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Abstract

There are two strong and equally important predictors of rates of human protein evolution: The amount the gene is
expressed and the proportion of exonic sequence devoted to control splicing, mediated largely by selection on exonic
splice enhancer (ESE) motifs. Is the same true for noncoding RNAs, known to be under very weak purifying selection?
Prior evidence suggests that selection at splice sites in long intergenic noncoding RNAs (lincRNAs) is important. We now
report multiple lines of evidence indicating that the great majority of purifying selection operating on lincRNAs in
humans is splice related. Splice-related parameters explain much of the between-gene variation in evolutionary rate in
humans. Expression rate is not a relevant predictor, although expression breadth is weakly so. In contrast to protein-
coding RNAs, we observe no relationship between evolutionary rate and lincRNA stability. As in protein-coding genes,
ESEs are especially abundant near splice junctions and evolve slower than non-ESE sequence equidistant from boundaries.
Nearly all constraint in lincRNAs is at exon ends (N.B. the same is not witnessed in Drosophila). Although we cannot
definitely answer the question as to why splice-related selection is so important, we find no evidence that splicing might
enable the nonsense-mediated decay pathway to capture transcripts incorrectly processed by ribosomes. We find evi-
dence consistent with the notion that splicing modifies the underlying chromatin through recruitment of splice-coupled
chromatin modifiers, such as CHD1, which in turn might modulate neighbor gene activity. We conclude that most
selection on human lincRNAs is splice mediated and suggest that the possibility of splice–chromatin coupling is worthy of
further scrutiny.
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Introduction
Understanding how genes evolve and where purifying selec-
tion is acting to maintain the status quo can, in principle, be
highly informative of the function of a gene and the reasons
that mutations might be deleterious and potentially causative
of disease. In the simplest instance, for example, selection to
preserve functional protein motifs is commonly taken to
imply a function for that motif and possible pathogenic con-
sequences for mutations that disrupt the motif. On a broad
scale, we can approach these issues by asking where in genes
we see purifying selection and what determines the variation
between genes in their rate of evolution. Although the deter-
minants of the rate of protein evolution are much studied
(Pal et al. 2006; Zeldovich and Shakhnovich 2008), much less
well understood are the determinants of the evolutionary rate
of noncoding RNAs (ncRNAs). The exons of human ncRNAs
are typically poorly conserved compared with protein-coding
genes (Marques and Ponting 2009) and on average evolve a
little slower than their flanking introns (Hurst and Smith
1999; Pang et al. 2006), suggesting weak purifying selection.
The causes of this are unclear (Pang et al. 2006). The relatively

rapid evolution need not imply an absence of function, as
even highly functional ncRNAs, such as Xist, contain only a
few conserved stretches (Pang et al. 2006). The determinants
of between-gene variation in the rate of evolution of ncRNAs
are only beginning to be explored (Managadze et al. 2011).
Here then we ask about where in ncRNAs purifying selection
operates and what predicts rates of evolution of ncRNAs.

Understanding the evolution of ncRNA can, conversely,
potentially shed important light on the mode of selection
on protein-coding genes. For example, it has recently been
suggested that selection on RNA stability is an important
determinant of rate of protein evolution (Park et al. 2013).
It is, however, unknown whether this selection is particular to
RNAs that are translated or to all RNA species. In principle,
one can imagine models for either possibility. For example,
RNA stability selection may be important in altering transla-
tional dynamics if RNA structure modulates ribosomal speed.
Conversely, the selection may simply be to enable RNA to
persist in a stable configuration, in which case ncRNA might
be under similar selection. For proteins there is at least one
universal predictor of between-gene variation in rate of
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evolution, namely the more a gene is expressed the lower its
evolutionary rate (Pal et al. 2001; Drummond et al. 2006). One
hypothesis to explain this concerns selection on protein-fold-
ing accuracy (Drummond and Wilke 2008; Yang et al. 2010). If
the correlation between protein rate of expression and rate of
evolution is mediated exclusively by selection on protein fold-
ing, then we expect no such correlation in ncRNAs. One prior
claim (Managadze et al. 2011) identified slower evolution in
more highly expressed ncRNA and found a coupling between
long intergenic ncRNA (lincRNA) stability and evolutionary
rate. They concluded there to be a universal (all transcript
types) correlation between expression level and evolutionary
rate. This they took to suggest a possible universal selection
on folding, be it RNA or protein level. Given the importance
of such a result, we now return to this issue.

In mammals, splice-related constraints are of an approxi-
mately equal magnitude to the expression-related parameters
as a predictor of rate of protein evolution (Parmley et al.
2007). Although splice sites are necessary for exon–intron
junction recognition, they carry only some of the information
required for accurate splicing of protein-coding genes (Lim
and Burge 2001). Exonic splice enhancers (ESEs) are also nec-
essary to maintain proper splicing. ESE motifs are purine-rich
hexamers that bind serine arginine-rich (SR) proteins to aid
exonic splice site recognition (Blencowe 2000; Cartegni et al.
2002). They mostly operate close to (within 70 bp) exon–
intron junctions (Fairbrother, Holste, et al. 2004) in a quanti-
tative fashion, such that the higher the density of ESEs the
higher the splice rate (Graveley 2000; Fairbrother et al. 2002;
Fairbrother, Holste, et al. 2004; Fairbrother, Yeo, et al. 2004; Ke
et al. 2011). On average 30–40% of bases at the flanks of
protein-coding exons feature in at least one experimentally
confirmed motif, this proportion being higher for exons
flanked by larger introns (Dewey et al. 2006) where exon
definition is especially difficult.

Owing to their abundance, importance, and skewed
nucleotide content, ESEs leave strong and easily identified
footprints in the molecular evolution of mammalian pro-
tein-coding genes (C�aceres and Hurst 2014). ESE motifs
evolve at considerably lower rates than non-ESE sites, at
both the synonymous (Carlini and Genut 2006; Parmley
et al. 2006) and nonsynonymous levels (Parmley et al.
2007). The abundance of ESEs near exon junctions skews
amino acid content and codon usage patterns (Parmley
and Hurst 2007; Parmley et al. 2007), with the majority of
amino acids and codons showing avoidance or preference
near boundaries, these trends being well predicted by ESE
nucleotide content. As “boundary” regions are large with re-
spect to the average size of an exon, the biology of ESEs is one
of the major influences on human protein-coding genes.

ncRNAs frequently contain conserved promoter regions
and splice sites and also show a reduced rate of insertions
and deletions (Ponjavic et al. 2007), indicative of selection for
splicing and transcription. Indeed, conserved splice sites have
been employed to identify noncoding transcripts (Rose et al.
2011) and splice sites in ncRNA often show considerable de-
grees of conservation (Nitsche et al. 2014; Washietl et al.
2014). It is, however, unknown whether ESEs are involved in

splice regulation and, assuming that they are, whether they
contribute to purifying selection operating on sequence. Here
then we employ a robust and appropriate high-quality data
set of human ncRNAs (Cabili et al. 2011), wherein we can
both have a good measure of confidence that the ncRNAs are
not protein coding, that the ncRNA are real (by them being
identified more than once), and that, being intergenic, there
are minimal issues with overlapping transcripts. Of these data,
we ask 1) whether ncRNAs show evidence of splice-related
constraint with reduced rates of evolution at exonic ends,
especially in residues associated with exonic splice enhancer
motifs; 2) if so, what proportion of the reduced rate of evo-
lution of ncRNA exons, when compared with flanking introns,
can be explained as owing to splice-related selection; and 3)
how important is splice-related selection in explaining be-
tween-gene variation in rate of evolution of ncRNAs com-
pared with other possible predictors. We report that the great
majority of selection on ncRNAs is splice related, purifying
selection being dominantly on exon ends with ESE motifs
especially slow evolving. We consider a series of models to
explain this unexpected result.

Results
Do lincRNAs employ ESEs? If they do, can we find evidence for
splice-related constraints within the exons on lincRNAs? If we
can, how important are splice-related constraints, both in
explaining any purifying selection operating on lincRNAs
exons when compared with their introns and in explaining
between-gene variation in rates of exonic evolution? To ad-
dress the former issues, we start by considering whether exons
of lincRNAs use ESEs in the same manner as protein-coding
genes and in turn whether they impose comparable degrees
of constraint.

ESE Usage and within-Gene Variation in Rate of
Evolution
ESE Usage at lincRNA Exonic Flanks Resembles That in

Protein-Coding Exons
ESEs are most efficient close to the splice junction
(Fairbrother et al. 2002; Fairbrother, Holste, et al. 2004;
Fairbrother, Yeo, et al. 2004) and if ESEs are involved in splicing
regulation for lincRNAs, putative ESE motifs should be en-
riched close to splice junctions. To test this hypothesis, we
annotated putative ESE motifs in the lincRNA and protein-
coding alignments by using the set of experimentally con-
firmed human ESE-hexamers employed in a previous study
(Parmley et al. 2006) as defined by Fairbrother, Yeo, et al.
(2004). We temporarily removed gaps from the alignments
to scan for matches to the set of known ESE-hexamers.
Matching hexamers were masked and gaps were reinserted
after the scan. As expected, the density of putative ESE mo-
tifs is highest in direct proximity to the splice sites and de-
creases with distance from the splice site. This trend is
observed in both lincRNA and protein-coding exons (fig. 1a
and b).

