which optimises the expected value
of the outcome Y .
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A naive approach to modelling the outcome would be to regress Y on state his-
tory S̄K and action history ĀK . However, this ignores the potential effect of previous
actions Āj−1 and states S̄j−1 on the current state S̄j . Including the state Sj in the
analysis may introduce bias because action history Āj−1 and state history S̄j−1 may
influence both the current state Sj and the outcome Y .

This problem can be solved by modelling quantities which isolate the causal effect
of treatment Aj on Y (see Hernán [9], for a discussion of the use of causal effects in
causal inference). Murphy [15] proposed the use of regret functions which measure
the expected decrease in Y due to an action aj taken at time j compared to the
optimal action, given that optimal actions are used in the future. The regret at time j

is defined by

μj (aj |S̄j , Āj−1) = E
(
Y

(
a1, . . . , aj−1, d

opt
j , . . . , d

opt
K

)∣∣S̄j , āj−1 = Āj−1
)

(1)

− E
(
Y

(
a1, . . . , aj , d

opt
j+1, . . . , d

opt
K

)∣∣S̄j , āj−1 = Āj−1
)
.

As an alternative Robins [17] suggested using a blip function which compares
actions to a reference action a0. The blip measures the expected change in Y when
action aj is taken at time j compared to a0, assuming future actions are a0,

γj (aj |S̄j , Āj−1) = E
(
Y

(
a1, . . . , aj−1, d

0
j , . . . , d0

K

)∣∣S̄j , āj−1 = Āj−1
)
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− E
(
Y

(
a1, . . . , aj , d

0
j+1, . . . , d

0
K

)∣∣S̄j , āj−1 = Āj−1
)
,

where the reference regime d0 specifies that all actions are set to a0.
It has been argued by Robins [17] that correct models can be specified more easily

for blip functions because a comparison to a reference regime can be envisaged more
readily by clinicians than a comparison to an unspecified optimal regime. However,
determining the optimal regime from models for the blip functions can be computa-
tionally challenging, whereas the optimal action a

opt
j immediately follows from the

form of the regret function because by construction μj (a
opt
j |S̄j , Āj−1) = 0. Also, be-

cause the form of the optimal treatment immediately follows from the form of the
regret function, the use of regrets enables us to restrict our attention to decision rules
with simple forms (see also Rosthøj et al. [19]). For these reasons we will use regret
functions in the rest of this paper.

3 Estimating Optimal Dynamic Treatment Regimes

Two methods which can be used to estimate the optimal dynamic treatment regime
are g-estimation (Robins [17], see also Moodie et al. [12]) and regret-regression,
which was proposed independently by Henderson et al. [8] and Almirall et al. [2].

3.1 G-estimation

In order to estimate an optimal dynamic treatment regime using g-estimation, we
must first specify models for the regret functions μj (aj |S̄j , Āj−1). The form of the
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regret functions determines the form of the optimal treatment rules. Hereafter, when
we refer to an optimal decision rule we therefore mean the decision rule of the spec-
ified form which optimises the expected outcome. Models for μj may depend on
parameters ψ , which may be shared across time-points. See Moodie et al. [12] and
Moodie et al. [13] for examples of models with different parameters at different time-
points. We then define

Hj = Hj(ψ) = Y +
∑

k≥j

μk(Ak|Āk−1, S̄k;ψ),

which provides an estimate of the expected outcome in the counterfactual event
that optimal decisions are followed from time j onwards (Robins [17]; Moodie et
al. [12]). For conciseness we shorten μj (Aj |Āj−1, S̄j ;ψ) to μj for the remainder of
this paper.

We also specify models for the probability density f (aj |S̄j , Āj−1) for the as-
signed value of the action Aj , conditional on state and action history, and for
E(Hj |S̄j , Āj−1). We can then form the g-estimation equations

EEGE(ψ) =
K∑

j=1

(
Hj − E(Hj |S̄j , Āj−1)

)(
gj (Aj |S̄j , Āj−1)

− EAj

(
gj (Aj |S̄j , Āj−1)

))
(3)

for some functions gj (Aj |S̄j , Āj−1) of the same dimension as ψ . It has been
shown that solutions ψ̂GE to E(EEGE(ψ)) = 0 provide consistent estimates of ψ

if the regret functions are correctly modelled and either the model specified for
f (aj |S̄j , Āj−1) or the model specified for E(Hj |S̄j , Āj−1) is correct (Robins [17]).
We give a simpler proof in Appendix A.1. G-estimation is therefore doubly robust in
the sense discussed in the Introduction.

