Published online 07 October 2014

Nucleic Acids Research, 2014, Vol. 42, No. 21 el61
doi: 10.1093/narlgku864

svased:. removing batch effects and other unwanted

noise from sequencing data

Jeffrey T. Leek”

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health Baltimore, MD 21212, US

Received June 24, 2014; Revised August 20, 2014; Accepted September 08, 2014

ABSTRACT

Itis now known that unwanted noise and unmodeled
artifacts such as batch effects can dramatically re-
duce the accuracy of statistical inference in genomic
experiments. These sources of noise must be mod-
eled and removed to accurately measure biological
variability and to obtain correct statistical inference
when performing high-throughput genomic analysis.
We introduced surrogate variable analysis (sva) for
estimating these artifacts by (i) identifying the part
of the genomic data only affected by artifacts and (ii)
estimating the artifacts with principal components or
singular vectors of the subset of the data matrix. The
resulting estimates of artifacts can be used in sub-
sequent analyses as adjustment factors to correct
analyses. Here | describe a version of the sva ap-
proach specifically created for count data or FPKMs
from sequencing experiments based on appropriate
data transformation. | also describe the addition of
supervised sva (ssva) for using control probes to
identify the part of the genomic data only affected
by artifacts. | present a comparison between these
versions of sva and other methods for batch effect
estimation on simulated data, real count-based data
and FPKM-based data. These updates are available
through the sva Bioconductor package and | have
made fully reproducible analysis using these meth-
ods available from: https://github.com/jtleek/svaseq.

INTRODUCTION

Batch effects and other technological artifacts introduce
spurious correlation, create bias and add variability to the
results of genomic experiments (1-3). The basic problem is
that batch effects introduce a new source of signal into the
data that can be confused with the signal an analyst is look-
ing for. This signal is consistent across transcripts, exons
or genes and so may lead to gross errors in the calculation
of statistical significance, estimates of effect sizes or other
statistical measures (4,5). These types of noise also prevent

analysts from appropriately modeling biological variation
and group-specific changes in gene expression (6). Unfortu-
nately we rarely know all of the potential artifacts in most
high-throughput experiments (4,7). In some cases, it is pos-
sible to rely on the date the samples were processed as a sur-
rogate for unmeasured artifacts (8) and correct for them to
get statistically accurate results. However, each new tech-
nology may suffer from different artifacts and it may take
time for the community to discover which variables must be
measured and included in an analysis (9).

In 2007 we introduced surrogate variable analysis (sva) as
a conceptual approach to statistical modeling of genomic
data when artifacts are unknown or unmeasured (4) (Fig-
ure 1) and subsequently improved the estimation algorithm
(5) (Figure 2). We proposed modeling the data as a com-
bination of known variables of interest, known adjustment
variables and unknown and unmeasured artifacts. A simple
version of this model might relate gene expression for gene
i on sample j (g;) to the phenotype for that sample (y;), the
known batch variable for that sample (4;) and an unknown
artifact on that sample (1)):

8ij = big + by
gene expression  baseline expression  phenotype effect

+oGap + diuy o+ e 1
known batch ~ unknown artifact ~ meas. error

If only a single gene is measured, it is difficult to estimate
the unknown artifact (;) from the data directly, since all the
coefficients (b, ¢, d) are unknown. But we noticed (4) that if
many genes are measured, it is possible that for some genes
the coefficients for b;; and ¢; may be equal to zero. For these
specific genes the model reduces to:

8ij
———
gene expression

= bio +  diuy + ejj
—

baseline expression  ypknown artifact  measurement error

Our next insight was that even though d; and u; are un-
known, you do not need to know either of them exactly to
get correct statistical inference for the parameters for the
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1. Identify the genes that are only affected by unknown artifacts
2. Perform a decomposition of the data for just these genes to identify estimates of the artifacts.