It has been shown that large introns are correlated with a
high density of ESEs in the flanking exons (Dewey et al. 2006;
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C�aceres and Hurst 2014). We can reproduce this observation
for both the protein-coding genes and the lincRNAs in our
data set (fig. 1c and d). The trend is weaker in lincRNAs
compared with protein-coding genes (rho = 0.2 and 0.28,
respectively) but both correlations are highly significant
(from Spearman: P< 10�16). Using all lincRNAs instead of
only the conservative subset does not qualitatively change
these results (supplementary fig. S1, Supplementary
Material online).

Exonic Splice Enhancers Evolve Considerably Slower Than
Nonenhancers in lincRNA Evolution
In protein-coding genes, exon residues that specify ESEs
evolve slower than non-ESE sequence (Parmley et al. 2006,
2007). Our data replicate this result (median K [ESE] = 0.021,
median K [non-ESE] = 0.028, Wilcoxon test: P< 10�16). More
importantly, we find that substitution rates in ESEs are signif-
icantly lower than the ones in non-ESE sites in lincRNAs
(median K [ESE] = 0.055, median K [non-ESE] = 0.066,
Wilcoxon test: P< 10�16).

Given that ESEs function close to exon boundaries, it might
in turn be helpful to control for distance from an exon bound-
ary. We thus compared the evolutionary rates between ESE
and non-ESE sites as a function of the distance from the
nearest splice junction. Conceptually, every exon was split

in half and for each alignment site we assigned the base
pair-distance to the 50-splice junction for the first exon-half
or to 30-junction for the second exon-half. We calculated the
substitution rates for sites up to 70 bp away from the nearest
splice junction and distinguished between ESE and non-ESE
for both protein coding RNAs (fig. 2a) and lincRNA (fig .2b).
We again observe a trend of ESE sites evolving slower than
non-ESE sites, and also a positional effect with the average
substitution rates increasing with the distance from the near-
est splice junction. This positional effect is observed both in
lincRNA and in protein-coding genes (fig. 2). Using all
lincRNAs instead of the conservative subset again does not
qualitatively affect the results (supplementary fig. S2,
Supplementary Material online).

ESEs are purine-rich and, as ESE density is also decreasing
with distance from the nearest splice junction, a biased nu-
cleotide composition might be responsible for the overall
increase in evolutionary rates with increasing distance from
the splice site. To test this, we concatenated the alignments of
all exons and for each distance value, we extracted a random
sample from this concatenated alignment with the same
sample size and nucleotide composition as the alignment
sites for the respective distance from the splice junction.
The overall evolutionary rates in the randomized samples
are higher compared with the putative ESE motifs and

FIG. 1. Relative frequencies of bases� SEM predicted to be part of an ESE motif as a function of the distance to the nearest intron, starting at a distance
of 6 [(a) and (b)]. The decadic logarithm of the average intron length for lincRNA and protein-coding genes versus the density of ESE motifs on the exon
sequences of this gene is shown in (c) and (d). For (c) and (d), “density” has been measured as the number of nucleotides that belong to a putative ESE
motif divided by the summed length of exons for the respective gene. This figure includes only the conservative lincRNAs. For the complete set, see
supplementary figure S1, Supplementary Material online. Error bars for (a) and (b) =� SEM.
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comparable to the non-ESE sites, demonstrating that biased
nucleotide composition cannot explain the lower evolution-
ary rates in putative ESE motifs. The magnitude of the differ-
ence between the ESE and non-ESE sequences in their rate of
evolution in lincRNAs, with ESE evolving around 15% slower
than nucleotide controlled null sequence, is the same as wit-
nessed at 4-fold degenerate synonymous sites in protein-
coding genes (C�aceres and Hurst 2014).

Although we employ experimentally confirmed ESEs, these
are unlikely to correspond to all biologically meaningful ESEs.
Nonetheless, selective pressure to maintain the experimen-
tally defined set of ESE-motifs does not seem to be the only
cause for this trend because non-ESE sequences show the
same trend of increasing substitution rates with increasing
distance (rho [ESE] = 0.554 and rho [non-ESE] = 0.729 for pro-
tein-coding genes; fig. 2, and for lincRNAs rho [ESE] = 0.298,
rho [non-ESE] = 0.306; fig. 2). To consider more generally the
role of splice-related constraint, we therefore also compare
exon flanks with exon cores and with intronic cores. We
presume any differences in rates to be owing to splice-related
features.

Weak Constraint on lincRNAs Is Dominantly Owing to

Selection in Exonic Flanks in Humans
We employed the ratio of the substitution rate in exons (Ke)
over the substitution rate in introns (Ki) to scan the lincRNA
alignments for signatures of purifying selection. For the inter-
pretation of this ratio, introns are used as a proxy for back-
ground, possibly neutral, rate (Hoffman and Birney 2007;
Resch et al. 2007). A Ke/Ki ratio< 1 (or< 0 after log-trans-
formation) would thus be indicative of purifying selection. For
protein-coding genes, there is evidence of higher selective
constraints near exon–intron boundaries, both in the
exonic and in the intronic regions flanking the splice junction
(Chamary and Hurst 2004; Warnecke et al. 2008) and we
therefore analyzed the regions in exon and intron cores and
those flanking the splice junction separately (we do not ana-
lyze intron flanks). For each aligned gene in the protein-
coding and the lincRNA data set, we concatenated 70 bp of
exonic sequences flanking the splice junctions and calculated
the number of substitutions in the concatenated exon flanks
(Kef). We defined exon cores as the sequences enclosed by
two exon flanks, concatenated them as well, and calculated

FIG. 2. ESE motifs evolve slower than non-ESE sites. The substitution rates (number of substitutions divided by number of sites) in ESEs and non-ESEs
are shown as a function of the distance in base pairs from the nearest splice-junction, for lincRNA (bottom) and protein-coding (top) genes. This figure
includes only the conservative lincRNAs. For the complete set, see supplementary figure S2, Supplementary Material online. Bars indicate� SEM.
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their substitution rates (Kec). We compared those rates with
the substitution rates in concatenated intron cores (Kic), de-
fined as the intronic sequences without the 20 bp flanking the
splice junction, as done previously (Warnecke et al. 2008). For
this analysis, to reduce the impact of noisy short sequences,
we excluded all genes for which the concatenated exon- and
intron flanks and intron cores were shorter than 100 bp,
which leaves us with 1,810 (53%) lincRNA genes.

The logged (natural logarithm) distributions of Ke/Ki ratios
for the alignments of lincRNAs and protein-coding genes are
shown in figure 3a and c. The Kec/Kic distribution in protein-
coding genes is, as expected, consistent with the majority of
genes evolving under strong purifying selection (median log
Kec/Kic =�0.769; fig. 3c). For the core exon and core intron
regions of lincRNAs, we observe a similar but much weaker
trend (median log Ke/Ki =�0.005, Wilcoxon test: P = 0.027;
fig. 3a). This trend is still significant at the 0.05 level, but very
weak compared with the same effect seen in protein-coding
genes, which is consistent with earlier studies that found little
evidence for purifying selection acting on lincRNA exons. The
Ke/Ki ratio is slightly more pronounced when the entire set of

lincRNAs instead of only the conservative subset is used (sup-
plementary fig. S3, Supplementary Material online) which is
not unexpected because the nonconservative set might con-
tain some genes with protein-coding potential (see Materials
and Methods for filtering with respect to coding potential).

We notice that with ESE sequence close to exon flanks
evolving 15% slower than neighboring sequence, that this
effect alone might explain all or nearly all constraint on
ncRNAs. With about 27% of sequence near exon flanks (in
the relevant sample), a density of ESE around 30% and 15%
slower rate of evolution, assuming exonic non-ESE sequence
evolves at about the same rate as introns, we predict that log
Ke/Ki should be approximately log (1� [0.27� 0.3� 0.15]) =
�0.01. This is, if anything, greater than the proportional dif-
ference that is actually observed, suggesting that selection on
ESEs may account for all of the reduced rate of evolution of
exons compared with introns.

Assuming this to be the case, we would also expect a low
rate of evolution at exon flanks to account for most of the
difference between exon and intron. The exon flanks of pro-
tein-coding genes have previously been shown to evolve

FIG. 3. Exon cores and flanks evolve at different rates. The distributions of Kec/Kic and Kef/Kec values are shown for protein-coding genes and lincRNAs.
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slower than the exon-core regions owing to the fact that
splice-related motifs tend to be in the flanks (Parmley et al.
2007; Warnecke et al. 2008). As expected, we also observe this
in our set of protein-coding genes (median log Kef/
Kec =�0.136; fig. 3d). Importantly, a similar pattern can be
observed for the lincRNA data set, where the exon flanks also
evolve slower on average than the exon-core regions (fig. 3b).
The difference between exon flanks and cores in lincRNAs is
again not as pronounced as in the protein-coding data set but
still highly significant (median log Kef/Kec =�0.022, Wilcoxon
test: P = 0.0009). Overall then, these results support the view
that the majority of selective constraint on lincRNAs is at
exonic ends with little if any at exon cores. Put differently, if
there are conserved motifs in exon cores (as seen if Xist), then
they are rare. As we excluded genes where the concatenated
exon flanks and cores or the concatenated intron cores were
shorter than 100 nucleotides, these results do not necessarily
reflect trends in short lincRNA genes.