A simple choice for the functions gj (Aj ) is (Moodie et al. [12]):

g
simp
j (Aj |S̄j , Āj−1) = E

(
∂μj

∂ψ

∣∣∣∣S̄j , Āj

)
,

which can be calculated easily from the μj (ψ). The alternative

geff
j (Aj |S̄j , Āj−1) = E

(
∂Hj

∂ψ

∣∣
∣∣S̄j , Āj

)

= E

(∑

k≥j

∂μk

∂ψ

∣∣∣∣S̄j , Āj

)
(4)

gives Robins’ [17] locally efficient semiparametric estimator of ψ . While geff has
been shown to be more efficient than gsimp (Robins [17]), it can be more complicated
to calculate because it requires expected values of μk conditional on (S̄j , Āj ) for
k > j . In turn these require conditional expectations of (functions of) all Sk and Ak

for k > j and hence detailed knowledge of both state and action evolution processes.
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3.2 Regret-regression

Murphy [15] showed that E(Y |S̄K, ĀK) can be decomposed into a sum of regret
functions μj and nuisance functions φj (Sj |S̄j−1, Āj−1) as follows:

E(Y |S̄K, ĀK) = β0 +
K∑

j=1

φj (Sj |S̄j−1, Āj−1) −
K∑

j=1

μj (Aj |S̄j , Āj−1). (5)

The nuisance function φj (Sj |S̄j−1, Āj−1) for j ≥ 2 is defined to be

φj (Sj |S̄j−1, Āj−1) = E
(
Y

(
a1, . . . , aj−1, d

opt
j , . . . , d

opt
K

)∣∣S̄j , Āj−1
)

(6)

− E
(
Y

(
a1, . . . , aj−1, d

opt
j , . . . , d

opt
K

)∣∣S̄j−1, Āj−1
)
, (7)

with φ1(S1) = E(Y(d
opt
1 , . . . , d

opt
K )|S1) − E(Y(d

opt
1 , . . . , d

opt
K )). The function

φj (Sj |S̄j−1, Āj−1) expresses the change in the expected value of Y due to the
measurement of Sj when optimal decision rules are used in the future. Note that
ESj

(φj (Sj |S̄j−1, Āj−1)) = 0 follows from the definition of φj (Sj |S̄j−1, Āj−1). Note
also that the decomposition (5) requires the nuisance and regret functions to be
defined as differences of expectations under the assumption that optimal policies
are followed at future time-points. There is no similar decomposition with non-
negative {μj } based on a comparison with non-optimal policies, such as the blip
functions suggested by Robins [17] (see Appendix B).

The decomposition (5) can be used to estimate regret parameters ψ if models are
specified for the φj (Sj |S̄j−1, Āj−1) (Henderson et al. [8]; Almirall et al. [2]). To
satisfy the condition ESj

(φj (Sj |S̄j−1, Āj−1)) = 0, Henderson et al. [8] suggested
the form

φj (Sj |S̄j−1, Āj−1) = βT
j (S̄j−1, Āj−1)

(
Sj − E(Sj |S̄j−1, Āj−1)

)
,

where βT
j (S̄j−1, Āj−1) is a coefficient which may depend on the state and ac-

tion history before time j . Under this approach a model must be specified for
E(Sj |S̄j−1, Āj−1). Parameters can be estimated using least squares, which is equiva-
lent to solving E(EERR(ψ)) = 0, where EERR(ψ) are the regret-regression estimat-
ing equations

EERR(ψ) = (
Y − E(Y |S̄K, ĀK)

)∑

j

∂μj

∂ψ
. (8)

A proof is given in Appendix A.2 that the resulting estimates ψ̂RR are consistent es-
timates for ψ provided the regret functions μj (aj |S̄j , Āj−1) and the nuisance func-
tions φj (Sj |S̄j−1, Āj−1) have been modelled correctly.