3. Include the artifact estimates in subsequent analyses as if they were known.

Figure 1. Surrogate variable analysis (sva). The general sva framework for
identifying unknown artifacts in genomic data has three steps (4,5).

—-

. Apply the function f() element-wise to the observed gene expression data.

o

. Estimate or define \; = Pr(by; = 0<ci = 0 & d; # 0)

w

. Multiply the ith row of f(G) by A; to get the matrix W

'S

. Perform a matrix decomposition of W and estimate ., by the gth component of the decomposition
of W.

@

. Include estimates of 1., in subsequent analysis as if it were a known covariate.

Figure 2. General sva estimation framework. In this general framework,
Step 1 allows for transformations specific to different data types, Step 2 al-
lows for either estimating or defining the probabilities of being affected by
unknown artifacts but not known variables and Step 4 allows for a variety
of matrix decompositions and factor analysis approaches.

—

. Load the counts calculated from a previous data set with genes in rows and samples in columns

o

. Filter genes that do not have a count of 5 in at least 2 samples.

. Estimate the mean (p) and size (¢) parameter from a negative binomial using the method of
moments [33]

~

. Fit a smooth relationship of the form log(¢) = f(u) using a smoothing spline

@

. Generate a matrix of mean values, one for each gene and sample from the model matrix, X,
and coefficients (3, x, through the equation

M =log(niu) x 17 + g x X7

=

. Predict the size value for cach element of M with the equation log ¢ = f(log(m,l)).

~

Generate the value for the ith gene on the jth sample from a negative binomial model: ¢;; ~
NB(ji §).

Figure 3. Approach for simulating RNA-seq data with Polyester package
(34).

phenotype variable b;;, you just have to know their linear
combination d; x u; (4,5). We showed that if you collect the
data for all genes where there is no effect of phenotype or
known batch (b;; = 0 and ¢; = 0) and subtracted the mean
of each gene to remove the baseline effect, the matrix form
of the model is:
G =d i+ E
—_— —— = =~
my Xn m,x1 Ixn my Xn

where m,, is the number of genes where b;; = 0 and ¢; = 0
and n is the sample size. We then pointed out that you could
apply a matrix decomposition like the singular value de-
composition or principal components analysis to this sub-
set of the data to estimate surrogates for the unknown ar-
tifacts u. Later we also showed that if the number of genes
that are not affected by phenotype or known batch (b; =0
and ¢ = 0) but are affected by unknown artifacts (d; ? 0)
is large enough, you can obtain consistent estimates of a
linear transformation of u; (10). You can then include the
estimate of batch effects in downstream models to remove
artifacts, dependence between genes and improve statistical
inference (4,5). These insights inspired the general form of
the sva approach shown in Figure 1. The difference between
the two-step and iteratively re-weighted sva algorithms is
the approach to estimating the genes affected by unknown
artifacts (Step 1) (4,5).
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In this paper I discuss two new extensions of the sva ap-
proach for sequencing data. The first extension deals with
Step 1 of the sva approach (Figure 2). The idea is to use
external information to estimate the genes that are likely
to be affected by unknown artifacts. The original sva algo-
rithm attempted to identify genes affected by artifacts di-
rectly from the data itself, but sometimes there is external
information about which genes are unlikely to be differen-
tial expressed. This external information could be control
probes (7) or estimates of batch-related probes from pre-
vious studies (11). Supervised sva uses this information in
Step 1 of the sva approach, reducing computational time
and reliance on estimation procedures for identifying the
right genes to use for artifact estimation. The second idea,
svaseq, is based on performing an appropriate transforma-
tion of the count or Fragments Per Kilobase Of Exon Per
Million Fragments Mapped (FPKM) data during Steps 1
and 2 of the sva approach (12). Here I focus on the moder-
ated log transform, which has been widely adopted both for
the analysis of sequence count data and FPKM estimates. I
then perform a thorough and reproducible comparison be-
tween the standard methods for removing batch effects from
sequencing data. I demonstrate that svaseq and supervised
sva perform comparably to existing approaches for remov-
ing batch effects from sequencing data.