These results replicate in part those of Chodroff et al.
(2010) who noted a tendency for exon cores of lincRNAs to
evolve faster than flanks. They suggest that this might not be
owing to splice-related constraint but instead reflect trans-
posable element insertion in cores. That in the flanks ESEs and
non-ESE evolve at different rates (fig. 2) and that the net
exonic rate can be predicted from knowing this constraint
alone strongly argue in favor of splice-related constraint par-
ticular to the exon flanks.

Constraint on lincRNAs in Drosophila Is Stronger Than in
Humans but Is Dominantly Not Owing to Selection in

Exonic Flanks
We can ask whether the above result might be general.
Recently, it has been reported that in Drosophila selection
on ncRNAs is more intense than seen in humans (Young et al.
2012; Haerty and Ponting 2013). Does this mean that the
difference in evolutionary rate between flanks and cores is
all the more profound? To address this, we considered rates of
evolution of ncRNAs as previously annotated comparing D.
melanogaster and D. yakuba. Confirming the strong con-
straint in ncRNA exons we find that the log of the ratio of
rate of evolution between exon core and intron core is �0.6
(Wilcoxon test: P = 4.8� 10�18). Unexpectedly, we find that
flanks evolve if anything faster than the cores (median ratio of
log [flank/core] = 0.25, Wilcoxon tests: P = 1� 10�8). We con-
clude that the stronger selection on flanks of ncRNAs is not
universal.

Causes of between-Gene Variation in Rates of
Evolution

The above analyses indicate that ncRNAs use ESEs much as
protein-coding genes do and that splice-related constraints
explain the great majority of within-gene purifying selection.
These results suggest a further issue. If splicing is so important
in explaining intragene variation in rates of evolution, is it also
the most important predictor of between-gene variation in
rates of evolution? It is not trivially the case that this need be
so. For protein-coding genes, a universal and highly significant
negative correlation between gene expression and rate of

protein evolution has repeatedly been observed (Pal et al.
2001; Drummond and Wilke 2008; Wolf et al. 2010). As this
is effectively controlled for by considering intragene analyses,
it could be that the causes of intragene variation are dwarfed
by a feature, such as expression level, which only becomes
important when considering intergene comparisons.

Partial Correlation Analysis Suggests ESE Density Is the Best
Predictor of lincRNA Rate of Evolution
The above analysis suggests that ESEs and exon flanks impose
major constraint on sequence evolution of lincRNAs. Indeed,
the difference in the extent of constraint between the exon
core and exon flank suggests that most constraint is splice
related. This analysis, while controlled at a pairwise level, does
not address the issue of how well splice-related constraints
explain between-gene variations in evolutionary rate. How
then do splice-related constraints compare with other puta-
tive predictors of evolutionary rate and how relatively impor-
tant is each predictor when allowing for covariance with the
others?

To this end, we carried out a partial correlation analysis
using the pcor R script (Kim and Yi 2006). We considered
three expression parameters (maximum expression rate,
median expression rate and expression breadth, breadth
being the proportion of tissues within which a gene is ex-
pressed), two splicing-related parameters (fraction of exon
sequence in 70-bp windows flanking splice junctions
[frac70] and the fraction of exonic sequence that matches
known ESE motifs [ESE density]), folding stability and GC
content. Normal and partial correlations are shown in
table 1 (see also supplementary table S1, Supplementary
Material online). In addition, for comparison, we consider
the same parameters in their ability to predict rates of evo-
lution of protein-coding genes.

As regards the rate of evolution of lincRNAs, one param-
eter stands out. Out of all parameters we considered, the
density of ESE motifs in exon sequences is the best predictor
for evolutionary rates in lincRNAs, both in normal and in full
partial correlation analyses. The other splicing-related param-
eter, the fraction of sequence within 70 bp of an exon junc-
tion (frac70), is however not significantly correlated with
evolutionary rates of the lincRNAs.

For the protein-coding genes, the situation is somewhat
different. Both the fractions of sequence within 70 bp of an
exon boundary and ESE density are correlated with evolution-
ary rate in the normal correlation analyses, whereas ESE den-
sity is no longer significantly correlated in the partial
correlation analyses. This seems to be an interaction effect
with GC content because ESE density shows a significant
partial correlation, comparable to the normal correlation,
when GC content is removed from the set of controlled var-
iables. The overall GC content of lincRNA exons is very low
compared with the exons of protein-coding genes (median
GC content = 0.309 and 0.515, respectively) which might ex-
plain why GC content masks the effect of ESE density on
evolutionary rate in protein-coding genes but not in
lincRNAs.
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Expression Level Does Not Predict Evolutionary Rates of
lincRNAs
A universal and highly significant negative correlation be-
tween gene expression and rate of protein evolution has re-
peatedly been observed (Pal et al. 2001; Drummond and
Wilke 2008; Wolf et al. 2010). It has been proposed that the
dominant underlying cause for this correlation is the cost
imposed by protein misfolding, which is higher for highly
expressed genes (Drummond and Wilke 2008; Yang et al.
2010). It has also been demonstrated however that the cost
imposed by protein misfolding cannot be the only cause un-
derlying the observed negative correlation, other possible
mechanisms that underlie this correlation include the avoid-
ance of protein misinteractions (Yang et al. 2012) and differ-
ential requirements for mRNA folding (Park et al. 2013).

If selective pressure to avoid protein misfolding (or indeed
any protein related feature) is the cause of this correlation, a
similar trend for lincRNAs should be absent, assuming that
they are never translated into a protein product. However,
Managadze et al. (2011) have shown that a weak but signif-
icant negative correlation between expression level and evo-
lutionary rate is indeed observable in human and mouse
lincRNA data sets. We tested the lincRNA data set produced
by Cabili et al. to see whether we can reproduce these
findings.

For each lincRNA sequence, we plotted the evolutionary
distance against the maximal and median expressions and the
expression breadth of the respective lincRNA (fig. 4a–c).
Surprisingly, given prior evidence (Managadze et al. 2011),
we observe no significant correlation for either maximal ex-
pression (rho =�0.005, P = 0.76; fig. 4a) or median expression
(rho =�0.025, P = 0.12; fig. 4b). This remains true after partial

correlation. For expression breadth, we observe a weak neg-
ative correlation that is significant at the 0.05 level
(rho =�0.038, P = 0.02; fig. 4c). This result is a little more
robust on partial correlation analysis (table 1). Thus
lincRNAs that are highly tissue-specific are, on average, less
conserved between humans and macaques than those with a
larger expression breadth.

The weak correlations between expression parameters and
rate of evolution of lincRNAs contrast strikingly with what we
find for protein-coding genes. For the protein-coding data set,
maximum expression (rho =�0.204, P< 2.2� 10�16; fig. 4d),
median expression (rho =�0.34, P = 2.2� 10�16; fig. 4e), and
expression breadth (rho =�0.369, P = 2.2� 10�16; fig. 4f) all
show a highly significant negative correlation with expression,
as expected. These results are diminished on partial correla-
tion analysis but expression level and breadth remain
predictors.

lincRNA Folding Stability Does Not Explain Evolutionary

Rates
The possibility that RNA structure might be a determinant of
protein rate of evolution has recently been proposed (Park
et al. 2013). Given this it is relevant to ask whether the same
may be perhaps an even more profound predictor for se-
quences where the RNA alone may be functionally relevant,
that is, lincRNAs. We find that folding stability shows a very
weak Spearman correlation with evolutionary rates of
lincRNAs, but this effect vanishes when the other parameters
are controlled for. We conclude that selection on folding
strength does not explain the rate of evolution of long
ncRNAs (lncRNAs).

Although one may question the ability of any method to
correctly infer RNA stability (not least because they fail to
acknowledge the presence of the exon-junction complex
(EJC) on mature RNA), it is notable that this result contrasts
with what is seen for protein-coding genes. In this instance, as
previously reported (Park et al. 2013), folding stability shows a
strong positive Spearman correlation with evolutionary rate
(rho = 0.154, P< 2.2� 10�16). We note an important word of
caution, however, as this correlation is substantially reduced
in the partial correlation analysis (partial rho = 0.028,
P< 10�3). Moreover in a partial Pearson product–moment
correlation the sign of the correlation shifts to being negative
(supplementary table S1, Supplementary Material online).
The strong correlation in the normal Spearman analysis
(and that recently reported; Park et al. 2013) seems to be
caused by an interaction effect with GC content and ESE
density and the removal of those two parameters from the
partial correlation analysis yields a partial correlation of com-
parable magnitude to the normal correlation (partial
rho = 0.158, P< 2.2� 10�16). GC content and folding stability
are positively correlated and the negative correlation of fold-
ing stability and evolutionary rate thus seems to be caused by
stable protein-coding RNAs having a higher GC content than
average. Whether the GC content is high to ensure strong
folding or whether strong folding is an incidental side conse-
quence of GC content remains to be discovered.