A natural question to ask is whether we can formulate a doubly robust version of
regret-regression, which is robust to misspecification of either φj (Sj |S̄j−1, Āj−1) or
the probability density f (aj |S̄j , Āj−1) of assigning action Aj . A naive extension of
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the estimating equations (8) would be

EEnaive(ψ) = (
Y − E(Y |S̄K, ĀK)

)∑

j

(
∂μj

∂ψ
− EAj

(
∂μj

∂ψ

))
. (9)

However, the resulting estimates ψ̂naive are not consistent if the φj (Sj |S̄j−1, Āj−1)

are misspecified because when we take the expectation over Y the left bracket of (9)
retains some dependence on Aj for j = 1, . . . ,K − 1 (see Appendix A). However,
we obtain consistent estimates with the double-robustness property if we replace the
sum in (9) with the contribution just from the final term:

EEDRRR(ψ) = (
Y − E(Y |S̄K, ĀK)

)(∂μK

∂ψ
− EAK

(
∂μK

∂ψ

))
. (10)

The estimators ψ̂DRRR derived from (10) will be consistent because E(EEDRRR) = 0.
Note that

HK(ψ) − E
(
HK(ψ)|S̄K, ĀK−1

)

= Y + μK(AK |S̄K, ĀK−1) − E
(
Y + μK(AK |S̄K, ĀK−1)|S̄K, ĀK−1

)

= Y + μK(AK |S̄K, ĀK−1) − EAK

(

β0 +
K∑

j=1

φj (Sj |S̄j−1, Āj−1)

−
K−1∑

j=1

μj (Aj |S̄j , Āj−1)|S̄K, ĀK−1

)

= Y − β0 −
K∑

j=1

φj (Sj |S̄j−1, Āj−1) +
K∑

j=1

μj (Aj |S̄j , Āj−1)

= Y − E(Y |S̄K, ĀK).

So the doubly robust regret-regression estimating equations (10) are identical to
the final (j = K) term of the g-estimating equations (3) with gj = g

simp
j when

E(Y |S̄K, ĀK) is modelled in the same way. Specification of E(Hj (ψ)|S̄j , Āj−1)

is equivalent to specification of the nuisance functions φj (Sj |S̄j−1, Āj−1) for regret-
regression because

E
(
Hj(ψ)|S̄j , Āj−1

) = β0 +
j∑

k=1

φk(Sk|S̄k−1, Āk−1) −
j−1∑

k=1

μk(Ak|S̄k, Āk−1;ψ),

(see Appendix A.1). It may be difficult to identify an appropriate model for either
E(Hj (ψ)|S̄j , Āj−1) or φj (Sj |S̄j−1, Āj−1), and the choice of which to specify is
likely to depend on the context. See Henderson et al. [8] and Rosthøj et al. [19] for
further discussion about modelling φj (Sj |S̄j−1, Āj−1). We recommend taking the
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models to be as general as possible, see Sect. 5 for an example. Since these models
are not of direct interest, it is safer to err on the side of overfitting (Henderson et
al. [8]). We will show via simulation studies in Sect. 4 that restricting to the final
term in this way results in a loss of precision for ψ̂DRRR compared to ψ̂GE .

4 Simulation

We demonstrate the behaviour of ψ̂GE with gj = g
simp
j , ψ̂GE with gj = geff

j ,

ψ̂RR and ψ̂DRRR using a simulation study. We generated data from 1000 patients,
followed-up over 5 time-points. States were normally distributed with E(S1) = 0.5,
E(Sj |Aj−1) = (0.5 − Aj−1) for j > 1 and residual variance σ 2

s = 1. Actions were
generated as Aj ∼ U(1.25,3) when S1 > 0.5 and Aj ∼ U(0,1.75) when S1 ≤ 0.5.
By definition μj is non-negative, so regret functions were taken to be quadratic with
μj (aj |S̄j , Āj−1) = ψ1(aj − ψ2Sj )

2, with ψ1 = 6 and ψ2 = 2. The optimal action at
visit j , a

opt
j , is the action satisfying μj (a

opt
j |S̄j , Āj−1) = 0, giving a

opt
j = ψ2Sj . Note

that the optimal action may be negative, even though the observed actions are always
positive. In practice this would mean that estimated optimal actions had been extrap-
olated to a region of Aj that had not been observed in the data. Such an extrapolation
would only be appropriate if regret functions had been modelled correctly. Outcomes
Y were normally distributed with

E(Y |S̄K, ĀK) = 30−5
(
S1 −E(S1)

)−
5∑

j=2

(5+2Aj−1)
(
Sj −E(Sj |Aj−1)

)−
5∑

j=1

μj

and variance σ 2
y = 1.