MATERIALS AND METHODS

General form of the surrogate variable analysis mathematical
model

The general form of the simple model in Equation (1) is

Ef(gi)|y.b.ii.¢.d. a)
K L Y
= boi + Zbkiykj + Z Ceitlyj + Z dgittgj  (2)
k=1 =1 -1

or in the matrix form is

H/@D= BY + A+ DU

phenotype  artifacts  unknown artifacts

where the function f{) has been applied component wise to
each element of G and there may be multiple phenotypes,
artifacts or unknown artifacts and I have dropped the ex-
plicit conditioning for ease of notation. The general sva al-
gorithm then proceeds in the following four concrete steps.

In Step 5, the covariates may be included in a stan-
dard linear regression modeling analysis on an appropri-
ately transformed scale or the covariates can be directly used
in software that models counts with generalized linear mod-
els (GLMs) including edgeR (13) and DESeq (14). They can
be directly included in these models as they are estimated on
the same scale as standard link functions for GLMs.

Relationship of surrogate variable analysis to other ap-
proaches

The general form of the sva algorithm relies on the idea
that there is a subset of genes, probes or transcripts that
are affected by unknown batch effects or other artifacts
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Figure 4. Distribution of means and variances for simulated and real Zebrafish data. To confirm that my simulation procedure produced reasonable
simulated counts, I plotted the gene-specific means and variances for (left panel) the simulated data set and (right panel) the observed Zebrafish data
set. The two distributions are qualitatively similar. Additional checks on the simulation procedure are provided in the simulated data analysis at http:

/ljtleek.com/svaseq/simulateData.html.
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Figure 5. Correlation between simulated batch and group variables and
various batch estimates. Light circles indicate low correlation and dark,
tight ellipses indicate high correlation. In this case, all estimates that re-
spect multiple sources of signal (sva and RUV based) methods are highly
correlated with the simulated batch effect. Principal components estimates
a linear combination of the group and batch variable and has lower con-
cordance with the true simulated batch and the other estimates. Additional
details at http:/jtleek.com/svaseq/simulateData.html.
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Figure 6. Differential expression results for simulated data. A concor-
dance at the top plot (CAT plot) shows the fraction of DE results that are
concordant between the analysis with the true batch and the analyses using
different batch estimates. Supervised (pink solid) and unsupervised (pink
dotted) sva for sequencing, RUV with control probes (green dashed), RUV
with empirical controls (green dotted) and residual RUV (green solid) all
outperform not adjusting for batch effects (yellow) while principal com-
ponents analysis (blue) performs worse than no adjustment. Additional
details at http://jtleek.com/svaseq/simulateData.html.
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but are not affected by the biological relationship of in-
terest. This is the main way that a sva approach is distin-
guished from a standard principal component regression.
Standard principal component-based regression methods,
such as EIGENSTRAT (15), are sufficient when the num-
ber of probes, genes or features expected to show a signal
is small. Then the principal components will be consistent
estimates of a linear transformation of the artifacts and not
the phenotype/outcome of interest (16).

A number of extensions and variations on the sva algo-
rithm have been introduced. For Step 1 in the sva algorithm,
identifying probes only associated with unmeasured arti-
facts, it has been proposed to use control probes (7,12). For
Step 2 of the sva algorithm, estimating latent factors only
associated with unmeasured artifacts, it has been proposed
to use factor analysis (17), independent components anal-
ysis (18) and principal components analysis (19). Another
extension of the surrogate variable approach in Step 2 has
been to model known sources of technical or biological co-
variation between the measurements for probes, for exam-
ple in eQTL studies (20,21).

