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Abstract: A variety of single pollutant and multipollutant metrics can be used to represent 

exposure to traffic pollutant mixtures and evaluate their health effects. Integrated mobile 

source indicators (IMSIs) that combine air quality concentration and emissions data have 

recently been developed and evaluated using data from Atlanta, Georgia. IMSIs were 

found to track trends in traffic-related pollutants and have similar or stronger associations 

with health outcomes. In the current work, we apply IMSIs for gasoline, diesel and total  

(gasoline + diesel) vehicles to two other cities (Denver, Colorado and Houston, Texas) 

with different emissions profiles as well as to a different dataset from Atlanta. We compare 

spatial and temporal variability of IMSIs to single-pollutant indicators (carbon monoxide 

(CO), nitrogen oxides (NOx) and elemental carbon (EC)) and multipollutant source 

apportionment factors produced by Positive Matrix Factorization (PMF). Across cities, 

PMF-derived and IMSI gasoline metrics were most strongly correlated with  

CO (r = 0.31–0.98), while multipollutant diesel metrics were most strongly correlated with 

EC (r = 0.80–0.98). NOx correlations with PMF factors varied across cities (r = 0.29–0.67), 

while correlations with IMSIs were relatively consistent (r = 0.61–0.94). In general, single-

pollutant metrics were more correlated with IMSIs (r = 0.58–0.98) than with PMF-derived 

factors (r = 0.07–0.99). A spatial analysis indicated that IMSIs were more strongly 

correlated (r > 0.7) between two sites in each city than single pollutant and PMF factors. 

These findings provide confidence that IMSIs provide a transferable, simple approach to 

estimate mobile source air pollution in cities with differing topography and source profiles 

using readily available data. 

Keywords: multipollutant; air pollution; exposure metrics; source apportionment;  

mobile sources; emissions-based indicators 

 

1. Introduction 

A large body of evidence is now available on the health effects of individual air pollutants [1–6]. 

However, limited research has been conducted on the health effects of air pollution mixtures.  

People are not exposed separately to individual ambient-generated air pollutants, but rather 

simultaneously to mixtures of pollutants from multiple sources. In order to gain a comprehensive 

understanding of public health impacts of ambient air pollution, leading researchers and institutions 

have called for additional investigations into the health effects of air pollution mixtures [7–10]. 

A key challenge in multipollutant research is defining mixtures of interest and developing 

quantitative exposure metrics of those mixtures. Many approaches exist, based on co-emission from 

common sources, common chemical properties, or common biological modes of action,  

which individually address different research questions [11]. From an air quality management 

standpoint, identifying and estimating multipollutant source mixtures responsible for health effects is 

beneficial, and estimating impacts from ubiquitous sources, such as traffic pollution, is of particular 

interest. Mobile source pollution has been associated with multiple health effects, including respiratory 
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and cardiovascular morbidity [5,12,13]. In addition, many people live near roadways or spend time 

daily commuting to work or school, resulting in frequent and sustained exposures to traffic pollution. 

Exposure to mobile sources has been estimated using a variety of metrics, which can be either 

single pollutant or multipollutant in nature. The simplest quantitative approach for estimating traffic 

pollution is to choose a single pollutant “tracer” that is elevated in source emissions, such as black 

carbon (BC) for diesel exhaust [14]. The advantages of using a tracer include data availability, transparency, 

and direct links to epidemiologic and toxicological studies using that pollutant. However, 

disadvantages include emissions from other sources, pollutant transformation in the atmosphere,  

and monitoring sites impacted by local conditions that can make it difficult to link a pollutant to an 

intended source. 

In an effort to more directly identify mobile source impacts, investigators have employed more 

sophisticated metrics that incorporate data on multiple pollutants, such as source metrics/factors 

derived from source apportionment techniques. Source apportionment is typically used to resolve a 

series of factors or “source profiles” and estimate their contribution to the ambient air pollution 

mixture [15–18]. By incorporating additional data from multiple pollutants, source apportionment 

increases the amount of information in the metric, potentially improving the ability to resolve multiple 

factors simultaneously, including source factors related to mobile source pollution. Disadvantages of 

source apportionment include the requirement for a substantial amount of data and complicated 

processing; in addition, source factors can be difficult to interpret, have higher daily variability than 

indicated emissions inventories, or poor spatial representativeness across urban geographical scales. 

An additional limitation specific to mobile source apportionment is the difficulty in resolving gasoline 

and diesel pollution mixtures [19,20]. 

To address some limitations inherent with source apportionment of traffic pollution, Pachon et al. [21] 

developed a series of Integrated Mobile Source Indicators (IMSI) and assessed their performance in 

Atlanta, Georgia. The IMSIs combine readily available concentration data of key mobile source 

pollutants (CO, NOx, EC) with emissions estimates for gasoline, diesel, and total vehicles. In Atlanta, 

Pachon et al. (2012) showed that IMSIs provide additional information to build a more robust metric 

than a single pollutant concentration while providing a more stable approach for estimating temporal 

and urban scale trends in traffic pollution than source apportionment. Such results reflect the promise 

of using IMSIs to estimate traffic in other cities in future studies. 

In this research we extend the application of a variety of IMSIs to other geographical locations and 

compare their generalizability and transferability (to other cities) with single pollutant indicators and 

source apportionment factors. Urban areas vary in terms of the main sources of air pollution,  

traffic patterns, geographic location and climate, topography, and land use. These differences may 

affect the extent to which different mobile source indicators represent exposure to traffic emissions. 

Comparison of these metrics among different cities can provide information useful in selecting mobile 

source indicators for health studies as well as serve as a model for constructing and selecting 

multipollutant metrics for other sources. 
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2. Methods 

2.1. Urban Areas 

Daily mobile source metrics were calculated at a central site and a secondary site in three urban 

areas with contrasting emissions (Atlanta, Denver and Houston). Urban areas were selected based on 

(1) availability of air quality data at multiple monitoring sites within urban boundaries, (2) contrasting 

mobile source emission profiles as defined by the 2008 National Emissions Inventory [22], and (3) diverse 

differences in topography and meteorology. 

Briefly, Atlanta, Georgia is an urban area located in the southeastern U.S. with major air pollution 

sources including motor vehicles, electricity generating units (EGUs) and biogenic sources  

(e.g., vegetation). Pollution in Atlanta is affected by high relative humidity and frequent stagnant 

weather conditions during the summer. Denver, Colorado is a high-elevation urban area located in the 

Rocky Mountains largely impacted by emissions from motor vehicles, with regional influences from 

energy development and biogenic sources, including forest fires. Ambient air pollution in Denver is 

affected by meteorological patterns and topographical features associated with mountainous regions. 