For both g-estimation and regret-regression, parameters were estimated using a
two-stage process. In the first stage the model for the state distribution was fitted to
the observed states and, if required, the model for assigning actions was fitted to the
observed actions. For regret-regression these models were then used to estimate the
residuals Y − E(Y |S̄K, ĀK) using the decomposition (5), and parameters estimated
using least squares. For all other methods the models were used to determine the
corresponding estimating equations, which were solved numerically. Standard errors
were calculated using bootstrapping with 100 bootstrap samples.

Parameter estimates ψ̂ were obtained using correctly and incorrectly specified
models for Sj and Aj . The misspecified model for Sj assumed Sj ∼ N(0.5,1), and
so ignored the dependence of the states on the previous action. In the misspecified
action model the actions were assumed to be uniformly distributed between 0 and 3.

Table 1 shows results for ψ2, which is the parameter of most interest since it de-
termines the optimal dose. Results for other parameters are not reported, but lead to
similar conclusions. Coverage probability is estimated by the proportion of simula-
tions for which the estimated confidence interval contains the true parameter value.
Parameter estimates were discarded when convergence was not achieved.

When models for both Sj and Aj were specified correctly, parameter estimates
were consistent using all estimation methods. The most efficient method was RR. For
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Table 1 Simulation results for ψ2 using regret-regression (RR), doubly-robust regret-regression (DRRR),
g-estimation with g = gsimp (GE SIMP) and g-estimation with g = geff (GE EFF). Reported are means
of parameter estimates with standard deviation of parameter estimates in brackets, means of estimated
standard errors, coverage probability, root-mean-square error and the number of simulated data sets for
which convergence was achieved. Results are based on 1000 samples of size n = 1000

Misspecification Method Mean (SD) Mean of SE
estimates

Coverage RMSE Number
converged

No misspecification RR 2.000 (0.001) 0.001 0.938 0.001 975

DRRR 2.000 (0.038) 0.042 0.972 0.038 1000

GE SIMP 2.000 (0.027) 0.040 0.998 0.027 1000

GE EFF 2.000 (0.008) 0.008 0.973 0.008 988

Misspecified P(Sj ) RR 1.957 (0.003) 0.003 0 0.043 994

DRRR 1.994 (0.128) 0.145 0.991 0.128 999

GE SIMP 1.987 (0.072) 0.090 0.993 0.073 1000

GE EFF 1.987 (0.072) 0.091 0.994 0.073 1000

Misspecified P(Aj ) RR 2.000 (0.001) 0.001 0.933 0.001 972

DRRR 2.007 (0.058) 0.065 0.986 0.059 970

GE SIMP 1.999 (0.028) 0.034 0.993 0.028 989

GE EFF 2.000 (0.008) 0.008 0.958 0.008 942

Misspecified P(Sj )

and P(Aj )

RR 1.957 (0.003) 0.003 0 0.043 797

DRRR 1.840 (0.233) 0.220 0.814 0.283 800

GE SIMP 1.960 (0.044) 0.057 0.990 0.059 799

GE EFF 1.960 (0.044) 0.057 0.980 0.059 799

GE SIMP estimated standard errors tended to be too high, leading to over-coverage
of confidence intervals.

When the model for Sj is misspecified, RR results are slightly biased, with none
of the estimated confidence intervals containing the true parameter value ψ2 = 2. All
other methods are robust to misspecification of the state model, and gave consistent
parameter estimates. The GE EFF estimating equations for this scenario are iden-
tical to the GE SIMP estimating equations because the incorrect model for Sj has
been used when calculating expressions for the geff

j ; because the misspecified model
for Sj is independent of Aj−1, only the term involving μj in (4) depends on Aj ,
and all other terms therefore cancel when subtracting EAj

(gj (Aj |S̄j , Āj−1)) from
gj (Aj |S̄j , Āj−1). The DRRR method was less efficient than GE SIMP and GE EFF.
For all the methods overestimation of standard errors gave over-coverage of confi-
dence intervals.