Supervised sva (ssva)

Supervised sva (ssva) sets A; = 1 for all negative controls
and A; = 0 for all other genes in Step 2 of the sva algorithm.
The assumption is that control probes will capture all of the
variation due to unknown artifacts and none of the varia-
tion due to the phenotype. Control probes may miss bio-
logical artifacts. For example, we showed that trans-eQTL
that are associated with multiple gene expression levels may
act like an artifact when measuring the association between
gene expression and phenotype (4). These artifacts may be
missed by the ssva approach. However ssva is particularly
useful for unfortunate experimental designs where the phe-
notype variable and unknown artifacts are highly correlated
(8), making empirical estimates unstable (7).

Moderated log link sva (svaseq)

The second extension involves the choice of function £{) in
(1). In our original work, we used the identity function for
data measured on an approximately symmetric and con-
tinuous scale. For sequencing data, which are often repre-
sented as counts, a more suitable model may involve the use
of a moderated log function (22,23). For example in Step
1 of the algorithm we may first transform the gene expres-
sion measurements by applying the function log(g; + ¢) for
a small positive constant. In the analyses that follow I will
set ¢ = 1. The choice of the moderating constant is an im-
portant one and is beyond the scope of this manuscript. In-
tuitively a choice of ¢ = 0 corresponds to no moderation
and as ¢ increases you decrease the variation in the data.
After performing Steps 1-5 of the sva estimation algorithm,
the estimated covariates are included in downstream models
as adjustment variables. For the analyses that follow, I will
use the limma package (24) with the voom method (25) for
differential expression analysis. The voom method is an ap-
proach for estimating the mean—variance relationship when
performing differential expression analysis on sequencing
experiments.
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Combining svaseq and ssva

Supervised svaseq proceeds by applying the transformation
log(gi; + ¢) to the gene expression count data in Step 1 and
setting A; = 1 for all negative controls and ; = 0 for all other
genes in Step 2 of the sva algorithm.

Zebrafish data

I use data from Zebrafish sensory neurons with three con-
trol samples and three gallein treated samples as the com-
parison groups (26). These data are available as part of the
zebrafishRNASeq Bioconductor package. I loaded the data
and filtered as described in the removing unwanted vari-
ation in sequencing data (RUVSeq) package. Then I esti-
mated batch effects using supervised and unsupervised sva
for sequencing, principal components analysis, RUV with
control probes, RUV with empirical controls and residual
RUV. I compared the model estimates and I compared dif-
ferential expression analysis results when each of the differ-
ent batch effect estimates was included in the model in place
of the study variable.

ReCount data

ReCount is a database of pre-processed RNA-sequencing
data, processed to be comparable across samples (27). In
this analysis, I downloaded pre-counted RNA-sequencing
datasets measuring gene expression in two separate
Hapmap populations (28,29). For my analysis, I down-
loaded the count data from ReCount and downloaded the
pedigree information from the Hapmap website. I then per-
formed differential expression analyses looking for differ-
ences in expression between males and females and esti-
mated unknown latent structure. I calculated estimates of
batch effects using unsupervised sva for sequencing, prin-
cipal components analysis, RUV with empirical control
probes, and RUV on residuals. I compared the estimates
to the variable indicating whether the data came from the
Pickrell or Montgomery study. I compared two scenarios,
one where the sex and study variables were balanced and
one where they were imbalanced. I also compared the dif-
ferential expression analysis results when each of the differ-
ent batch effect estimates was included in the model in place
of the study variable.

GEUVADIS data

I downloaded the processed GEUVADIS (30,31) Ballgown
object (32) from:

https://github.com/alyssafrazee/ballgown_code

I then subset the data to only the non-duplicated sam-
ples (31) and performed a differential expression analysis
comparing populations. I calculated estimates of batch ef-
fects using unsupervised sva for sequencing, principal com-
ponents analysis, RUV with empirical control probes and
RUYV on residuals. I compared the estimates to the variable
indicating which lab the sequencing was performed in. I also
compared the differential expression analysis results when
each of the different batch effect estimates was included in
the model in place of the laboratory variable.
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Simulating data

I simulated data from a negative binomial model for count
based RNA-sequencing data (Figure 3) (33). For complete
details see the simulated data R markdown document and
accompanying HTML file.