Table 1. Normal and Partial Correlations with Evolutionary Rate
(measured as Tamura–Kumar distance, see Materials and Methods)
Using Spearman Correlation (for Pearson correlation, see supplemen-
tary table S1, Supplementary Material online).

Normal Partial

lincRNA

Max. expression rate �0.005 0.032

Med. expression rate �0.025 �0.035

Exp. breadth �0.038 �0.091**

RNA stability 0.048y 0.009

Frac70 �0.051y �0.011

ESE density �0.182*** �0.194***

GC �0.058* �0.102***

Protein coding

Max. expression �0.203*** �0.019

Med. expression �0.339*** �0.063***

Exp. breadth �0.369*** �0.189***

RNA stability 0.154*** 0.028*

Frac70 �0.222*** �0.101***

ESE density �0.29*** 0.008

GC 0.313*** 0.168***

NOTE.—Numbers highlighted in italic are significant after Bonferroni correction (at
5% level, raw P< 0.00357 with N = 14). Significance codes for P values prior to
Bonferroni correction: yP< 0.01; *P< 10�3; **P< 10�6; *** P< 10�9.
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Complex Correlations between lincRNA Folding Stability and

Expression Parameters but No Relation with Evolutionary
Rates
Although RNA stability does not predict evolutionary rates of
evolution, it remains valid to ask whether stability might cor-
relate with expression parameters. It has been proposed that
many, if not most, lncRNA transcripts are highly unstable
(Houseley and Tollervey 2009). However, genome-wide stud-
ies on lncRNA stability have revealed that lncRNA transcripts
are not generally unstable, but rather show a wide range of
stabilities that is on average lower, but still comparable to that
of protein-coding mRNAs (Clark et al. 2012). As the stability
of protein-coding RNAs is correlated with expression
(Liebhaber 1997; Shabalina et al. 2006), we tested the
lincRNA data set for the presence of a similar pattern.

We detected not only a significant positive correlation
between folding stability and maximal expression level
(rho = 0.105, P ~ 10�9; fig. 5a) but also a highly significant
negative correlation between folding stability and median
expression (rho =�0.19, P< 10�16; fig. 5b) and a positive
correlation with expression breadth (rho = 0.309, P< 10�16;
fig. 5c). To see whether these trends are statistically indepen-
dent from each other, we constructed a linear regression

model to predict RNA stability based on all three expression
parameters and conducted an analysis of variance. There is a
significant three-way interaction between maximum expres-
sion, median expression, and expression breadth (F-test:
P ~ 10�5). These trends suggest that stable lincRNAs are as-
sociated with a high maximum expression and are expressed
in several tissues, but are highly expressed in few or only one
of these tissues and thus also have a low median expression.

For the protein-coding genes in our data set, we observe
negative correlations between folding stability and both max-
imal expression (rho =�0.05, P< 10�9; fig. 5d) and median
expression (rho =�0.07, P< 10�16; fig. 5e) but no significant
correlation with expression breadth (fig. 5f). This is perhaps
surprising as expression breadth is the strongest predictor of
protein evolutionary rates.

Differential Sampling with Respect to Expression Level

Explains Differences between Analyses
The above analyses have thrown up two possibly surprising
results: Splice-related features are centrally important for pre-
dicting between-gene variation in rates of evolution and ex-
pression level appears not to be an important predictor. The
latter result is doubly surprising given how important expres-
sion level is for predicting protein rates of evolution and

FIG. 4. Correlation of expression parameters with evolutionary rates of lincRNAs and protein-coding genes. The evolutionary distance to the macaque
homologue was plotted versus the values of maximum expression (a), median expression (b), expression breadth (c) for each lincRNA, and for protein
coding genes (d-f).
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because Managadze et al. (2011) had previously reported a
coupling between evolutionary rate and expression rate.
There may be several reasons why this correlation is not ap-
parent in the lincRNA data set produced by Cabili et al.
The data set used in the study by Managadze et al. was
based on lincRNA data from the NRED database (Dinger
et al. 2009) and has a smaller sample size compared with
the data set we used in this study. Using a gap threshold of
15% (to match that of Managadze et al., see Materials and
Methods) we are left with 3,592 lincRNAs compared with 519
human and 2,013 mouse lincRNAs in the study by
Managadze et al. This may itself have some influence, as if
we reduce our sample size to 1,500 transcripts we recover a
negative correlation at least as extreme as that seen in
Managadze et al.’s study 18% of the time.

However, the more important reason for the discrepancy
appears to be that the data produced by Cabili et al. is based on
deeper transcriptome sequencing that is less biased toward
highly expressed lincRNA genes. We tested this hypothesis by
analyzing the correlation between expression level and evolu-
tionary rate using only the 50% of lincRNAs that show the
highest maximum expression level. For this data set, we do
observe a weak but significant negative correlation (supple-
mentary fig. S4A–C, Supplementary Material online, P values

for all correlations< 0.05). Indeed, when we repeatedly sub-
sample from only the more highly expressed gene set we re-
cover a negative correlation at least as extreme as that seen in
Managadze et al.’s (2011) study 98% of the time. We obtained
the lincRNA data set used in the study by Managadze et al.
(2011) and can reproduce their results using this data set.

These results suggest that the correlation observed before
between expression level and rate of evolution of lincRNAs
(Managadze et al. 2011) is dependent on limited sampling. It
might be that the more in-depth analysis of Cabili et al. (2011)
is more noisy, especially for lowly expressed transcripts, and
that this extra noise led to the removal of the correlation.
Alternatively, there may not be a monotonic relationship
between expression level and rate, in which case sampling
only the more highly expressed transcripts could enable de-
tection of a strong trend unique to the highly expressed genes.
Alternatively, the prior result may simply be an artifact of
limited sampling. As we cannot discriminate between these
alternatives, we suggest that the evidence against the misfold-
ing hypothesis on the basis of correlation between expression
level on ncRNA evolution (Managadze et al. 2011) be consid-
ered provisional. The possibly stronger evidence (although
this is relative) appears to derive from a weak correlation
between expression breadth and rate of evolution.

FIG. 5. Folding stability and expression of lincRNAs. The folding stability, assessed as the fraction of paired nucleotides in the minimum energy fold, is
plotted against maximum (a) and median expression (b) and expression breadth (c) comparable plots for protein coding genes are shown in d, e, and f.
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Discussion and Further Results
Human lincRNAs have been shown to be almost as poorly
conserved as other intergenic sequences and even highly
functional lincRNAs such as Xist only contain few short
stretches that are well conserved (Pang et al. 2006).
However, many lincRNA loci have conserved promoter se-
quences (Carninci et al. 2005) and conserved splice sites
(Ponjavic et al. 2007). The 50- and 30-splice sites alone are
usually not sufficient to maintain proper intron excision
(Lim and Burge 2001) without the additional presence of
ESE motifs near the splice junction (Wang et al. 2005). In
protein-coding genes, purifying selection is acting to maintain
these motifs and we thus hypothesized that, given the pres-
ence of conserved splice sites, a similar trend might be ob-
servable for lincRNAs. Consistent with this hypothesis, we do
observe that the exon-flank regions of lincRNAs evolve slower
than their exon-core regions. This trend is weaker than the
one observed in protein-coding genes, but qualitatively sim-
ilar and highly statistically significant. We further showed that
the putative ESE motifs within exon flanks evolve significantly
slower than the sites which do not correspond to known ESEs,
indicating that purifying selection to maintain ESE motifs is at
least partly responsible for the slower evolution in exon flanks
compared with core regions.

One possible explanation for the difference in evolutionary
rate between ESE and non-ESE at exon flanks (fig. 2) is that
our data set of lincRNAs is contaminated with protein-coding
genes and these and these alone employ ESEs (or employ
them much more often). Note that if both protein-coding
genes and noncoding genes both employ ESEs at similar den-
sities (which we show they do—fig. 1a and b), then the dif-
ference in rate between ESE and non-ESE cannot be explained
as a contamination artifact. On a priori grounds, it is indeed
hard to see how an SR protein might distinguish an ESE in a
protein-coding immature transcript from the same ESE in a
lincRNA immature transcript. The artifact explanation we
suggest is unparsimonious for numerous reasons. First, all of
our results strongly argue against a large contamination issue:
The rate of evolution is extremely high on average in our
lincRNAs and we do not recover the strongest protein-related
correlations, such as with expression level and RNA stability.
Perhaps more directly, if we split our internal exons into those
with at least one stop codon in every frame (very unlikely to
be protein coding) and all others and repeat the analysis of
ESE and non-ESE rates, we observe that the two partitions of
the data are nearly identical in absolute rates and the differ-
ence between ESE and non-ESE (supplementary fig. S5,
Supplementary Material online). Indeed, the difference be-
tween ESE and non-ESE in the set with stops in all frames is
approximately 15% as it is for the data set en mass and for 4-
fold degenerate sites in protein-coding exons (C�aceres and
Hurst 2014). We conclude that our results are not affected by
contamination from protein-coding sequence.