When the model for Aj is misspecified, all methods give consistent parameter
estimates. For RR this is because the method does not depend on the model for Aj ,
and all other methods are robust to misspecification of the action model. Again, the
most efficient method is RR.

When models for both Sj and Aj are misspecified, none of the methods would
be expected to give consistent parameter estimates. Here all methods gave biased
results, with DRRR parameter estimates being the most biased. RR has the smallest
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root mean squared error, with similar bias but smaller standard errors compared to
GE SIMP. Parameter estimates from misspecified models took longer to converge, as
indicated by the low convergence rates.

The bias caused by misspecification of state and action models in our simulation
study was smaller than might be expected from a previous simulation study (Almirall
et al. [2]). This could be because we have focussed on a continuous treatment deci-
sion, whereas Almirall et al. considered only binary actions. Model misspecification
in the Almirall et al. study was generated by multiplying estimated state values by
random noise of varying amplitudes. In contrast, our simulation study aimed to ex-
plore model misspecifications that might occur in practice, such as omitting variables
from the state and action models.

5 Example: Blood-Clotting

We illustrate the methods with data taken from 303 patients at risk of thrombosis who
were receiving long-term anticoagulation therapy for abnormal blood-clotting. These
data have been analysed previously by Rosthøj et al. [18] and by Henderson et al. [8].
The ability of the blood to clot was measured using the International Normalised Ra-
tio (INR), with high values indicating that the blood clots too slowly, increasing the
risk of haemorrhage, and low values indicating fast clotting-times with an increased
risk of thrombosis. Each patient attended 14 clinic visits at which their INR was mea-
sured and their dose of anticoagulant was adjusted accordingly. The aim of therapy
is to maintain a patient’s INR within a target range, which is pre-specified for each
patient.

As an outcome for analysis we used the proportion of time over follow-up that was
spent with the INR within target range. The final dose adjustment did not contribute
to the outcome, and we treated the first four clinic visits as a stabilisation period,
giving K = 9. States Sj are defined to be the standardised difference between the
INR at the j th visit and the target range. Actions Aj are defined to be the change in
anticoagulant dose at the j th visit. With these definitions Sj = 0 for 50 % of state
observations and Aj = 0 for 60 % of actions taken.

We modelled the regrets as quadratic functions, depending on the previous two
states and the previous action:

μj (aj |S̄j , Āj−1;ψ) = ψ1(aj − ψ2Sj − ψ3Sj−1 − ψ4Aj−1)
2.

To model the states we used a mixture model with logistic and normal components
to account for the high number of zero states. Linear predictors for both models were
allowed to depend on the previous four states and actions, as well as a number of
interactions between them. The model for the actions was defined in the same way.

Parameters were estimated using RR, DRRR and GE SIMP, with standard errors
by bootstrap with 1000 resamplings. We were unable to implement the more efficient
method GE EFF because of the extra complexity introduced by the dependence of the
regret functions on the previous state and the previous action. In this case no terms in
gj (Aj ) − EAj

(gj (Aj )|S̄j , Āj ) automatically cancelled, as was the case for the sim-
ulation study. So, for example, it would be necessary to calculate E(∂μ9/∂ψ |S1,A1)
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Table 2 Results for the
blood-clotting example using
regret-regression (RR), doubly
robust regret-regression (DRRR)
and g-estimation with g = gsimp

(GE SIMP). Reported are
estimated parameter values with
standard errors in brackets

Parameter RR DRRR GE SIMP

ψ1 0.093 (0.065) 0.099 (0.059) 0.113 (0.046)

ψ2 −2.477 (1.594) −2.264 (1.856) −2.267 (0.435)

ψ3 −1.729 (0.976) −1.817 (0.966) −1.535 (0.683)

ψ4 −0.993 (0.517) −1.058 (0.608) −0.822 (0.339)

by integrating out all other Sj and Aj . In this complicated scenario we found such
calculations to be algebraically intractable.

Results are given in Table 2. Parameter estimates from RR, DRRR and GE SIMP
are similar, although the RR results tend to favour slightly more extreme changes of
dose than the GE SIMP results. The difference between RR and GE SIMP results
could indicate some model misspecification, but standard errors are too large to draw
any firm conclusions. The DRRR standard errors were substantially larger than the
GE SIMP standard errors. We can therefore place most confidence in the GE SIMP
parameter estimates because GE SIMP is the most efficient estimation method with
the double-robustness property. Some bootstrap samples (3 out of 1000) did not con-
verge using RR, and for others there was a tendency for ψ1 to be estimated close to 0.
This could explain the larger standard errors estimated for RR compared to GE SIMP.