Houston, Texas is an urban, industrial, port city located in the mid-southwestern U.S. with air pollution 

from a combination of mobile sources (e.g., on-road and shipping) and petrochemical plants. Due to 

Houston’s coastal location, ambient pollution is largely influenced by meteorological dynamics of 

oceanic regions (e.g., the land-sea breeze). 

2.2. Air Quality Data 

In each urban area, different monitoring networks were used to retrieve air pollution data at  

a central-site monitor representing urban-scale exposure and a secondary monitor located within urban 

boundaries. The monitoring network, sampling sites, and sampling period used in this study are 

summarized in Table 1. For all three cities, data were obtained from either the Air Quality System 

(AQS) data repository supported by the U.S. Environmental Protection Agency (EPA) or from local 

field campaigns or networks, such as the SouthEastern Aerosol CHaracterization (SEARCH)  

study [23] in Atlanta, GA and the Denver Aerosol Sources and Health (DASH) study in Denver, CO. 

Central-site monitors in this study were the Jefferson Street site in Atlanta, GA, the Palmer site in 

Denver, CO, and the Aldine site in Houston, TX (Table 1). Methods for air pollution monitoring and 

quality assurance protocols supported by the SEARCH (for Atlanta measurements) and DASH  

(for Denver measurements) networks are discussed in detail in Hansen et al. [23] and Vedal et al. [24] 

respectively, but are also presented in Table 1. Ambient air quality data at the Aldine monitoring site 

in Houston, TX were retrieved using the EPA AQS database. At AQS sites, NOx (defined as the sum 

of nitric oxide (NO) and nitrogen dioxide (NO2)) was measured using a chemiluminesence technique 

coupled to a molybdenum oxide substrate, which directly measures NO. Using this technique, ambient 

NO2 is reduced to NO by a molybdenum oxide substrate and subsequently measured by 

chemiluminesence. AQS carbon monoxide (CO) was measured using a nondispersive infrared (NDIR) 

detection technique. AQS fine particle (PM2.5, i.e., particles less than 2.5 μm in diameter) elemental 

carbon (EC) collected on quartz filter substrates (over a 24-h time interval) was quantified using 

thermal optical reflectance (TOR). Additionally, PM2.5 ionic and elemental species were used for 
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source apportionment analysis. AQS filter-based ionic species (SO4
2−, NO3, NH4

+) collected on a Teflon 

substrate were extracted in deionized water and analyzed by ion chromatography. AQS PM2.5 elemental 

species (e.g., Al, Cu, Fe) were measured using X-ray fluorescence. 

Table 1. Monitoring networks. 

Urban Area Site County Study Period Monitoring Network Measurement Methods 

Atlanta, GA 
Jefferson Street (JST) 

Central-site 
Fulton (JST) 2005–2010 SEARCH 

CHL (NOx) 

NDIR (CO) 

TOR (EC, BC, OC) 

IC (ions) 

AC (NH4
+) 

XRF (trace elements) 

Atlanta, GA 
South Dekalb (SD) 

Secondary Site 
Dekalb (SD) 2005–2010 AQS 

CHL (NOx) * 

NDIR (CO) 

TOR (EC) 

IC (ions) 

XRF (trace elements) 

Denver, CO 
Palmer (PAL) * 

Central-site 
Denver (PAL) 2004–2005 AQS 

CHL (NOx) ** 

NDIR (CO) 

TOT (EC,OC) 

IC (ions) 

Denver, CO 
Alsup (ALS) ** 

Secondary Site 
Adams (ALS) 2004–2005 AQS 

CHL (NOx) * 

NDIR (CO) 

TOR (EC) 

IC (ions) 

XRF (trace elements) 

Houston, TX 
Aldine (AL) 

Central-site 
Houston (AL) 2003–2005 AQS 

CHL (NOx) * 

NDIR (CO) 

TOR (EC) 

IC (ions) 

XRF (trace elements) 

Houston, TX 
Deer Park (DP) 

Secondary Site 
Houston (DP) 2003–2005 AQS 

CHL (NOx) * 

NDIR (CO) 

TOR (EC) 

IC (ions) 

XRF (trace elements) 

Notes: AQS: Air Quality System data repository operated by U.S. Environmental Protection Agency [25]; 

SEARCH: SouthEastern Aerosol Characterization study [23,26] ; DASH: Denver Aerosol Sources and 

Health Study [24,27,28],CHL: Chemiluminesence; NDIR Nondispersive Infrared Detection; TOR: Total 

Optical Reflectance; TOT: Total Optical Transmittance; IC: Ion Chromatography; XRF: X-ray Fluorescenc; 

* Gaseous data retrieved at AQS Camp site (AQS ID: 80310002); ** Gaseous data retrieved at AQS Welby 

site (AQS ID: 8013001). 

 

Secondary site monitors were located at the South Dekalb site in Atlanta, Georgia, the Welby site in 

Denver, Colorado, and the Deer Park site in Houston, Texas. Ambient concentration data from 

secondary site monitors were obtained from the AQS database; thus, chemiluminesence, NDIR,  
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and TOR techniques are employed for NOx, CO, and EC measurements, respectively. Gaseous 

pollutants (NOx and CO) were generally reported as hourly averages then aggregated to a daily 1-h 

max concentration (maximum 1-h concentration observed in a 24-h time interval), whereas filter-based 

PM species were reported either every day or every 3rd or 6th day as a 24-h average concentration. 

2.3. Single Pollutant Metrics 

Single pollutant metrics included daily estimates of typical traffic related pollutants, including 1-h 

max nitrogen oxides (NOx), 24-h avg filter-based elemental carbon (EC), and 1-h max carbon 

monoxide (CO). The averaging time used for gaseous metrics (NOx and CO) was selected to be more 

representative of short-duration, high-concentration exposures that induce health effects in controlled 

human exposure studies (e.g., Allred et al. [29]; Folinsbee [2]). However, similar results would be 

expected if 24-h avg values were used, since the correlations between the two daily metrics are 

relatively high (greater than 0.8 for CO, approximately greater than 0.86 for NOx) and the CVs are 

similar (Table 2). 

2.4. Multipollutant Metrics: Source Apportionment Factors 

Two types of multipollutant metrics were quantified for mobile sources: source apportionment 

factors resolved by Positive Matrix Factorization (PMF) [30] and emission-based integrated mobile 

source indicators (IMSI) [21]. Both PMF factors and IMSIs were calculated to represent diesel, 

gasoline, and total (diesel + gasoline) mobile source pollution. 