Given the evidence for purifying selection on ESEs we
might expect to see some genetic diseases associated with
splicing defects in lincRNAs owing to single nucleotide poly-
morphisms close to but not at the splice junctions. The

evidence for selection on ESE refutes the hypothesis that
lincRNAs are the all the product of junk transcription. That
the majority of the selection on lincRNAs is on splicing
presents a new paradox, why it is that selection acts on
the splicing process. In principle there might be at least
three classes of explanation, which we term the product
hypothesis, the error-proofing hypothesis, and the process
hypothesis.

Why Is Most Selection on Human lincRNAs Splice
Related?
Absence of Constraint in Exon Cores Does Not Refute the

Product Hypothesis
The product hypothesis proposes that the product of tran-
scription and splicing is important and the precise exonic
structure of the mature ncRNA relevant to this function (as
with most protein-coding genes). Our finding that exon cores
evolve at rates very similar to those of flanking introns pro-
vides little or no support for the idea that functionality of the
ncRNA product impacts evidently on sequence conservation.
This does not, however, refute the product hypothesis for
several reasons. First, some well-described lincRNAs have
known functions (e.g., Xist) but apparently little or no se-
quence conservation (Pang et al. 2006). Further, were our
lincRNAs to contain very small subset of sites under strong
purifying selection owing to selection on the operation of the
RNA, we would almost certainly be unable to detect it with
our metrics, the sites being too rare and hence diluted. In
addition, conservation of function may be reflected not in
conservation of nucleotide sequence but in tolerated indel
events.

One way to rationalize the apparent rare selection on nu-
cleotide sequence is that ncRNA might be under selection to
enable strong structure, which imposes only weak selection
on the primary sequence. This hypothesis would also be con-
sistent with the observations that many lincRNAs with dis-
tinct sequences are able to bind the same protein complex
(Guttman et al. 2011; Khalil and Rinn 2011) and that the rates
of insertions and deletions, which would be much more dis-
ruptive to the secondary structure than point mutations, are
reduced in lincRNAs (Ponjavic et al. 2007). Were this the case,
however, we might expect that lincRNAs that are more stable
might evolve slower to preserve that structure. Our data,
however, find no support for the view that lincRNA structure
is under selection, or at least that any selection on structure is
operating uniformly in the same direction (e.g., to always
increase stability). This contrasts with the picture for pro-
tein-coding genes and with prior claims for ncRNA
(Managadze et al. 2011). Selection against indels may well
also disrupt splicing, potentially explaining this prior result.
In sum, given evidence of function in the absence of sequence
conservation, we cannot eliminate the hypothesis that
lincRNAs have a direct function, we just find little or no ev-
idence to support it from the mode of sequence evolution in
humans, although the fly data are compatible with such a
model.
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No Strong Evidence for the Nonsense-Mediated Decay
Error-Proofing Hypothesis
Another possibility is that the selection on splicing may be
part of an error-control mechanism. Splicing commonly re-
sults in the mature transcript being bound with the EJC in
proximity to the exon–exon junction (Le Hir et al. 2001).
The complex is known to mediate the effect of splicing on
mRNA expression levels (Wiegand et al. 2003) and so might
be directly beneficial were the lincRNA functional (i.e., the
product hypothesis above). However, many of the effects of
the EJC may well be undesirable for ncRNAs: The EJC acts to
promote export from the nucleus, enable polyadenylation,
and enhance translation (Le Hir et al. 2001; Wiegand et al.
2003). In addition, however, in mammals the EJC is also nec-
essary for the initiation of NMD (Le Hir et al. 2001; Isken et al.
2008). Might the selection on splicing be to enable the EJC to
be attached to initiate NMD should a ribosome inappropri-
ately bind an ncRNA? Binding of ribosomes to ncRNA has
been described (Wilson and Masel 2011), but whether this
reflects improperly annotated coding genes or accidental ri-
bosome initiation in unclear.

At first sight this is a possibly attractive explanation, not
least because it is consistent with the apparent-reduced con-
straint in exon flanks compared with cores in Drosophila, as
flies do not employ the EJC to initiate NMD (Brogna and Wen
2009). The hypothesis also fits with the notion that many
otherwise paradoxical features of gene and genome evolution
are error-correcting or error-proofing (Warnecke and Hurst
2011). However, the hypothesis has at least one major prob-
lem. Although a polyA tail is required for NMD activation
(Brogna and Wen 2009), many ncRNAs are possibly not poly-
adenylated. Indeed, the great majority of the transcripts that
can be detected uniquely in protocols that do not require
polyA tail tagging, compared with methods that require such
tagging, are lncRNAs (Cui et al. 2010).

We can in addition ask whether we can find a trace of
selection for NMD triggering on the ncRNA sequences. Stop
codons less than about 50 bp upstream of the terminal exon–
intron junction are thought to be invisible to the activity of
NMD (Zhang et al. 1998), what we term the NMD shadow.
This provides grounds for potentially instructive tests. If in-
trons are there to trigger NMD, then sequence prior to this
50-bp window might be expected to have a higher frequency
of stops (in any frame). To address this, then we considered
instances of lncRNAs where the last but one exon was more
than 100 bp. We then considered the 50 bp at the 30-end of
this exon and the 50 bp at the 50-end of the same exon. We
then compare stop codon frequency in the 50- and 30-end in a
paired fashion. This method allows us to control for the
amount of sequence analyzed per exon, the proximity to
an exon junction (given that these are expected to be
purine loaded owing to the presence of ESEs), isochore level
nucleotide content, and the possibility that the last but one
exon may actually be protein coding. A small and nonsignif-
icant minority (47.5%) of last but one exons have more stops
at the 50-end than the 30-end (binomial test: P = 0.31). On
average, each 50-bp exon end has about 0.6–0.7 stop codons

in each reading frame. We thus see no evidence that stops are
enriched outside of the NMD 50-bp shadow.

One might object that this test fails to recognize the pos-
sibility that a stop may have occurred prior to the last but one
exon and only one stop is required (per possible frame). To
consider this, then we consider the class of ncRNAs with just
two exons and consider the sequence �100 to �51 prior to
the single exon junction in the first exon and compare this to
sequence �50 to the 30-end of exon (the NMD shadow). As
before the stop codon frequency is no different in the two (in
50.03% of cases the first 50 bp has the higher stop codon
frequency). Of all two exon ncRNAs 20% have no stop
codon outside of the final 50 nucleotides and 55% have
fewer than three, meaning that at least one prospective read-
ing frame is NMD unprotected. Were there selection for stops
outside of the NMD shadow this should be most apparent in
those first exons longer than 50 bp but still relatively short. Of
those first exons that have more than 50 bp of sequence but
less than 101 bp, 45% have no stop codons outside of the
NMD shadow. Randomizing the same 50-sequence we predict
that around 41% would lack a stop codon in any frame by
chance alone suggesting, if anything, that the real sequence is
slightly diminished for stops. Ninety-one percent of the
50-sequences have fewer than three stop codons meaning
that at least one frame of reading is NMD unprotected.
Eighty-six percent of random sequence is expected to have
fewer than three, again suggesting no enrichment of stop
codons to initiate NMD. We can more generally ask about
stop codon density in the 50-exon of two exon genes. If stops
are there to trap ribosomes, then we would expect a higher
density in small first exons as these would be under particular
pressure to encode them, longer first exons likely having a
stop codon by chance. However, stop codon density is unre-
lated to exon length, with no hint of the expected negative
correlation (rho = 0.14, P = 0.51). In sum, we find no good
evidence that selection is enriching these exons for stop
codons to trigger NMD.

The Process Hypothesis: Intron Density Is Associated with
Chromatin and Gene Activity
The final possibility is that it is the process of splicing that is
important. Implicit in the process argument, and contrary to
the product hypothesis, is the notion that after the splicing
event the RNA could be destroyed instantaneously with no
negative consequence. Although it is unclear why the process
might be relevant, we note that recent evidence suggests that
the splicing process is somehow coupled with epigenetic
marks on the DNA (Adam-Hall and Georgel 2011; Luco
et al. 2011). This can mean both that the epigenetic status
of the DNA can affect the process of splicing and, more im-
portantly in this context, that the splicing process can modify
the underlying DNA (Hnilicova and Stanek 2011). Evidence
exists for both directions of interaction (Hnilicova and Stanek
2011). Mechanistically it is unclear how this operates but four
chromatin adaptor proteins (including the chromatin re-
modeler CHD1 [Sims et al. 2007]) are recognized that
permit coupling between splicing factors and histone
posttranslational modifications (Adam-Hall and Georgel
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2011). Similarly, the SWI/SNF chromatin remodeling factors
are known to interact with many components of the spliceo-
some (Adam-Hall and Georgel 2011). We note that a poten-
tial role for introns in modulating the chromatin of the
underlying gene has relevance for explaining why mammalian
transgenes typically require introns for efficient expression. As
this effect is mediated, at least in part, by the recruitment of
the EJC, rather than the presence of an intronic sequence per
se (Wiegand et al. 2003), interaction between the EJC and any
of the above splice/chromatin modifiers would provide a
mechanistic rationale.