The estimates for ψ2 indicate that the dose should be increased if the current state
is too low and should be decreased if it is too high, as would be expected. Negative
values of ψ3 indicate that if the previous state is below range then the current dose
should be adjusted upwards, and if it is above range then the current dose should
be adjusted down. Similarly, estimates for ψ4 indicate that if the previous dose was
increased then the current dose should be reduced and vice versa. So, for example,
a patient whose current INR measurement is Sj = 0.5, and who previously also had
high INR, Sj−1 = 0.5, and whose dose was reduced, Aj−1 = −0.5, would be rec-
ommended to reduce their dose by 1.44 according to the GE SIMP estimates. By
comparison, a patient who also had Sj = 0.5, but whose INR was previously too low,
Sj−1 = −0.5, resulting in an increase of dose Aj−1 = 0.5, would be recommended
to reduce their dose by a smaller amount of 0.80.

In summary, both methods give plausible parameter estimates, but RR standard er-
rors seem large in comparison with GE SIMP standard errors. The simulation results
suggest that standard errors estimated using GE SIMP could also be overly conserva-
tive.

6 Discussion

We have demonstrated that two methods which have been proposed for estimating
optimal dynamic treatment regimes, regret-regression and g-estimation, are closely
related. Formulating a doubly robust version of regret-regression led to a truncated
version of the g-estimation equations.

The regret-regression approach is efficient when the model for states Sj is cor-
rectly specified. No model for actions Aj is required. G-estimation, on the other hand,
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can be applied when the action model is known, without the need to model states cor-
rectly. This is perhaps the best approach for trial data, where actions are randomised
and hence fully understood. For observational data it may be the case that the natural
process of state evolution is easier to model than the subjective actions chosen by
health personnel. G-estimation is doubly robust in the sense that parameter estimates
are consistent provided that either the states or the actions are modelled correctly. An
assumption of no unmeasured confounders is necessary for inference in both cases.

Regret-regression outperforms efficient g-estimation even when the latter makes
use of correct specification of both action and state models. However, it performs
poorly when the state model is misspecified, whereas efficient g-estimation is robust.
Given that the states are fully observed one can argue that careful attention to mod-
elling and diagnostics should reduce or remove the risk of major misspecification.
Nonetheless our recommendation is to attempt efficient g-estimation whenever pos-
sible. Unfortunately, as in the blood clotting application, when the regret and state
models are fairly complex it can be difficult or in practice impossible to obtain the
functions Hj(ψ) defined at (1) that are required for implementation.

Biases resulting from model misspecification were smaller than might have been
expected from a previous simulation study (Almirall et al. [2]). One difference here is
that we have focussed on continuous rather than binary treatment decisions. It would
be interesting to see if such small biases persist for other forms of regret functions
and more complicated models. We have assumed throughout that regret functions
have been specified correctly. We leave investigation of the effects of regret misspec-
ification for future work.
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Appendix A: Consistency of Estimating Equations

A.1 Consistency of ψ̂GE

We assume throughout that regret functions have been modelled correctly. We will
show that E(EEGE(ψ)) = 0 providing that either the states or the treatment proba-
bilities have also been modelled correctly, where

EEGE(ψ) =
K∑

j=1

(
Hj(ψ)−E

(
Hj(ψ)|S̄j , Āj−1

))

× (
gj (Aj |S̄j , Āj−1)−EAj

(
gj (Aj |S̄j , Āj−1)

))
.

Consider

E
(
Hj(ψ)|S̄j , Āj−1

) = EAj ,Sj+1,...,SK ,AK,Y

(
Y+

∑

k≥j

μk(Ak|S̄k, Āk−1;ψ)|S̄j , Āj−1

)
.
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Taking the expectation over Y , and using the decomposition (5), we get

E
(
Hj(ψ)|S̄j , Āj−1

) = EAj ,Sj+1,...,SK ,AK

(

β0 +
K∑

k=1

φk(Sk|S̄k−1, Āk−1)

−
j−1∑

k=1

μk(Ak|S̄k, Āk−1;ψ)|S̄j , Āj−1

)

.