Source apportionment results were provided by investigators at Georgia Institute of Technology for 

Atlanta [31], the University of Colorado-Boulder for Denver [32], and the U.S. EPA for Houston  

(refer to Supplemental Information). Due to large differences among air quality and data availability in 

the cities, different input datasets and versions of PMF were used to resolve mobile source factors for 

gasoline, diesel and total (gasoline + diesel) vehicles (Table 3); however, investigators attempted to 

maintain consistency in PMF analyses in different cities. In Atlanta and Houston, a combination of 

elemental, ionic, and carbonaceous (including elemental and organic) PM2.5 species were used as input 

data. In Denver, gaseous mobile source tracers (CO, NOx) as well as several PM2.5 ionic and 

carbonaceous species were used. Including additional elemental species to source apportionment 

analyses in Denver made it challenging to consistently resolve mobile source pollution [32]. 

Bootstrapping techniques and alternate uncertainty analysis were also performed to ensure data 

consistency. 
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Table 2. Distribution of central-site single pollutant and multipollutant metrics during 2005 in each urban Area. 

Urban Area Avg SD CV Min 10 25 50 75 90 100 N 

1-h max NOx
+, ppb 

(24 h avg.)            

Atlanta 
89.2 

(38.7) 
58.8 

(27.2) 
0.66 

(0.70) 
15.9 
(7.0) 

25.4 
(15.1) 

41.6 
(20.6) 

75.0 
(31.4) 

128.1 
(47.8) 

170.5 
(71.4) 

305.5 
(169.1) 

257 
(257) 

Denver + 
42.0 

(25.2) 
11.3 
(9.1) 

0.27 
(0.36) 

15.0 
(4.2) 

27.0 
(13.0) 

33.0 
(18.2) 

42.0 
(25.7) 

50.0 
(32.0) 

57.0 
(40.0) 

81.0 
(50.0) 

260 
(260) 

Houston 
62.3 

(21.4) 
49.9 

(15.0) 
0.80 

(0.70) 
4.0 

(0.6) 
20.0 
(9.3) 

30.0 
(12.7) 

47.0 
(17.1) 

79.0 
(25.2) 

130.0 
(38.1) 

327.0 
(112.1) 

348 
(348) 

1-h max CO, ppm 
(24 h avg.)            

Atlanta 
0.86 

(0.44) 
0.65 

(0.22) 
0.76 

(0.55) 
0.17 

(0.13) 
0.31 

(0.22) 
0.39 

(0.27) 
0.65 

(0.33) 
1.06 

(0.47) 
1.87 

(0.67) 
4.09 

(1.82) 
365 

(365) 

Denver 
0.73 

(0.70) 
1.45 

(0.26) 
1.99 

(0.37) 
0.40 

(0.31) 
0.70 

(0.47) 
1.00 

(0.53) 
1.20 

(0.64) 
1.70 

(0.79) 
2.50 

(1.08) 
4.60 

(1.94) 
363 

(363) 

Houston 
0.88 

(0.45) 
0.48 

(0.15) 
0.55 

(0.33) 
0.00 

(0.00) 
0.40 

(0.31) 
0.50 

(0.36) 
0.70 

(0.43) 
1.10 

(0.52) 
1.64 

(0.63) 
2.80 

(1.19) 
365 

(365) 

EC, μg/m3 

Atlanta 1.49 0.94 0.63 0.21 0.55 0.84 1.26 1.96 2.70 6.63 350 
Denver 0.51 0.30 0.59 0.04 0.22 0.32 0.47 0.61 0.82 2.09 272 

Houston 0.72 0.44 0.61 0.01 0.24 0.46 0.66 0.91 1.24 3.25 101 
IMSIGV * 

Atlanta 1.5 1.0 0.67 0.3 0.5 0.7 1.2 2.0 3.0 5.4 257 
Denver 2.2 0.6 0.30 0.7 1.5 1.7 2.1 2.5 3.0 4.9 260 

Houston 1.5 0.9 0.60 0.3 0.7 0.9 1.3 1.8 2.9 5.6 335 
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Table 2. Cont. 

Urban Area Avg SD CV Min 10 25 50 75 90 100 N 
IMSIDV *            

Atlanta 1.5 0.9 0.58 0.3 0.6 0.8 1.3 2.0 2.8 5.4 244 
Denver 2.1 0.8 0.36 0.7 1.3 1.6 2.0 2.5 3.0 6.0 257 

Houston 0.8 0.5 0.62 0.1 0.3 0.5 0.7 1.0 1.5 3.9 98 
IMSIEB * 
Atlanta 1.5 0.9 0.60 0.3 0.6 0.8 1.3 2.0 2.8 5.3 244 
Denver 2.1 0.7 0.31 0.7 1.3 1.6 2.0 2.4 2.9 5.3 257 

Houston 1.5 0.9 0.57 0.5 0.7 0.9 1.3 1.9 2.7 6.1 94 
PMFGV, μg/m3 

Atlanta 1.4 1.1 0.75 −0.3 0.5 0.8 1.1 1.8 2.8 7.6 344 
Denver 0.2 0.1 0.44 0.0 0.1 0.1 0.2 0.3 0.3 0.7 272 

Houston 3.5 2.0 0.58 −0.7 1.1 2.2 3.6 4.7 6.0 13.0 92 
PMFDV, μg/m3 

Atlanta 2.3 2.0 0.84 −0.5 0.4 0.9 2.0 3.1 4.8 13.6 344 
Denver 1.1 0.8 0.71 0.0 0.3 0.6 0.9 1.4 1.9 5.0 272 

Houston 1.1 0.8 0.75 −0.2 0.3 0.6 0.9 1.5 2.1 5.7 92 
PMFMB, μg/m3 

Atlanta 3.8 2.6 0.69 0.4 1.3 1.9 3.1 4.8 7.2 21.2 344 
Denver 1.3 0.8 0.61 0.1 0.5 0.8 1.2 1.6 2.1 5.3 272 

Houston 4.6 2.5 0.54 0.0 1.9 3.1 4.3 5.9 7.3 18.7 92 
Notes: + Measured as NO2; * In arbitrary units. 
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Table 3. Source apportionment results in Atlanta, Denver, and Houston. 