Given that ncRNAs are thought to play a role in chromatin
modulation (Mercer and Mattick 2013) (although splicing is
not always necessary [Beckedorff et al. 2013]) this suggests a
hypothesis that is, to the best of our knowledge, novel. Might
the expression and splicing on lincRNAs be a mechanism to
alter the epigenetic landscape of the underlying DNA? If it
does, then might this simply be a mechanism to control ex-
pression of the lincRNA or might it have knock on conse-
quences for flanking genes? In yeast and mammals, for
example, the expression of one gene causes a time-lagged
ripple of gene activation of neighbors associated with spread-
ing altered chromatin (Ebisuya et al. 2008). NcRNAs are well
known to have cis-effects on genes in their vicinity (Pauler
et al. 2012), so this possibility is not without precedent. Here
then we ask two questions. First, is there evidence consistent
with the possibility that lincRNAs affect, through splicing,
underlying chromatin? Second, is there evidence consistent
with the possibility that the activity and splicing of lincRNAs
impact on the chromatin and expression of neighbors? Note
that expression alone might have effects on chromatin even
in the absence of splicing (as in yeast), such a model can also
apply to expression of lincRNAs without introns. Our hypoth-
esis is that splicing can bolster such an effect.

This hypothesis, like the NMD hypothesis, can potentially
explain why constraint is not so evident in exonic flanks in
Drosophila. Although chromatin modifiers can also be splice
modifiers in Drosophila (Hnilicova and Stanek 2011), in flies
ESE density is thought to be relatively low as introns are short
and exons typically have strong splice sites (Warnecke et al.
2008). Humans, in contrast, have much longer introns and
quite often weaker splice sites, both of which predict higher
ESE density (Dewey et al. 2006). Thus information in the
flanks is thought to be of lesser importance in Drosophila
than it is in humans for the specification of splice location
and, while detectable, the impact on codon usage and rates of
evolution at exonic flanks of selection for ESEs is marginal in
protein-coding genes (Warnecke and Hurst 2007).

Intron-Rich Active lincRNAs Are Enriched in CHD1. To test
the first hypothesis, we assessed 1) whether actively tran-
scribed lincRNAs are enriched in CHD1-binding sites com-
pared with inactive lincRNAs and 2) whether the density of
CHD1 is correlated with the intron density (and hence the
amount of splicing per base pair of a gene). This analysis is
limited to the cell lines H1-HESC, from human embryonic
stem cells, and K562, a leukemia cell line, as those are the
only cell lines for which CHD1 modifications are available in

the ENCODE data set. lincRNA expression status and expres-
sion of neighbors we derive from the same two cell types.
Note that the genes considered active or inactive in the two
cells in these analyses are specific to each cell and the CHD1
measure is similarly specific to each cell type. Thus, the two
cell types are independent tests of the same hypothesis.

We find that active lincRNAs are more dense in CHD1 on
the DNA containing the gene compared with the transcrip-
tionally inactive lincRNAs (Mann–Whitney U test, two tailed,
P = 3.9� 10�9 in H1 and P = 4.8� 10�9 in K562). Concerned
that this statistic may be misled by large number of sequences
with no CHD1 binding, we repeated the analysis using a
Monte Carlo simulation (see Materials and Methods) which
may be more robust to the data structure. The results remain
robust (from simulation: P << 10�4).

In addition, we can ask whether the CHD1 density on a
ncRNA is predicted by the density of introns. As can be seen
(fig. 6), active genes have higher CHD1 density the more in-
trons they have (H1; rho = 0.23, P< 2.2� 10�16, for K562
rho = 0.16, P< 2.2� 10�16). For the inactives, the inverse is
seen, the effect being greatly owing to the great number of
intron-rich genes without any CHD1 (H1 inactive,
rho =�0.11, P< 5.2� 10�15, for K562 rho =�0.19,
P< 2.2� 10�16). This might suggest active purging of
CHD1 from inactive genes. Considering CHD1 coverage (i.e.,
proportion of gene covered by at least one CHD1 span) does
not affect conclusions: H1 active, rho = 0.1, P< 10�12, K562
active rho = 0.08, P< 10�8, inactives: H1 rho =�0.15,
P< 2.2� 10�16, K562 rho =�0.23, P< 2.2� 10�16. These
tests are robust to application of Goodman–Kruskall
gamma test, a test more robust to tied values (see fig. 6). In
turn we can ask whether CHD1 occupancy correlates with the
extent of open chromatin within the genes in question, as
assayed by the density of DNAase Hypersensity Sites (DHS).
As expected, active genes have higher DHS than inactive ones
and the extent of DHS correlates positively with intron den-
sity (fig. 7). There is a strong positive correlation between
CHD1 occupancy and DHS occupancy in both cell types
(table 2).

These findings are consistent with the chromatin modifi-
cation/splicing hypothesis, in which splicing recruits CHD1 to
the underlying sequence which in turn acts to maintain or
force opening of chromatin. Moreover, consistent with the
notion that splicing enables the focal gene to remain open
and active we find that the intron density in both cell lines is
higher for active genes than for inactive ones (Mann–
Whitney U test: H1, P = 0.0003, K562 P = 0.04).

Intron Density of lincRNA Predicts Local DHS Density and
Expression of Neighbors. Although the above evidence is
consistent with the hypothesis that splicing of lincRNAs me-
diates recruitment of CHD1 to the underlying DNA, it pro-
vides no evidence that this has consequences for the
neighboring genes. It may simply be the case that CHD1 re-
cruitment aids the maintained expression of the focal
lincRNA (for whatever reason) or indeed, that CHD1 recruit-
ment is an incidental occurrence, a necessary consequence of
splicing. We can then also ask whether active lincRNAs define

3175

Purifying Selection on Splice-Related Motifs . doi:10.1093/molbev/msu249 MBE

l
exon junction complex (
)
'
)
u
via 
s
u
While 
by
: 
a
to
b
a
since 
L
u
=
x
-
=
x10
-
s
-
=
 x 
-
=
 x 
-
=
-
 x 
-
=
-
 x 
-
'
=
-
=
-
=
-
 x 
-
=
-
 x 
-
=
=
While 
u


a broader domain of open chromatin and a domain of in-
creased gene activation, as supposed by the ripple hypothesis
(Ebisuya et al. 2008). To this end we ask about activity in the
domains flanking the focal genes, both in terms of chromatin
and gene activity. As in humans the ripple effect is thought to
extend approximately 100 kb (Ebisuya et al. 2008), this defines
the span that we examine.

To analyze the chromatin state, we examine the density of
DHS in spans around the focal active or inactive lincRNAs. We
calculated the DHS density in independent 10-kb windows
either side of active and inactive lincRNA and then compare
the density, at a given distance between the active and inac-
tive ones. As can be seen the DHS density is highest in the
immediate vicinity of active loci in both cell types (fig. 8 and
supplementary fig. S6, Supplementary Material online). It is
striking that active lincRNAs appear to be at the position of
maximal chromatin opening. This is what would be expected
were activity of the lincRNA causing a rippling/spreading
opening of chromatin.

If the chromatin splice model is correct and enables
spreading of open chromatin, then we might expect that
the local DHS density is correlated both with intronic density
and with activity of the focal gene. To examine this, we con-
sider the 50-kb blocks either side of the focal gene and take

the average DHS density. We then ask whether that density is
correlated with the intron density of the focal gene. We find
that it is both for active and inactive genes (table 3; supple-
mentary fig. S7, Supplementary Material online). Similarly, the
CHD1 density in the focal gene predicts DHS coverage in the
flanking sequence (table 4), this effect being either about the
same magnitude as in the inactives or much more profound
when the focal gene is active, depending on the data set. To
ask then whether the inactives and actives differ in the local
DHS density controlling for gene intron content, we perform
a loess regression and compare the residuals for the actives
and inactives. We consider numerous alternative kernels for
the loess to consider the consequence of different smoothing
parameters. In all cases, the actives have a higher DHS density
in their vicinity than the inactives (supplementary table S2,
Supplementary Material online). We conclude that high
intron density, high CHD1 occupancy, and gene activity of
the focal lincRNAs all predict higher DHS levels in the neigh-
borhood of the active gene, consistent with a spreading chro-
matin model.