None of the terms on the right-hand side depend on AK , so

E
(
Hj(ψ)|S̄j , Āj−1

) = EAj ,Sj+1,...,SK

(

β0 +
K∑

k=1

φk(Sk|S̄k−1, Āk−1)

−
j−1∑

k=1

μk(Ak|S̄k, Āk−1;ψ)|S̄j , Āj−1

)

.

Now the only term depending on SK is φK(SK |S̄K−1, ĀK−1), which has expectation
zero, so

E
(
Hj(ψ)|S̄j , Āj−1

) = EAj ,Sj+1,...,SK−1,AK−1

(

β0 +
K−1∑

k=1

φk(Sk|S̄k−1, Āk−1)

−
j−1∑

k=1

μk(Ak|S̄k, Āk−1;ψ)|S̄j , Āj−1

)

.

Repeating these steps to take expectations of AK−1, SK−1, . . . , Aj , we get

E
(
Hj(ψ)|S̄j , Āj−1

) = β0 +
j∑

k=1

φk(Sk|S̄k−1, Āk−1) −
j−1∑

k=1

μk(Ak|S̄k, Āk−1;ψ).

Let φ̃j (Sj |S̄j−1, Āj−1) be the postulated model for φj (Sj |S̄j−1, Āj−1), so

E(Hj (ψ)|S̄j , Āj−1) is modelled as β̃0 + ∑j

k=1 φ̃k(Sk|S̄k−1, Āk−1) −
∑j−1

k=1 μk(Ak|S̄k, Āk−1;ψ). Then

EEGE(ψ) =
K∑

j=1

(

Y +
K∑

k=1

μk(Ak|S̄k, Āk−1;ψ) − β̃0 −
j∑

k=1

φ̃k(Sk|S̄k−1, Āk−1)

)

×(
gj (Aj |S̄j , Āj−1) − EAj

(
gj (Aj |S̄j , Āj−1)

))
.
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The expectation of the estimating equations over all random variables is then

ES̄K,ĀK ,Y

(
EEGE(ψ)

)

=
K∑

j=1

ES̄K,ĀK

((

β0 +
K∑

k=1

φk(Sk|S̄k−1, Āk−1) − β̃0 −
j∑

k=1

φ̃k(Sk|S̄k−1, Āk−1)

)

× (
gj (Aj |S̄j , Āj−1) − EAj

(
gj (Aj |S̄j , Āj−1)

))
)

,

where we have again used the decomposition (5) to take the expectation over Y . The
only terms involving Sj+1, . . . , SK are the φk(Sk|S̄k−1, Āk−1) which have expecta-
tion zero, so

ES̄K,ĀK ,Y

(
EEGE(ψ)

)

=
K∑

j=1

ES1,...,Sj ,ĀK

((

β0 +
j∑

k=1

φk(Sk|S̄k−1, Āk−1)− β̃0 −
j∑

k=1

φ̃k(Sk|S̄k−1, Āk−1)

)

× (
gj (Aj |S̄j , Āj−1) − EAj

(
gj (Aj |S̄j , Āj−1)

))
)

.

This expression is equal to zero if the states are modelled correctly, i.e. if
φ̃j (Sj |S̄j−1, Āj−1) = φj (Sj |S̄j−1, Āj−1) and β̃0 = β0. Otherwise, if the treatment
probabilities are modelled correctly then the expectation with respect to Aj gives
zero because the first bracket does not depend on Aj , and the expectation of the
second bracket is zero.

A.2 Consistency of ψ̂RR

We will show that E(EERR(ψ)) = 0 when the regret functions and the states have
been modelled correctly, where

EERR(ψ) = (
Y − E(Y |S̄K, ĀK)

)∑

j

∂μj

∂ψ
.