I estimated the model parameters from the Zebrafish data
described above. I simulated two scenarios, one where the
group and batch variable were not correlated and one where
they were correlated. Here we consider both batch effects
that are correlated with the outcome and batch effects that
are orthogonal. This is a critical distinction as unsupervised
methods that estimate batch effects directly from the data
will often perform worse when batch and outcome are cor-
related unless this relationship is explicitly modeled. Data
were simulated with the Polyester R package (34). Then I es-
timated batch effects using supervised and unsupervised sva
for sequencing, principal components analysis, RUV with
control probes, RUV with empirical controls and residual
RUV. I compared the model estimates to the true simulated
batch variable and I also compared differential expression
analysis results when each of the different batch effect esti-
mates was included in the model in place of the study vari-
able.

Code and availability

ssva and svaseq are currently implemented in the sva Bio-
conductor package version 3.11.2 or greater (http://www.
bioconductor.org/packages/devel/bioc/html/sva.html). All
data and code used to perform this analysis are available as
R markdown files (35) available from: https://github.com/
jtleek/svaseq. You can view the individual analyses as web-
pages at:

(1) Zebrafish analysis: http://jtleek.com/svaseq/zebrafish.
html

(i) ReCount analysis: http://jtleek.com/svaseq/recount.
html

(iii) GEUVADIS
geuvadis.html

(iv) Simulated data analysis:
simulateData.html

analysis:  http://jtleek.com/svaseq/

http://jtleek.com/svaseq/

RESULTS
Simulated data

I estimated simulation parameters from the Zebrafish data
as described in the methods. I then performed several checks
to confirm that (i) the data generated by the simulated
model recapitulated the qualitative behavior of the data
used to estimate the model parameters (Figure 4), (ii) that
data generated without signal did not show statistically sig-
nificant results, (iii) data could be simulated with differen-
tial expression signal and (iv) that data with batch effects
displayed the expected conservative bias of P-values (36)
(See supplementary analysis files (http://jtleek.com/svaseq/
zebrafish.html).

In the Zebrafish study there was a single simulated batch
effect. I simulated two scenarios, in the first scenario the
batch effect and the group effect had low correlation. As ex-
pected, all methods that aim to estimate batch effects while
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taking into account multiple sources of signal (svaseq and
RUYV methods) produce estimates that are highly correlated
with the simulated batch effect. The estimate of batch based
on principal components is biased, because the principal
component is estimating a linear combination of the group
and batch variable (Figure 5). In this scenario all the P-
value distributions are approximately correct, with the ex-
ception of the analysis using principal component based
estimates of batch. This is because the principal compo-
nents do not estimate accurate versions of the batch effect
and bias the statistical significance calculation (see: http:
/ljtleek.com/svaseq/simulateData.html for plots).

I next fit models relating the gene expression counts to the
simulated group phenotype (p) and batch effect estimates
(@1) using the following model:

log(gij + 1|, b.i,d = by + by +diui;+e;  (3)

I accounted for the potential relationship between mean
and variance using the voom method (25). I then estimated
how concordant the differential expression results were with
the results we obtained when we fit model (6) using the true
simulated batch variable using concordance at the top plots
(CAT plots, Figure 6) (37). For each ranking, these plots
show the fraction of results that are the same between the
analysis using the true batch variable and the batch variable
estimated with different methods. Supervised and unsuper-
vised sva for sequencing, RUV with control probes, RUV
with empirical controls and residual RUV all outperform
not adjusting for batch effects while principal components
analysis performs worse than no adjustment. The reason
is that the principal component estimate is correlated with
group and absorbs some of the signal due to that variable.