Urban Area  

(Monitoring Site) 

PMF 

Version 
Input Species 

Factor (% Contribution of 

Pollutant Mass) 

Atlanta (Jefferson Street) PMF3.0 

SO4
2−, NO3

−, NH4
+, EC, OC1, OC2, OC3, 

OC4, OP, Al, Br, Ca, Cu, Fe, K, Mn, Pb, 

Se, Si, Zn 

Diesel vehicle (10.8%) 

Gasoline vehicle (14.9%) 

Zinc (1.8%) 

Dust (1.6%) 

Sec NH4
+ (17.8%) 

Biomass Burning (6.6%) 

NO3
− (6.8%) 

SO4
2−, NH4+ (39.6%) 

Denver (Palmer) PMF2 NO3
−, SO4

2−, EC, OC, CO, NO2 

EC/Diesel (19.6%) 

Trace Gas/Gasoline (5.5%) 

NO3
− (15.3%) 

SO4
2− (22.4%) 

OC (37.2%) 

Houston (Aldine) PMF5.0 
SO4

2−, NH4
+, EC. OC1, OC2, OC3, OC4, 

Al, Br Ca, Cu, Fe, K, Mn, Pb, Se, Si, Zn 

Diesel (7.7%) 

Gasoline (25%) 

Zinc-rich (0.6%) 

Dust/soil (12.2%) 

SO4
2− (38.6%) 

Biomass Burning (16%) 

2.5. Multipollutant Indicators: Emission-Based Integrated Mobile Source Indicators (IMISI) 

Multipollutant, emission-based integrated mobile source indicators (IMSI) were calculated using  

a similar approach to Pachon et al. [21]. This approach is designed to estimate mobile source pollution 

by combining ambient concentrations of traffic-related pollutants (CO, NOx, EC) with information on 

their annual mobile source emissions. Pollutant averaging times used in the IMSIs included the daily 1-h 

maximum concentration of gaseous pollutants (CO, NOx) and the 24-h average of filter-based EC 

measurements. The following three equations represent IMSIs for pollution of total mobile  

(gasoline + diesel) (IMSIEB) Equation (1), diesel mobile (IMSIDV) Equation (2), and gasoline mobile 

(IMSIGV) Equation (3) sources: ܫܵܯܫா = αେܥா′ + αܥேை௫′ + αେܥை′ ܫܵܯܫ(1)  = αୈ,େܥா′ + αୈ,ܥேை௫′ ܫீܵܯܫ(2)   = αୋ,େܥை′ + αୋ,ܥேை௫′  (3)

where αij is the normalized fraction of the emissions (E) of species j attributed to source i, e.g.,  

α,େ	ୀ	 ா,௧௧ܧா,ܧா,௧௧ܧா,ܧ + ேை௫,௧௧ܧேை௫,ܧ + ை,௧௧ܧை,ܧ  
 

and 
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αDV,EC =

ಶಶ,ೞಶಶ,ೌಶಶ,್ಶಶ,ೌ ାಶಿೀೣ,್ಶಿೀೣ,ೌ
  

and 

αGV,CO =

ಶೀ,ೌೞಶೀ,ೌಶೀ	್ಶೀ,ೌ ାಶಿೀೣ,್ಶಿೀೣ,ೌ
  

and Cj’ is the normalized concentration of species j, Cj’ = Cj/σCj. 

Each IMSI is a 2 to 3 pollutant mixture used to represent different types of mobile source pollution. 

Total mobile source pollution is defined by a mixture of NOx, CO, and EC (Equation (1)), whereas 

diesel and gasoline pollution are each defined by a mixture of two pollutants (Equations (2) and (3)).  

To combine pollutants of different magnitudes, ambient concentrations were normalized (Cj’) by the 

standard deviation of their daily concentration observed during the entire sampling period (σCj). Mobile 

source fractions (αX) were defined for each pollutant (CO, NOx, EC) by averaging monthly mobile 

source emissions in each urban area during 2007. For example, month-to-month variations in CO 

emissions were used to estimate CO mobile source fractions (αX) attributed to total, gasoline and diesel 

vehicles. Average mobile source fractions (αX) were applied over the entire sampling period for each 

pollutant and did not change on a daily basis. 

Emission estimates and uncertainties for IMSIs were obtained from a number of sources. Annual, 

county-level mobile source emissions were estimated using the 2008 National Emissions Inventory 

(NEI) [22] developed by the U.S. EPA. The 2008 NEI reports annual emissions of criteria and 

hazardous air pollutants from a variety of anthropogenic and biogenic sources during 2008. Since EC 

traffic emissions are not included in the 2008 NEI, county-level annual emissions were estimated by 

averaging daily EC mobile source contributions during 2007 using SMOKE (Sparse Matrix Operator 

Kernel Emissions). The fraction of CO, NOx, and EC from diesel and gasoline mobile sources were 

estimated using the MOtor Vehicle Emissions Simulator model (MOVES2010). MOVES2010 was 

also used to quantify the uncertainty in annual traffic emissions associated with CO, NOx, and EC by 

evaluating month-to-month variation in total mobile source emissions. The standard deviation of the 

monthly median of mobile source emissions was defined as the uncertainty in annual mobile source 

emissions (shown in Figure S1). 

2.6. Spatial and Temporal Comparison of Metrics in Different Urban Locations 

The goal of this study is to apply IMSIs to different urban locations and compare them to other 

single pollutant and multipollutant traffic metrics within each location. To address this goal,  

single pollutant and multipollutant indicators were initially constructed in Atlanta, Denver,  

and Houston. In each city, Pearson correlation coefficients were used to compare day-to-day temporal 

trends among single pollutant and multipollutant mobile source indicators at a central site.  

In an inter-site spatial analysis, each metric was compared between a central site and a secondary site 

using Pearson correlation coefficients. Comparing temporal and spatial trends across metrics provides 
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insight into how each metric characterizes variability in traffic pollution, which in turn, provides some 

information on exposure error. 

3. Results 

3.1. Concentrations of Central-Site Single Pollutant and Multipollutant Metrics 

Table 2 shows the distributions of ambient values of central-site, single pollutant and multipollutant 

metrics, demonstrating variations in metrics by urban location. For single pollutants, the range 

observed in ambient concentrations was relatively similar across cities, with the exception of CO in 

Denver (median CO = 1.2 ppm) and EC in Atlanta (median EC = 1.3 ug/m3), which exhibited higher 

median concentrations compared to values in other cities. Multipollutant metrics demonstrated larger 

differences across cities. For example, average and median IMSI values were higher in Denver 

compared to other cities, while PMF values in Denver were the lowest observed across all cities. 

When comparing day-to-day changes among different metrics, single pollutants tended to exhibit 

more temporal variation than multipollutant metrics. The coefficient of variation (CV) (standard 

deviation normalized by the mean) was generally the largest for single pollutant indicators,  

with generally larger CVs for daily 1-h max metrics (CO, NOx) compared to 24-h average metrics. 

Lower CVs were observed among multipollutant metrics (Table 2), with IMSIs generally showing the 

lowest CVs. A notable example of this trend is demonstrated in gasoline-related indicators  

(CO, PMFGV, IMSIGV); in particular, CVs in Denver were 1.99, 0.44, and 0.30 for 1-h max CO, 

PMFGV, and IMSIGV, respectively. Larger CVs for single pollutants indicate more day-to-day 

variability with respect to multipollutant metrics. 