Let φ̃j (Sj |S̄j−1, Āj−1) and μ̃j (aj |S̄j , Āj−1ψ) be the postulated models for
φj (Sj |S̄j−1, Āj−1) and μj (aj |S̄j , Āj−1ψ), respectively. Then the model for
E(Y |S̄K, ĀK) is

E(Y |S̄K, ĀK) = β̃0 +
K∑

k=1

φ̃k(Sk|S̄k−1, Āk−1) −
K∑

k=1

μ̃k(Ak|S̄k, Āk−1;ψ).
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The expectation of the estimating equations over all random variables is then

ES̄K,ĀK ,Y

(
EERR(ψ)

)

= ES̄K,ĀK ,Y

((

Y − β̃0 −
j∑

1=2

φ̃k(Sk|S̄k−1, Āk−1)

+
K∑

k=1

μ̃k(Ak|S̄k, Āk−1;ψ)

)
∑

j

∂μ̃j

∂ψ

)

= ES̄K,ĀK

((

β0 +
K∑

1=2

φk(Sk|S̄k−1, Āk−1) −
K∑

k=1

μk(Ak|S̄k, Āk−1;ψ)

− β̃0 −
j∑

k=1

φ̃k(Sk|S̄k−1, Āk−1) +
K∑

k=1

μ̃k(Ak|S̄k, Āk−1;ψ)

)
∑

j

∂μ̃j

∂ψ

)

,

where we have used the decomposition (5) to take the expectation over Y . This ex-
pression is equal to zero if the regret functions and the states are modelled correctly,
i.e. if β̃0 = β0, φ̃j (Sj |S̄j−1, Āj−1) = φj (Sj |S̄j−1, Āj−1) and μ̃j (aj |S̄j , Āj−1;ψ) =
μj (aj |S̄j , Āj−1;ψ).

Appendix B: Uniqueness of the Regret-Regression Decomposition

The regret function is defined as

μj (aj |S̄j , Āj−1) = E
(
Y |S̄j , Āj−1, d

opt
j

) − E
(
Y |S̄j , Āj−1, aj , d

opt
j+1

)

= E
(
Y |S̄j , Āj−1, d

opt
j , d

opt
j+1

) − E
(
Y |S̄j , Āj−1, aj , d

opt
j+1

)
.

Suppose we wish to contrast the effect of action Aj with the best that can be
achieved at time j on the assumption that rules d∗ are followed in the future, not
necessarily optimal. We might define

μ∗
j (aj |S̄j , Āj−1) = E

(
Y |S̄j , Āj−1, d

∗opt
j , d∗

j+1

) − E
(
Y |S̄j , Āj−1, aj , d

∗
j+1

)
,

where d
∗opt
j has the obvious interpretation. Suppose there is a corresponding nuisance

function φ∗(Sj |S̄j−1, Āj−1) and an equivalent decomposition to (5):

E(Y |S̄K, ĀK) = β∗
0 +

K∑

j=1

φ∗
j (Sj |S̄j−1, Āj−1) −

K∑

j=1

μ∗
j (Aj |S̄j , Āj−1).
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It must follow that

β∗
0 +

K∑

j=1

φ∗
j (Sj |S̄j−1, Āj−1)

−
K∑

j=1

μ∗
j (Aj |S̄j , Āj−1)

≡

β0 +
K∑

j=1

φj (Sj |S̄j−1, Āj−1)

−
K∑

j=1

μj (Aj |S̄j , Āj−1).

At time K there are no future actions. Hence d
∗opt
K = d

opt
K and μ∗

K(AK |S̄K,

ĀK−1) = μK(AK |S̄K, ĀK−1). Consequently

β∗
0 +

K∑

j=1

φ∗
j (Sj |S̄j−1, Āj−1)

−
K−1∑

j=1

μ∗
j (Aj |S̄j , Āj−1)

≡

β0 +
K∑

j=1

φj (Sj |S̄j−1, Āj−1)

−
K−1∑

j=1

μj (Aj |S̄j , Āj−1).

State SK appears only in φ∗
K(SK |S̄K−1, ĀK−1) on the left-hand side and only

in φj (SK |S̄K−1, ĀK−1) on the right-hand side. Since the equality holds for all SK ,
these terms must be identically equal. However, by definition φ∗

K(SK |S̄K−1, ĀK−1)

depends on following decision rule d∗
K at time K whereas φK(SK |S̄K−1, ĀK−1) as-

sumes rule d
opt
K is followed. Thus, except in the special case of decisions having no

effect, the decomposition can hold only if d∗
K = d

opt
K .

We can continue in this way, successively cancelling terms, to show that a decom-
position equivalent to (5) can hold only if d∗

k = d
opt
j for j = 1,2, . . . ,K .
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