We performed an identical analysis where the batch was
now correlated with the group variable. Qualitatively simi-
lar results hold in this second simulated scenario with one
exception. The empirical RUV methods attempt to define
control probes by identifying genes that do not show differ-
ential expression with respect to batch. But when batch and
group are correlated, this may also through away genes that
show signal with respect to the group variable. Similar the
residual RUV approach estimates the batch variable after
taking the residuals from the model fit of the counts on the
group variable. However, when batch and group are corre-
lated, this again removes batch signal and leads to slightly
lower performance of the RUV approaches (4). Unsuper-
vised svaseq does not use the control probes but avoids some
of these difficulties by iteratively identifying probes associ-
ated with group but not associated with batch (5) (Figure 7).
The P-value histograms here show a strong difference be-
tween supervised and unsupervised approaches. The unsu-
pervised approaches attempt to estimate the artifacts, but
they are correlated with the group. Since the estimates are
off, the statistical significance calculations are not correct
(see: http://jtleek.com/svaseq/simulateData.html for plots).
But the supervised methods correct the statistical signifi-
cance calculations accurately.

Zebrafish data

Next I performed an analysis on the Zebrafish data as de-
scribed in the methods section. Here, the batch variable is
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Figure 7. Comparison of batch effect results when group and batch are correlated. (a) A plot of the correlation between the different batch estimates and
the batch variable analogous to Figure 5. (b) A concordance at the top plot measuring concordance between the analysis using the true batch variable
and the various estimates analogous to Figure 6. Here the unsupervised RUV approaches using empirical control probes and residuals perform worse
than no adjustment, because the methods can not distinguish signal from the known group variable and the unknown batch variable. Additional details

at http://jtleek.com/svaseq/simulateData.html.
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Figure 8. Comparison of batch effect results on Zebrafish data. (a) A plot of the correlation between the different batch estimates analogous to Figure 5,
but with no gold standard. (b) A concordance at the top plot measuring concordance between the analysis using the supervised SVA estimates and the
various other batch estimates analogous to Figure 6. The control probes RUV approach (blue solid in (b)) and supervised sva approach produce identical
results. The unsupervised sva (orange solid) and principal components (pink solid) approaches are most similar to the supervised estimates in this scenario.

Additional details at http://jtleek.com/svaseq/zebrafish.html.

not known, but we do have negative control probes which
can be used to estimate the batch effects. When comparing
the batch estimates, I noted that the supervised sva estimates
and the RUYV control probes estimates were perfectly corre-
lated (R? = 1) and that they produced identical differential
expression results (Figure 8a). The unsupervised sva and
principal components approaches are most similar to the
supervised estimates from SVA or RUV for the Zebrafish
data.

ReCount data

For the ReCount data I generated an artificial batch effect
by combining the data from two different studies of gene
expression in two different populations (28,29). I used sex

as the outcome variable in the analysis and then estimated
batch effects using the same set of proposed approaches. I
next fit models relating the gene expression counts (g) to sex
variable (p, phenotype variable representing sex) and batch
effect estimates (i1, representing the study the samples came
from) using the following model:

log(gij + DI p, b, il = by + by +diiij+e;; (4

I accounted for the potential relationship between mean
and variance using the voom method (25). I then estimated
how concordant the differential expression results were with
the results we obtained when we fit model 6 using the true
simulated batch variable using concordance at the top plots
(Figure 8b) (37).
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Figure 9. Comparison of differential expression results for ReCount experiment. (a) A concordance at the top plot measuring concordance between the
analysis using the true study and the various other batch estimates analogous to Figure 6. (b) A concordance at the top plot measuring concordance
between the analysis using the true study and the various other batch estimates analogous to Figure 6 when data were resampled to make the sex and study
variables moderately correlated (+> = 0.33.) When sex and study are uncorrelated, RUV performs slightly better and when sex and study are correlated,
svaseq performs slightly better. Additional details at http://jtleek.com/svaseq/recount.html.
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Figure 10. Differential expression results for GEUVADIS data. A concor-
dance at the top plot (CAT plot) shows the fraction of DE results that are
concordant between the analysis with the true laboratory and the analy-
ses using different batch estimates. Unsupervised sva for sequencing (blue)
and principal components analysis (orange) outperform the RUV based
methods (pink) and no batch adjustment (green). Additional details at
http://jtleek.com/svaseq/geuvadis.html.