On a weekend/weekday basis, both single pollutant and multipollutant metric values decreased during 

the weekend in every location, which follows typical urban traffic patterns showing increased activity 

during the weekdays due to workplace commuting (not shown). Interestingly, NOx and EC decreased 

more than CO during the weekend, consistent with the idea that diesel vehicle emissions drop more than 

gasoline vehicle emissions during the weekend. Large weekend decreases were simultaneously observed 

in diesel multipollutant metrics (emissions-based diesel indicator: IMSIDV and PMF-derived diesel 

factor: PMFDV) and to some extent in multipollutant total mobile source indicators (emissions-based 

total mobile indicator: IMSIEB and PMF-derived total mobile factor: PMFMB). 

3.2. Characteristics of Multipollutant Metrics in Different Urban Locations 

3.2.1. Source Apportionment Factors 

As demonstrated in Table 3, source apportionment results were different across cities, particularly 

in the number of resolved factors and mass attributed to different types of mobile source pollution 

(gasoline vs. diesel). In each urban area, source apportionment analyses yielded between 5 to 7 source 

factors, 2 of which corresponded to the gasoline and diesel fraction of mobile source pollution (Table 3). 

Other significant source factors identified in urban locations were secondary sulfate, nitrate, industrial 

sources, biomass burning, and crustal material. Additionally, in every city, the factor associated most 
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closely with diesel sources comprised less than 20% of reconstructed PM2.5 mass; where the factor 

associated with gasoline sources accounted for less than 25% of PM2.5 mass in the urban areas. 

As seen in Figure 1, similar source profiles were observed for gasoline and diesel mobile source 

pollution across cities; however, some variation existed in contributions of PM and gaseous species 

present in each profile. EC was a major component of diesel profiles, whereas organic carbon was 

more prominent in gasoline profiles (with the exception of OC in Denver). Chemical signatures of road 

dust (Al, Ca), brake/tire wear (Fe, Cu), oil combustion (Zn) and ionic species (SO4
2−, in Atlanta) were 

also apparent in both gasoline and diesel source profiles in Atlanta and Houston. Although similarities 

in gasoline and diesel profiles were evident across locations, the contribution of individual species 

often varied among different cities. For example, while potassium was a strong specie in the gasoline 

factors in Houston, it was not present in the gasoline factor in Atlanta. 

Figure 1. Chemical profiles of gasoline and diesel source apportionment factors in  

(A) Atlanta; (B) Denver; (C) Houston. Please view in color. 
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3.2.2. Emissions-Based Indicators 

Annual mobile source emissions of CO, NOx, and EC (reported by the 2008 NEI [22]) showed 

substantial differences across Atlanta, Denver, and Houston (Figures S1–S3). In Atlanta, CO, NOx,  

and EC emissions were predominately from mobile sources, with mobile source emissions comprising 

more than 70% of total emissions of all three pollutants. Lower mobile source contributions (for all 

three pollutants) were observed in Denver and Houston. Annual CO and NOx emissions from major air 

pollution source sectors (reported by the 2008 NEI [22]) demonstrate that non-mobile sources, such as 

EGUs, industrial combustion, and residential heating, likely contribute a significant portion of CO and 

NOx emissions in Denver and Houston (Figures S2 and S3). 

As shown in Figure 2, mobile source emissions of CO, NOx, and EC are associated with different 

portions of traffic pollution (diesel vs. gasoline). Across cities, NOx was emitted in nearly equal 

proportions from both types of vehicles, while the majority (>80%) of CO and EC was emitted by 

gasoline and diesel vehicles, respectively. This suggests that NOx likely provides an adequate 

representation of total mobile source pollution, while CO and EC tend to target gasoline and diesel 

emissions, respectively. Such results confirm the use of specific pollutant mixtures to describe gasoline, 

diesel and total fractions of mobile source pollution as defined in Equations (1)–(3). Additionally,  

no major month-to-month changes were observed in mobile source emissions and ambient pollutant 

concentrations, with the exception of CO and gasoline EC in Denver and Atlanta, which demonstrated 

increased values during the winter months, likely due to vehicular cold starts (Figure 2). 

Figure 2. Monthly emissions for gasoline (lighter shade) and diesel (darker shade) mobile 

sources estimated by MOVES. Mean ambient concentrations observed at the central-site 

monitors are plotted (markers) with standard deviation in whiskers. 
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Table 4 presents mobile source fractions (αX) for CO, NOx, and EC used for IMSI quantification. 

Mobile source fractions for each pollutant (αX) were, for the most part, similar in Atlanta, Denver,  

and Houston; however, minor variations in these values reflect differences in mobile source emissions 

across locations. Based on our emissions analysis, mobile source fractions of CO, NOx and EC were 

relatively the same across cities when estimating total mobile source emissions for IMSIEBs 

(approximately 33% for each pollutant), although mobile source fractions for CO and EC were slightly 

different in Houston. In contrast, CO (>62%) and EC (>55%) were the dominant pollutants used to 

estimate gasoline and diesel emissions in IMSIGVs and IMSIDVs, respectively. Notably, low NOx 

mobile source contributions were observed across all indicators in Denver, compared to higher 

contributions in Atlanta and Houston. Such low NOx mobile source fractions are largely attributed to 

significant non-traffic emissions from EGUs in Denver (Figures S1 and S3). For EC, lower mobile 

source fractions were observed in Houston for both IMSIDV and IMSIEB, consistent with a low 

mobile-to-total EC fraction demonstrated in Figure S1. 

Table 4. Mobile source fractions for emissions-based indicators in three urban areas. 

Urban Area Type of Mobile Source Pollution EC NOx CO 

Atlanta, GA 
Diesel 0.64 0.36 * 

Gasoline * 0.38 0.62 
Combined 0.32 0.36 0.32 

Denver, CO 
Diesel 0.70 0.30 * 

Gasoline * 0.32 0.68 
Combined 0.33 0.29 0.37 

Houston, TX 
Diesel 0.55 0.44 * 

Gasoline * 0.35 0.65 
Combined 0.22 0.38 0.40 

Note: * Not applicable. 

3.3. Temporal Analysis of Single Pollutant and Multipollutant Metrics 

While substantial temporal variability was observed in central-site single pollutant metrics in each 

urban location, single pollutants tended to track one another on a day-to-day basis (Figures 3 and 4). 

Pearson correlations presented in Figure 5 demonstrate that single pollutants (CO, NOx, and EC) were 

moderately correlated with one another (r generally > 0.6) in each city, reflecting a similar source 

among these pollutants, in this case, mobile sources. An exception to this trend was NOx in Denver, 

which showed lower correlations with both CO (r = 0.48) and EC (r = 0.3). Relatively low correlations 

between NOx and traffic co-pollutants likely point to the impact of non-traffic sources to ambient 

levels of NOx in this location. 