We can in addition ask whether this open chromatin has
any functional correlates. We might, for example, imagine
that upregulation of a lincRNA with a high intron density
modifies local chromatin and enables genes in the vicinity
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FIG. 6. CHD1 density within lincRNAs is higher in active intron rich genes. Here, for each gene, we consider the number of CHD1 peaks (as specified by
ENCODE) per unit base pair of each gene and compare this with the number of introns per unit base pair of gene length (in both cases we employ the
length of the unspliced gene). We consider those lincRNAs that are transcriptionally active or inactive in each cell type separately. As can be seen, active
genes have higher CHD1 density the more introns they have. For H1 active, rho = 0.23, P< 2.2� 10�16, for K562 rho = 0.16, P< 2.2� 10�16. For the
inactives, the inverse is seen the effect being greatly owing to the great number of intron rich genes without any CHD1: For H1 inactive, rho =�0.11,
P< 5.2� 10�15, for K562 rho =�0.19, P< 2.2� 10�16. Concerned that there were many tied values we examined the latter result using the Goodmans
Kruskall gamma test, this being more robust to tied values. Results are unaffected (for H1 active, gamma = 0.2048, H1 inactive gamma =�0.0863, K562
active gamma = 0.1353, and K562 inactive gamma =�0.1382; all P’s< 0.001 from 1,000 simulations). Note that the genes considered active or inactive
in the two cells are specific to each cell and the CHD1 measure is similarly specific to each cell type. Thus, the two cell types are independent tests of the
same hypothesis. Considering CHD1 coverage (i.e., proportion of gene covered by at least one CHD1 span) does not affect conclusions: H1 active,
rho = 0.1, P< 10�12, K562 active rho = 0.08, P< 10�8, inactives: H1 rho =�0.15, P< 2.2� 10�16, K562 rho =�0.23, P< 2.2� 10�16. Results are again
robust to application of Goodmans Kruskal gamma (H1 active gamma = 0.0865, K562 active gamma = 0.0654 and H1 inactive gamma =�0.142 and
K562 inactive gamma =�0.1834 and all P< 0.001, from 1,000 simulations).
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to be expressed by spreading of chromatin. Consistent with
this, the neighbors of active lincRNAs are themselves espe-
cially active. Just as active genes sit at local DHS peaks, so too
active lincRNAs sit at the centre of peaks of expression (fig. 9
and supplementary fig. S8, Supplementary Material online).
The DHS and the expression modulation peaks extend ap-
proximately the same distance. As expected given this model,

intron-rich and intron-poor lincRNAs have differing gene ac-
tivity in their vicinity (correlation between intron density
and percentage of genes expressed, for H1 and K562
active rho = 0.08, P< 1� 10�8) (supplementary fig. S9,
Supplementary Material online). This correlation is slightly
weaker when the focal gene is inactive (for both rho = 0.07,
P< 10�6). Similarly the focal gene’s CHD density positively
correlates with the expression of neighbors (H1 actives,
rho = 0.19, P = 1.2� 10�43; K562 actives rho = 0.18, P =
6.7� 10�35). Again controlling for intron density, using the
loess method, we find that active lincRNAs have higher gene
expression in their vicinity than inactive ones (supplementary
table S3, Supplementary Material online).

The above evidence is consistent with the model that
transcription and splicing of lincRNAs modulate chromatin
of the underlying gene body which can in turn have a spread-
ing effect, modulating expression of neighbors.

Alternative Models and Interpretations

Above we discussed three possibilities but this catalogue of
possible explanations is by no means exhaustive. It has, for
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FIG. 7. DHS density as a function of intron density for active and inactive genes. As within the WashU data set DHS density is rather low (such that most
short genes have no DHS peak within the gene), we here analyze the data in manner designed to avoid the inherent stochasticity this induces. First, we
rank all genes by total gene length (including introns). We then divide the data into bins of equal total gene size. With ten bins, the first bin contains the
longest genes whose total length in approximately 1/10 the total gene length. Thus, each bin has different numbers of genes but an equal amount of
total sampled DNA. We then calculate for each bin the total number of introns to derive the number of introns per kilobase of sequence. We also
consider the total number of DHS peaks and calculate the number of these per kb. All correlations are significant at P< 0.0002 (Spearman). In all
incidences, the mean DHS density is higher in the actives than the inactives (paired t-test, P< 0.05).

Table 2. Correlation between Intragenic DHS Density and CHD1
Coverage Density Occupancy within Active Genes.

Source of DHS Data H1 K562

Duke P< 2.2 E-16 P< 2.2 E-16
rho = 0.43 rho = 0.51

WashU P< 2.2 E-16 Rep1:
rho = 0.44 P< 2.2 E-16

rho = 0.30
Rep2:
P< 2.2 E-16
rho = 0.31

NOTE.—lincRNA data from Derrien et al. (2012). WashU DHS data provide two
replicates for K562. We analyze both separately.
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example, been demonstrated that ncRNAs can act as long-
range cis-silencers by transcriptional interference, and could
thus be regulatory active without the mature RNA being in-
volved in the process (Pauler et al. 2012). This would be a
further manifestation of the process argument, although why
this process requires splicing is unclear. There might in turn be
selection for the correct placement of the EJC, for reasons
other than the initiation of NMD. EJCs are, for example,
thought to regulate RNA localization (Giorgi and Moore
2007). Given that EJC placement is not now thought to be
constitutive (Sauliere et al. 2010), it will be informative to
know whether lincRNAs are unusual in their ability to attract
these complexes.

Our chromatin model results are consistent with a model
in which splicing of lincRNAs recruits CHD1 (and related
splice associated chromatin modifiers) to transcriptionally
active DNA, and this in turn enables both the chromatin
within the focal gene to remain open and for there to be
some spreading away from the focal active gene which is
permissive for expression of neighbors. The same model, we
note, also suggests a novel hypothesis for the positive corre-
lation between intron density and expression breadth of pro-
tein-coding genes (Parmley et al. 2007) on the one hand, and
the tendency for house-keeping genes to genomically cluster

(Lercher et al. 2002). Broadly expressed (housekeeping) genes
may be selectively favored to have absolutely more introns to
enable a self-reinforcing open chromatin (N.B. intron density
is higher in active genes). This would be mediated by splicing
increasing the chances of recruiting CHD1 (and similar
splice/chromatin modifiers) to the local DNA, which increases
the chances of keeping chromatin open, enabling a higher
likelihood of further transcription of the neighboring broadly
expressed genes.

However while consistent with the model, our results are
also consistent with alternative models. Notably, if for some
other reason intron-rich genes tend to reside in domains of
high gene activity then it is possible that the lincRNA has
expression passively dependent on the local DHS/expression
environment, much as transgenes adopt the expression pro-
file of neighbors (Gierman et al. 2007). Consistent with this
model highly and broadly expressed genes cluster in mam-
malian genomes (Caron et al. 2001; Lercher et al. 2002).
Similarly, GC rich isochores tend to be domains of small in-
trons and hence a higher intron density measured as introns
per base pair of full gene. Note, however, in this model, given
the evidence of local transgene adoption of expression pro-
files (Gierman et al. 2007), there is still a need to evoke the
notion that local gene expression influences genes in the
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FIG. 8. The DHS density in sites flanking active and inactive lncRNAs.

Table 3. Spearman Correlation between the Focal lincRNA Gene’s
Intron Count Density per Kilobase and DHS Coverage per Kilobase
in� 50 kb Flanks.

Flanking Data
(�50 kb)

Active
Rho

Active P Inactive
Rho

Inactive P

Duke H1 0.264 2.34E-78 0.219 1.82E-50

Duke K562 0.239 1.11E-63 0.223 3.38E-52

WashU H1 0.183 5.49E-38 0.132 6.62E-19

WashU K562 Rep1 0.190 1.49E-40 0.191 1.31E-40

WashU K562 Rep2 0.146 4.12E-23 0.142 7.16E-22

Table 4. Spearman Correlation between the Focal lincRNA Gene’s
CHD1 Density per Kilobase and DHS Coverage per Kilobase in
�50 kb Flanks.

Flanking Data
(�50 kb)

Active
Rho

Active P Inactive
Rho

Inactive P

Duke H1 0.334 1.72E-127 0.303 3.84E-97

Duke K562 0.465 1.02E-258 0.264 5.14E-74

WashU H1 0.455 2.09E-247 0.369 6.16E-147

WashU K562 Rep1 0.528 0 0.529 0

WashU K562 Rep2 0.286 9.65E-87 0.286 5.69E-87
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vicinity. Indeed, to disallow the possibility that lincRNAs do
not affect their neighborhood, one would have to make a
special case as to why one class of gene (protein coding)
might affect neighbors but another (lincRNAs) do not. Why
in this passive expression model intron dimensions of the
focal lincRNA covary with local expression level is unclear,
but could reflect a local mutational bias toward deletions.
Indeed, intron size and intergene distance tend to covary
(Urrutia and Hurst 2003).

The required experiment to distinguish these two expla-
nations would be the introduction of a lincRNA with and
without introns and ask whether the intron containing one
affects the local DHS and expression of neighbors more than
the same insertion when lacking the intron. It would also be
helpful to know whether transcription rate of a lincRNA, with
or without introns, might predict the extent of any upregula-
tion of neighbors. Should it prove to be the case that intron-
bearing genes modulate the expression of their neighbors, this
would have consequences for the assessment of the safety of
transgene inserts, as, for example, in gene therapy.