In the original data, the batch effect and the group vari-
able are nearly perfectly orthogonal. In this situation the
empirical and residual RUV approaches produce estimates
of the batch variable more highly correlated than the un-
supervised svaseq approach (see http://jtleek.com/svaseq/
recount.html) and produce correspondingly more similar
differential expression results to using the true study vari-
able as an adjustment in the differential expression analysis
(Figure 9a). However, I next re-sampled the data to mimic a
scenario where the group and batch variable showed modest
correlation (> = 0.33). In this scenario the unsupervised sva

and principal components analysis approaches outperform
the empirical control RUV approach. The residual RUV ap-
proach performs worse than no adjustment for study, be-
cause signal due to the batch variable was removed when
the residuals from the model relating sex to phenotype was
calculated (Figure 9b).

GEUVADIS data

The Ballgown R package https://github.com/alyssafrazee/
ballgown (32) can be used to analyze abundance data from
assembled transcriptome data from Cufflinks (38). I loaded
data from the GEUVADIS project (30,31) that we recently
processed using Cufflinks and Ballgown (32). I selected only
the non-duplicated samples and performed a differential ex-
pression analysis comparing different populations. I then
compared the estimated batch effects using the various ap-
proaches to the known lab where the samples were pro-
cessed, one of the variables that showed the highest asso-
ciation with assembled transcript levels (31).

I assessed concordance between the batch effect estimates
and the lab variable by fitting the model:

K
ij = b+ Z br1(Sample j belongs to lab k) +¢;  (5)
k=1

and then performed an ANOVA to compare the model
including lab to the null model of no association with
lab. The unsupervised sva and principal components esti-
mates showed significantly higher F-statistics for concor-
dance (482 and 456, respectively) compared to the RUV ap-
proach (106 and 109 for RUV residual and empirical, re-
spectively). I next fit models relating the gene expression
counts (g) to the population phenotype (p, phenotype vari-
able representing population) and batch effect estimates (i,
representing the study the samples came from) using the fol-
lowing model:

log(g,,»—i— 1)|ﬁ, B,ﬁ=b0i+b1iyj+d1,-ﬁj+eij (6)


http://jtleek.com/svaseq/recount.html
http://jtleek.com/svaseq/geuvadis.html
http://jtleek.com/svaseq/recount.html
https://github.com/alyssafrazee/ballgown
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I compared the results to the differential expression model
where I included the known lab variable as an adjustment in
place of &i. The svaseq and principal components adjusted
analyses showed greater concordance with the lab adjusted
analysis, as expected since the batch estimates were more
highly correlated with this known variable (Figure 10).

DISCUSSION

Here I have described the general sva framework and I have
introduced two extensions of the sva approach. The first
takes advantage of known control probes to simplify the
sva algorithm and the second addresses the distribution of
count and FPKM data typically observed in sequencing ex-
periments. The question of whether to use FPKM or count
based approaches for the analysis of RNA-sequencing data
is beyond the scope of this paper. However, I have demon-
strated in this paper that regardless of the choice for mea-
surement summary, svaseq can be applied to remove batch
effects.

I have shown that sva-based approaches perform com-
parably to other batch effect estimation procedures for se-
quencing when the group and unknown batch variables
are uncorrelated and outperform other approaches when
the batch and group variable are correlated. These exten-
sions are currently available from the devel branch of the
sva software http://bioconductor.org/packages/devel/bioc/
html/sva.html and all analyses are fully reproducible and
available as R markdown documents from https://github.
com/jtleeck/svaseq.
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