Correlations between central-site, single pollutant and multipollutant metrics were generally similar 

in different cities. In all cities, multipollutant gasoline metrics (IMSI-GV and PMF-GV) were more 

strongly correlated with CO (r: 0.31–0.93) compared to EC, while multipollutant diesel metrics  

IMSI-DV and PMF-DV) were better correlated with EC (r: 0.8–0.99) compared to CO (Figures 3–5).  

Low correlations between CO and the PMF-GV in both Denver and Atlanta are notable. Alternatively, 

multipollutant indicators representing total mobile source pollution were, for the most part,  
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strongly correlated with all three single pollutant traffic indicators (CO, NOx, and EC; r = 0.46–0.96). 

When comparing correlations between single pollutants and different types of multipollutant metrics, 

single pollutants typically showed higher correlations with IMSIs than PMF factors, with the exception 

of multipollutant diesel factors (IMSIDV and PMFDV), which showed similar Pearson correlations 

with EC. 

In general, moderate to strong correlations were observed among multipollutant metrics in different 

locations (r = 0.61–0.98), aside from the source apportionment gasoline factor (PMFGV), which was 

generally poorly correlated with other multipollutant metrics (r = 0.16–0.95). In each location, 

individual IMSIs were well correlated with other IMSIs (r > 0.75), while moderately correlated with 

PMFMB and PMFDV factors (r > 0.61). Though PMFDV generally correlated with other  

PMF-derived factors, PMFGV generally did not correspond well to PMFDV metrics (r = 0.16–0.31). 

Figure 3. Time-series plot of single-pollutant (CO-blue, NOx-green, EC-black) and PMF 

mobile source factors (PMFGV (gas)-red shading, PMFDV (diesel)-gray shading,  

PMFMB-orange shading) in Atlanta, GA, Denver, CO and Houston, TX. Please view in color. 
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Figure 4. Time-series plot of single-pollutant (CO-blue, NOx-green, EC-black) and 

integrated mobile source indicators (IMSIGV (gas)-red shading, IMSIDV (diesel)-gray 

shading, IMSIEB-orange shading) in Atlanta, GA, Denver, CO and Houston, TX.  

Please view in color. 

 

 

3.4. Inter-Site Spatial Comparisons of Metrics in Different Locations 

Inter-site spatial comparisons of single pollutant metrics (i.e., comparison of individual daily metric 

values at a central-site vs. secondary site) in Figure 6 show that correlation coefficients for a given 

pollutant vary across cities, such that a high inter-site correlation in one city may not necessarily be 

observed in another city. In most urban areas, at least one single pollutant metric had relatively weak 

correlations between sites. In Denver, lower NOx inter-site correlations were observed (r = 0.58) 

compared to CO and EC (r > 0.75). Spatial correlations in Houston were lower for CO (r = 0.63) and 

EC (r = 0.63), while NOx showed higher correlations (r = 0.75). In Atlanta, spatial correlations were 

similar for all single pollutant metrics. Weak spatial correlations, such as those observed in Denver and 

Houston, may reflect the impact of local, non-traffic sources at different sites. 
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Figure 5. Pearson R for temporal correlations of central-site single pollutant and multipollutant 

indicators in (A) Atlanta, GA; (B) Denver, CO; (C) Houston, TX. The shading of the 

coefficient value and markers indicate the strength of Pearson correlation. Please view in color. 

 

 
 

Across cities, moderate to high inter-site correlations were often observed in both IMSI and PMF 

factors; however, higher correlations were generally associated with IMSIs (r = 0.7–0.85) compared to 

PMF factors (r = 0.27–0.82) (Figure 6). The most notable contrast in inter-site comparisons of IMSIs 

and PMF factors was observed in gasoline-based metrics. In all three areas, poor spatial correlations 

were consistently observed in PMFGV (r < 0.3) compared to much higher correlations in IMSIGVs  

(r > 0.7). On the other hand, inter-site correlations associated with diesel and total mobile sources 

(IMSIDV, IMSIEB, PMFDV, PMFMB) exhibited only minor differences and were higher  

(r = 0.45–0.83). 

Comparisons of spatial trends among single pollutant and multipollutant metrics demonstrated that 

IMSIs were more strongly correlated between two sites than single pollutants; while PMF inter-site 

correlations were neither consistently higher nor lower than single pollutant correlations. (Figure 6).  

For example, inter-site correlations among IMSIEB ranged from 0.77 to 0.83 in the cities, while NOx 

exhibited lower correlation coefficients (r = 0.58–0.75). Similarly, inter-site comparisons among 

IMSIGV (r > 0.73) and IMSIDV (r > 0.73) were greater than CO (r > 0.44) and EC (r > 0.64), 
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respectively. Less consistent trends were observed in inter-site comparisons among source apportionment 

factors and single pollutants. In all three cities, PMFGV was less spatially correlated than CO;  

while correlations for PMFDV and EC were similar. 

Figure 6. Pearson R values for inter-site spatial correlation of single pollutants, integrated 

mobile source indicators (IMSIs) and positive matrix factorization (PMF) factors in each 

urban area. 

 

4. Discussion 

The goal of our study was to apply IMSIs to multiple locations and then compare them to widely 

used, traffic-related single pollutant (CO, NOx, EC) and multipollutant metrics (source apportionment 

factors) to evaluate the utility of IMSIs in future human health studies. Our work suggests IMSIs 

provide a robust, uniform method for estimating traffic pollution in different locations with varying 

emissions, topographical features, and meteorological behavior. Additionally, IMSIs appear to be 

comparable to other conventional single pollutant and multipollutant traffic metrics. Overall, our study 

supports initial findings by Pachon et al. [21] emphasizing the value of IMSIs for air quality and  

health studies. 

Based on our spatial and temporal analysis, IMSIs tend to be more transferrable to multiple 

geographical locations and to multiple sites within an urban area than single pollutant indicators.  