Materials and Methods

Sequences, Alignments, and Evolutionary Distances

ncRNAs are commonly classified by their length into small
(18–31 nt), medium (32–200 nt) and long (from 200 nt up to
several hundred kilobases) ncRNAs (Wilusz et al. 2009;
Nagano and Fraser 2011). The lncRNAs are the most myste-
rious group among those three. Few of them have been ex-
perimentally characterized and many are poorly conserved on
the sequence level (Amaral et al. 2011; Lee 2012). The group of
lncRNAs can be further divided into those transcripts that
overlap protein-coding genes and lincRNAs (Ponting et al.
2009). The lncRNAs that overlap protein-coding genes are
most likely involved in sense–antisense regulation (Chen
et al. 2005). Their evolution is likely to be constrained by
the evolution of the antisense target and hence is not optimal

to ask about selection on ncRNAs more generally. Here then
we solely examine lincRNAs. So far, few lincRNAs have been
experimentally characterized, but functional lincRNAs seem
to be involved in protein-coding gene regulation by means of
chromatin remodeling, transcriptional control, and posttran-
scriptional processing (Mercer and Mattick 2013).

The data set of putative human lincRNAs identified by
Cabili et al. (2011) was downloaded as BED (Browser
Extensible Data, including genomic coordinates) formatted
data (supplementary material in Cabili et al. 2011). These
putative lincRNAs were inferred based on the reconstruction
of transcripts based on greater than 4 billion RNA-seq reads
collected from 24 human tissues. In total, 10,500 putative
lincRNAs have been identified by the authors. This set of
candidate lincRNAs was filtered to remove transcripts
where evidence for protein-coding potential could be de-
tected (as specified by the original authors), which leads to
a subset of 8,195 lincRNAs. This subset was further been fil-
tered to remove lincRNA genes that could not be recon-
structed in at least two different tissues, or reconstructed
by two different assemblers in the same tissue, leaving a strin-
gent subset of 4,662 lincRNAs (Kapranov et al. 2007). Unless
otherwise noted, this stringent lincRNA subset was used for
analyses in this study.

The intron and exon sequences (based on the hg19 assem-
bly) corresponding to the lincRNA BED data were down-
loaded from the Galaxy server (Blankenberg et al. 2011).
The galaxy server was also used to extract alignments of
these regions to the rhesus macaque genome (rheMac2 as-
sembly), based on the UCSC 46-way whole-genome multiZ
alignment (Kent et al. 2002). The intron and exon alignment
blocks were concatenated with the “stitch gene blocks” func-
tion provided by the Galaxy server to produce alignments of
concatenated exons and concatenated introns for each
lincRNA gene. The fraction of alignment positions that cor-
respond to insertions/deletions (indels) was calculated with a
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FIG. 9. Gene expression in the vicinity of active and inactive lincRNAs.
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custom script and alignments with a fraction of indels higher
than a given threshold were discarded. Unless otherwise
noted, this threshold was set to 15% (this threshold, while
arbitrary, enables comparison to other analyses).

To compare the properties of lincRNAs with those of pro-
tein-coding genes, we gathered BED12 data for the 17,132
reconstructed protein-coding transcripts from the data set
and constructed alignments to the homologous regions in
the macaque genome with the same approach as described
for the lincRNAs. Note that we employ intronic sequence
away from exon ends as a comparator not because all the
sequence is necessarily neutrally evolving but because it 1)
controls for local variation in the mutation rate (Matassi et al.
1999; Lercher et al. 2001), 2) conforms with numerous prior
analyses (Hurst and Smith 1999; Pang et al. 2006), and 3)
controls for transcription-coupled mutational/repair pro-
cesses (Hanawalt and Spivak 2008). Importantly, comparison
with flanking nontranscribed sequence, even if GC matched,
does not control for this. If transcription-coupled repair is
prevalent even on neutrally evolving sequence, in comparing
exonic rates of evolution to flanking but untranscribed and
hence unrepaired sequence, one could potentially misinfer
purifying selection on the exon. In contrast, as introns may
contain hidden residues under constraint, the comparison of
exonic to intronic rates to infer purifying selection on the
exons is most probably conservative. We note in addition
that with biased gene conversion prevalent in the human
genome (Duret and Galtier 2009) no sequence can be guar-
anteed to provide a perfect neutral proxy.

Evolutionary distances between human and macaque se-
quences were calculated with a custom implementation of
the method proposed by Tamura and Kumar (2002). This
method relaxes the assumption of substitution pattern ho-
mogeneity among lineages and thus allows for a more accu-
rate distance estimation. Note that to enable fair comparison
between protein-coding genes and lincRNAs we use the same
metric for both. This is also meaningful as the dominant
constraints that we are examining, splice-related selection
and RNA folding, operate at the RNA rather than the protein
level.

Expression Data

We used the expression patterns of lincRNAs and protein-
coding transcripts based on the supplementary tables S2 and
S6 of Cabili et al. (2011). For each lincRNA, the FPKM (frag-
ments per kilobase of exon per million fragments mapped)
value for each of the 24 studied tissues was extracted. We
log-normalized the FPKM values and calculated the maxi-
mum and median FPKM for each lincRNA. The expression
breadth was assessed by calculating the fraction of tissues
where the respective lincRNA was detectably expressed
(FPKM 4 0).

For analysis of the expression of genes neighboring focal
ncRNA genes, we used the profiles available for H1 and K562
cell lines on Encode portal, generated with Gencode V7 an-
notation (2012). We considered gene expression in bins

flanking focal ncRNA genes. Average gene expression per
bin is calculated as below:

Note here we simply consider whether a gene is expressed
or not, not its absolute level.

ESE Hexamers

We annotated putative ESE motifs in the lincRNA and pro-
tein-coding alignments by using the set of experimentally
confirmed human ESE-hexamers employed in a previous
study (Parmley et al. 2006) as defined by Fairbrother, Yeo,
et al. (2004). These are presented in supplementary table S4,
Supplementary Material online.

RNA Folding Simulation

We used the UNAfold (Markham and Zuker 2008) software
package to computationally predict the minimum energy
folding of each lincRNA sequence. The “hybrid-ss-min” tool
from the UNAfold package was run on each sequence with
default parameters and we subsequently inferred the
number of paired nucleotides from the output file. The
proportion of folded nucleotides in the minimum energy
RNA structure was used as a proxy for RNA-folding
stability.

Assessing CHD1-Binding Sites in Active lincRNAs

We used ENCODE Project Consortium (2012) data in the
latest release to find the CHD1-binding sites for the
lincRNAs that both correspond to our stringent subset of
the Cabili et al.’s data and are also found in the Macaque
genome. Specifically, we downloaded the broadPeak data sets
for the only human cell lines for which CHD1 modifications
are available—k562 and h1-hesc (available on http://genome.
ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHist
one, last accessed September 1, 2014).

To calculate the density for each lincRNA, the number of
CHD1’s peaks which are overlapping this lincRNA is divided
by the lincRNA-length. In addition, we consider the sum
breadth of CHD1 spans (as specified by ENCODE) and con-
sider the proportion of this span to the gene length. Unless
specified otherwise, analysis is on the number of CHD1 peaks
per base pair. As the K562 and H1-hesc cell lines have not
been considered in the data set of Cabili et al., we assessed
whether lincRNAs were expressed in these cell lines based on
Caltech and CSHL RNA seq data sets available from ENCODE
(http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEn
codeCaltechRnaSeq and http://genome.ucsc.edu/cgi-bin/hg
FileUi?db=hg19&g=wgEncodeCshlLongRnaSeq [last accessed
September 1, 2014] respectively). Based on these data sets,
we find 346 lincRNAs to be actively expressed in the H1-hesc
cell line and 338 in the K562 cell line. For analysis comparing
various features against intron density in lincRNAs, we
employ the larger lincRNA data set of Derrien et al. (2012).

As there are multiple sequences with no CHD1 binding, we
were concerned that the Mann–Whitney U test might be
misleading. To explore this, we used a Monte Carlo simulation
to test whether the enrichment of CHD1-binding sites in
active sequences could be explained by chance. To do this
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for each cell type, we combined the active and inactive sets
and randomly selected two sets: A hypothetical active set and
a hypothetical inactive set, including the same number of
sequences as observed in each cell line by querying
ENCODE data. This was iterated 10,000 times, each time
the difference between medians of CHD1 density in two
sets was calculated and compared with the difference in me-
dians observed in the real data. The number of times the
median difference in hypothetical and randomly generated
sets was as high or higher than the median difference was
observed. In this test the unbiased estimation of the P of this
Monte Carlo simulation is P = (n + 1)/(m + 1), where n is the
number of randomization as extreme or more extreme in the
difference between the two classes as seen in the real data and
m is the number of randomizations.

DHS-Binding Profile

DNase hypersensitive sites (DHSs) point at open chromatin
segments on chromosomes. Different tissues diverge in loca-
tions of DHSs, encouraging tissue-specific gene expression
patterns. The DHSs data available through ENCODE portal
are generated in two production centers, University of
Washington and Duke University, through a similar proce-
dure. WashU provides two sets for K562 accessible through:
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEnc
odeUwDnase, last accessed September 1, 2014. Duke’s data
sets are accessible from: http://genome.ucsc.edu/cgi-bin/
hgFileUi?db=hg19&g=wgEncodeOpenChromDnase, last acc-
essed September 1, 2014.

Supplementary Material
Supplementary figures S1–S9 and tables S1–S4 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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