Skip to main content
. 2014 Oct 31;42(21):13405–13421. doi: 10.1093/nar/gku1093

Table 2. Structural and optical properties of C8-aryl-dG nucleoside adducts.

Adduct Eanti-Esyna χ/θb μ λex,λemc (Φfld) λex,λem (Φfl) λex,λem (Φfl)
kJ mol−1 Degrees Debye H2Oe CH3CN CHCl3
FurGf 19.3 50.1/343.8 4.3 292, 384 (0.49) 292, 371 (0.18) 298, 366 (0.03)
PhG 25.1 66.8/41.2 4.8 277, 395 (0.44) 292, 384 (0.49) 289, 373 (0.22)
CNPhGg 26.9 68.4/37.9 8.9 308, 468 (0.04) 327, 454 (0.43) 325, 424 (0.35)
QG 29.5 52.2/305.6 4.3 313, 407 (0.03) 315, 384,510 (0.05) 318, 468 (0.19)

aOptimized at the B3LYP/6–31G(d) level, with values corresponding to a syn-conformation with a relative energy of 0 kJ mol−1.

bThe dihedral angle χ (O4′C1′N9C4) defines the glycosidic bond orientation to be anti when χ = 180 ± 90º or syn when χ = 0 ± 90º; θ (∠(N9C8C10C11) for PhG, CNPhG and QG and ∠(N9C8C10O11) for FurG) defines the degree of twist between the nucleobase and the C8-aryl group.

cExcitation and emission maxima in nm.

dDetermined using the comparative method with quinine bisulfate in 0.5 M H2SO4 (Φfl = 0.55).

eDetermined in aqueous 10 mM MOPS buffer, pH 7, μ = 0.1 M NaCl.

fOptical data in H2O and energy calculations for FurG taken from (49).

gOptical data in H2O and energy calculations for CNPhdG taken from (50).