While IMSIs appear to be good traffic surrogates regardless of location, no individual single pollutant 

indicator (CO, NOx, EC) is considered a consistent surrogate across multiple locations. In each urban 

area of this study, at least one of the single pollutant measures appears to inadequately represent traffic 

impacts. For example, while NOx is found to be a reasonable surrogate in Atlanta and Houston,  

it does not appear to effectively represent traffic impacts in Denver due to the fact it has lower 

correlations with other mobile source indicators, a low inter-site correlation, and has a relatively low 

mobile source emissions contribution (Figure S1). These results suggest that ambient NOx in Denver 

represents not only traffic pollution, but also represents variability in non-traffic sources, such as 

power plants. On the other hand, IMSIs were strongly correlated between multiple urban sites and 
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tracked well with common traffic pollutants in every urban area of this study. Together, these results 

indicate that single pollutants can be influenced by local, non-traffic emissions, which in turn, affect 

their ability to serve as traffic surrogates in certain locations. Such local, non-traffic impacts on single 

pollutants may be enhanced if the sampling monitor is within close proximity to or directly downwind 

from major non-traffic sources. Local, non-traffic emissions may not have as large of an impact on 

comprehensive metrics, such as IMSIs, thus, making IMSIs more readily transferrable to different 

locations than single pollutants. 

This transferability makes IMSIs appropriate for application in multicity air quality and epidemiologic 

studies that compare source impacts across multiple cities using a uniform approach. As demonstrated 

in our study, IMSIs provide a standard approach for estimating traffic pollution (as defined by  

Equations (1)–(3)) that relies on local emissions information and routinely measured pollutant data. 

Alternatively, source apportionment of mobile sources tends to vary by location, often yielding results 

that are difficult to compare across cities. In this study, different pollutants were used for source 

apportionment analyses to adequately resolve mobile source pollution in Atlanta, Denver, and Houston, 

resulting in city-to-city variations in mobile source profiles. Comparing mobile sources with different 

chemical profiles between cities is not always straightforward. For instance, in health studies,  

it is challenging to directly link a particular health effect to a source in one city if the characteristics of  

a similar source vary in another city [33]. Overall, these results demonstrate the challenges in applying 

source apportionment to multi-city studies. 

Another feature of IMSIs is their ability to provide a straightforward approach for separating 

gasoline and diesel mobile source contributions, which is beneficial in applications intending to 

identify specific pollutant mixtures responsible for health effects. Our results showed that in each city 

both gasoline and diesel IMSIs exhibited strong correlations between two urban sites and with traffic  

co-pollutants, indicating that IMSIs can resolve different portions of traffic pollution over large 

geographical scales with low spatial error. Single pollutant and source apportionment results were less 

consistent. For example, in Houston, lower inter-site correlations observed in both EC (diesel indicator) 

and CO (gasoline indicator) coupled with emissions information indicating moderate to large  

non-traffic contributions, suggest these pollutants may not fully capture diesel or gasoline mobile 

source pollution by themselves. Additionally, while PMFDV factors appeared to capture urban-scale 

diesel trends in every city, PMFGV factors were less correlated over similar spatial scales, thus,  

are likely associated with relatively large amounts of spatial error. 

The ability of source apportionment (PMF) to effectively resolve pollution from diesel vehicles,  

but not necessarily gasoline vehicles, may be in part due to the fact that PMF relies on multiple 

species, with varying degrees of measurement uncertainty and ambient concentration levels,  

to separate different mixtures. Sources linked to species measured near instrument detection limits or 

measured with large uncertainties can be difficult to identify using source apportionment. In this study, 

PMF relied heavily on EC, a well measured pollutant present at detectable levels, to identify diesel 

factors. On the other hand, PM species such as organic carbon (OC) and trace metals, that are 

measured using varying techniques, or are present at trace levels, are primarily used to resolve  

gasoline factors. The results of this study, like other studies, highlight the challenges in  

separating gasoline and diesel fractions of mobile source pollution using standard source 

apportionment methods [17,19,20,34]. 
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Although our study sheds light on spatial and temporal characteristics of various mobile source 

indicators, several limitations are inherent with this study that should be considered when interpreting 

the results. First, our spatial analysis only includes two sampling sites in each city, a central site and  

a secondary site. While a comprehensive analysis using multiple sites could provide more information 

on urban-scale spatial variability and exposure error of different metrics, the routine monitoring 

network often does not have multiple sites with necessary monitoring equipment, and hence data are 

not available in most cities. Second, the sampling frequency varied across pollutants and urban areas, 

which could have biased our spatial and temporal comparison among metrics. In some cities (Houston 

and Atlanta), EC was measured every 3rd or 6th day compared to gaseous species (CO, NOx) reported 

on a daily basis. Last, there is currently no approach to definitively measure source impacts to use as a 

reference point for estimating the traffic pollution impacts on exposure, which presents challenges in 

how results can be interpreted and methods can be compared. Here, we compared spatiotemporal 

characteristics of different metrics with one another to assess their similarities and differences. 

Among the multipollutant metrics evaluated in this study, our results clearly demonstrate that both 

IMSIs and PMF factors can be reliable traffic surrogates in a variety of locations; however, the process 

of constructing each metric has some uncertainty that may hamper its utility in certain applications.  

For example, IMSIs rely on mobile source emissions estimates that are based on vehicle test data that 

may differ from actual emissions from in-use vehicles, particularly under different meteorological 

conditions. The estimates also rely on assumptions regarding the fleet mixture and driving conditions, 

which account for variability and uncertainty in the resulting emissions data. Furthermore,  

most publicly-accessible emissions data are only available on relatively coarse scales, both temporal 

(weeks to years) and spatial (county-level). Applying coarsely-resolved emissions to IMSIs assumes 

that mobile source contributions (i.e., pollutant specific mobile source fractions (αX)) do not vary 

substantially over space or on a day-to-day basis, which presents some limitations. It is possible, 

however, to apply time-specific emissions to IMSIs resulting in different mobile source fractions for 

different periods of the study. This application is particularly ideal for longer-term studies that overlap 

with time periods of decreasing emissions due to fuel and vehicle controls. 

Source apportionment, on the other hand, relies on pollutant measurements, some of which are 

poorly measured, highly uncertain or near the method detection limit, which often results in unrealistic 

source data that are difficult to interpret. As previously discussed, this uncertainty may have 

contributed to the relatively poor performance of the gasoline factors in our study. Source impacts 

(resolved by PMF) can also exhibit aberrant temporal variability lacking correspondence to local 

emissions and measurement data [31,35,36]. Moreover, in longer term studies, the use of PMF can also 

be complicated due to changes in source profiles over time that make it difficult to resolve specific 

gasoline and diesel profiles unless the data are broken down into separate time periods [37]. Last, due 

to similar temporal patterns among gasoline and diesel mobile source emissions, moderate correlations 

tend to exist between the two types of mobile source metrics, whether considering IMSI or PMF 

metrics. Such correlations do not necessarily reflect the inability of IMSIs or PMF to resolve different 

types of mobile source pollution, but may present challenges in attributing distinct health impacts to 

gasoline and diesel mobile sources. Overall, these combined uncertainties can have a profound effect 

on the quality of results in an air pollution or health study and should be considered by an investigator 

when designing a study. 
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Investigators should also consider which portion of the traffic mixture should be represented prior 

to selecting a metric, recognizing that traffic pollution is a complex mixture (of tailpipe and  

non-tailpipe emissions) and individual metrics likely represent this mixture differently. IMSIs, for 

example, primarily include information from pollutants in tailpipe exhaust and likely adequately 

capture this portion of the mixture. Alternatively, source apportionment can incorporate combustion 

pollutants as well as pollutants from brake/tire wear (e.g., Ba, Cu), secondary formation processes,  

and road dust (e.g., Fe, Al), which may allow for better resolution of non-exhaust traffic pollution than 

provided by IMSIs or single pollutant metrics. However, combining tailpipe and non-tailpipe 

pollutants in source apportionment may also result in factors that are difficult to directly link to traffic 

pollution. Using pollutants with unstable chemical properties (e.g., semivolatile pollutants: organic 

carbon) for source apportionment can bias results [38,39], especially across cities. For example, OC 

may be more volatile in Houston than in Denver due to meteorological factors, resulting in large 

differences among mobile source impacts and profiles in different locations. 

We conclude by addressing the following question: “What can be gained by using multipollutant 

metrics instead of single pollutant metrics for mobile sources?” Previous scientific reviews have 

emphasized the importance of employing a multipollutant paradigm when evaluating air pollution 

health effects, but have also recognized the dearth of research on the application of multipollutant 

metrics in such studies [7–11]. To address this research gap, we compared a variety of single pollutant 

and multipollutant metrics to gain insight to their utility in future air pollution health effects research.  

Our study shows several advantages of using multipollutant metrics for mobile source pollution, such 

as improved transferability within and across cities, lower CVs, and generally greater inter-site 

correspondence. Additionally, prior studies using similar metrics in health studies have found 

associations with somewhat smaller uncertainties though virtually the same exposure response 

functions [21]. Although, in many cases, the difference between multipollutant and single pollutant 

metrics is small, suggesting that using advanced metrics may not necessarily translate to a better 

understanding of sources and/or health effects. 

With respect to characterizing temporal variability, multipollutant metrics tend to decrease  

day-to-day fluctuations in mobile source impacts more than most single pollutant metrics, especially 

daily 1-h max metrics, as evidenced by lower CVs in multipollutant measures (Table 1).  

This dampening effect can have either a positive or negative impact on exposure and/or human health 

studies. For example, using multipollutant metrics may reduce the amount of variability due to 

sampling error, changes in seasonal concentrations, or non-traffic emissions, which likely impact 

single pollutants more than multipollutant metrics. This additional variability may not directly reflect 

mobile source pollution, thus, resulting in an added layer of exposure error in a health study.  

On the other hand, multipollutant metrics can disproportionately dampen or artificially smooth 

temporal variability to the point where such metrics underestimate actual variability in traffic 

pollution, which may partially reduce statistical power in detecting an exposure-health effect 

relationship. Such dampening effects on temporal characteristics appear to be more prominent in 

IMSIs, which utilize coarsely-resolved traffic emissions and normalized ambient concentration values, 

and could have positively biased inter-site correlations among IMSIs. Applying more fine-scale spatial 

emissions data may result in lower inter-site correlations. Additionally, some single pollutant metrics, 

such as 24-h average single pollutant measures, have similar CVs as IMSIs, making it difficult to 
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evaluate which metric is more representative of traffic pollution. Clearly, there are specific drawbacks 

associated with the degree to which either single pollutant or multipollutant metrics characterize 

temporal variations in traffic; however, an effective indicator is one that incorporates an adequate 

amount of temporal variability while minimizing exposure error, which may not necessarily be 

multipollutant in nature. 

Last, multipollutant metrics likely have an added degree of uncertainty associated with the process 

of combining several pollutant concentrations and other data into a metric [11], and failing to account 

for such uncertainty can potentially skew the exposure-health effect relationship (i.e., by artificially 

narrowing confidence intervals around effect estimates) [40]. Kioumourtzoglou et al. [40] showed that 

uncertainty associated with source apportionment methodology can inflate standard error in mobile 

source effect estimates. An earlier study [21] showed similar relative uncertainties for IMSIs  

(0.51–0.68) and PMF-derived (0.26–0.67) mobile source factors and concluded that error associated 

with these methods largely stems from pollutant measurements, traffic emission estimates, copollutant 

covariance structures, and the ability of an individual multipollutant technique to identify mobile 

sources consistently. Based on these results, it is reasonable to speculate that IMSIs and PMF factors 

have similar impacts on health effect estimate uncertainty. On the other hand, the results of this study, 

as well as Pachon et al. [21], suggest that IMSIs have lower spatial error over large geographical scales 

compared to single pollutant or PMF-derived indicators. Low spatial error (associated with IMSIs) 

may counterbalance additional exposure error from constructing the IMSI, thus, indicating a potential 

advantage of using IMSIs over PMF. However, all metrics included in this study rely on central-site 

monitoring data, meaning that they may not adequately capture spatial variability and do not account 

for activity patterns, potentially leading to attenuated effect estimates [41]. Thus, it remains largely 

unclear how uncertainty associated with IMSIs or PMF will impact health estimates. Moving forward, 

it is important for researchers to constrain the effect of multipollutant metrics exposure on  

effect estimate uncertainty, in particular, how such uncertainty impacts the direction and magnitude of 

risk estimates. 

5. Conclusions and Future Work 

Overall, we successfully applied emission-based multipollutant indicators to urban areas with 

varying traffic emissions. These indicators appeared to be more transferrable to multiple geographic 

areas than traditional single pollutant and multipollutant metrics, with more consistent correlations 

among metrics and between sites. Therefore, IMSIs are well-suited for multi-city study designs 

interested in comparing source impacts and subsequent health effects across cities. However, in many 

cases, there were no major differences in the single pollutant and multipollutant metrics representing 

urban-scale traffic pollution, which suggests that some uncertainty exists regarding the benefits 

provided by multipollutant metrics (IMSIs and source apportionment factors) in air quality and human 

health studies. 

Future work evaluating different types of single pollutant and multipollutant metrics in 

epidemiologic analyses will address remaining questions on the value of different metrics.  

In particular, studies comparing the effect of different types of metrics on exposure and health effect 

uncertainty will be most informative [42]. Additionally, extending these indicators to other sources 
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beyond traffic is beneficial, especially to sources that are difficult to capture using standard single 

pollutant or multipollutant techniques and that have significant health implications (e.g., biomass 

burning). The use of concentration data from chemical transport models, such as the Community 

Multiscale Air Quality Model (CMAQ), can provide information on species that are not routinely 

measured, which in turn, will help to facilitate extending these indicators to new sources. 
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