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Abstract

Nuclear receptors have generated substantial interest in the past decade as potential therapeutic 

targets for the treatment of neurodegenerative disorders. Despite years of effort, effective 

treatments for progressive neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s 

disease, Huntington’s disease and ALS remain elusive, making non-classical drug targets such as 

nuclear receptors an attractive alternative. A substantial literature in mouse models of disease and 

several clinical trials have investigated the role of nuclear receptors in various neurodegenerative 

disorders, most prominently AD. These studies have met with mixed results, yet the majority of 

studies in mouse models report positive outcomes. The mechanisms by which nuclear receptor 

agonists affect disease pathology remain unclear. Deciphering the complex signaling underlying 

nuclear receptor action in neurodegenerative diseases is essential for understanding this variability 

in preclinical studies, and for the successful translation of nuclear receptor agonists into clinical 

therapies.
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Nuclear receptors are ligand activated transcription factors that act globally to regulate a 

diverse array of homeostatic processes (Chawla et al., 2001; Castrillo and Tontonoz, 2004). 

The best characterized of these are the type I receptors, which include estrogen and 

progesterone receptors. This review will focus on the more recently discovered type II 

nuclear receptors, which act as regulators of lipid and energy metabolism, and specifically 

on their actions in the brain. The predominant type II nuclear receptors in the brain are the 

peroxisome proliferator-activated receptors (PPAR) α, β/δ and γ, and liver X receptors 
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(LXR) α and β. PPARs function as lipid sensors which bind dietary lipids or their 

metabolites, most prominently fatty acids and eicosanoids. LXRs act as cholesterol sensors, 

binding hydroxylated forms of cholesterol. Through association of the receptors with 

sequence specific promoter elements of genes of lipid and energy metabolism, PPARs and 

LXRs couple the size of the metabolic machinery to metabolic demand. These receptors 

play critical roles in CNS biology because the brain has a very high lipid content and is the 

most metabolically active organ in the body.

Nuclear receptors (type II) form obligate heterodimers with retinoid X receptors (RXR) α,β 

and γ to create a functional transcription factor (Figure 1A). In the nucleus, ligand bound or 

unbound receptor heterodimers associate with DNA response elements comprised of two 

direct repeat motifs. Unliganded dimeric receptors are transcriptionally silenced by their 

association with the corepressors NCoR or SMRT and HDAC3 (Figure 1B). Upon ligand 

binding, the corepressor complexes are dismissed and coactivator complexes then associate 

with the heterodimeric receptor, resulting in changes in local chromatin structure and the 

subsequent transcription of the target gene (Saijo et al., 2012). Unique exceptions to this 

mechanism are the NR4A receptors, including Nurr1, which are ligand independent 

receptors that can also signal as heterodimers with RXR. This review will focus on the 

PPARs and LXRs, as they are highly expressed in the brain, and discuss new data on the 

NR4A receptor Nurr1 that link it to CNS metabolism and disease.

Regulation of microglial phenotype and anti-inflammatory actions

Neurodegenerative diseases all exhibit a robust inflammatory component, reflective of the 

response of the innate immune system to disease-related perturbations in the brain (Mosher 

and Wyss-Coray, 2014). The brain is densely and uniformly populated by resident innate 

immune cells, the microglia (Nayak et al., 2014). The diseased brain is characterized by an 

increase in microglial number and their transformation from a surveillant, tissue 

maintenance mode to a protective host-defense mode and induction of proinflammatory 

genes. Typically, these ‘activated’ microglia are found associated with disease-related 

lesions or focal accumulations of abnormally folded proteins which stimulate host-defense 

responses normally directed to pathogens (Czirr and Wyss-Coray, 2012). This phenotypic 

conversion of microglia to a proinflammatory or ‘M1’ state is linked to the elaboration of a 

diverse array of immune mediators, including proinflammatory cytokines (Colton, 2009; 

Gordon and Martinez, 2010).

In the context of neurodegenerative diseases, this proinflammatory milieu within the brain 

acts to impair normal neuronal functions and synaptic activity and has coincident effects on 

CNS glia, including autocrine regulation of microglial and astrocyte phenotypes. 

Proinflammatory activation of microglia impedes their normal tissue surveillance and 

maintenance functions, prominently inhibiting their active monitoring of neuronal 

homeostasis and synapses (Morris et al., 2013). Inflammatory cytokines also act to impair 

neuronal integrity and have been postulated to mediate the loss of neurons at late stages of 

disease. The disease-related stimulation of the microglial inflammatory response is 

responsible for ‘bystander damage’ in the brain and contributes to disease pathogenesis and 

progression.
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Examination of the brain in many neurodegenerative diseases reveals that activated 

microglia are generally unable to efficiently clear the initiating stimulus. An evolutionary 

adaption to this type of situation (e.g. parasitic infections) in other organ systems has been 

the ability of macrophages to acquire an ‘alternative activation’ phenotype, termed ‘M2’ 

(Gordon and Martinez, 2010). The M2 phenotype is associated with the inhibition of 

inflammatory gene expression and resolution of inflammation as well as the induction of a 

genetic program associated with tissue repair and enhanced phagocytosis. Importantly, it has 

only recently been appreciated that nuclear receptors act as master regulators of 

macrophage/microglia phenotype, governing the acquisition of ‘alternative activation’ states 

(Odegaard and Chawla, 2011). Macrophages in which PPARγ (Odegaard et al., 2007), 

PPARδ (Mukundan et al., 2009), LXRs (A-Gonzalez et al., 2009) and RXRα (Nunez et al., 

2010) have been genetically inactivated exhibit reduced phagocytosis and are unable to 

acquire an M2 phenotype (Odegaard and Chawla, 2011). Each of these receptors has been 

shown to transactivate genes associated with the resolution of inflammation including anti-

inflammatory cytokines such as IL-10 and TGFβ. This mechanism explains why 

phagocytosis of apoptotic cells by macrophages or microglia does not elicit an inflammatory 

response. There is a coincident stimulation of genes promoting phagocytosis.

Importantly, nuclear receptor activation also acts to suppress proinflammatory gene 

expression. Elegant work by Glass and colleagues have demonstrated that PPARs and LXRs 

undergo sumoylation upon ligand binding, allowing their targeted interaction with NFκB 

and AP1 positioned on the promoters of proinflammatory genes (Figure 1B) (Glass and 

Saijo, 2010). This interaction stabilizes the binding of NCoR/HDAC3 complexes with 

NFkB, repressing target proinflammatory gene expression. The phagocytic ingestion of the 

apoptotic corpse is associated with the catabolism of its membranes, yielding high levels of 

nuclear receptor ligands, most prominently fatty acids and cholesterol. Upon ligand binding, 

the receptors act to suppress NFκB-dependent inflammatory gene expression. This adaptive 

response is central to normal development and ongoing tissue maintenance.

It is now evident that nuclear receptors can be enlisted to intervene in disease pathogenesis, 

owing to the salutary effects of agonists of these receptors in a number of CNS disorders, 

including neurodegenerative diseases. The mechanisms subserving these effects in the brain 

are poorly understood. However, studies in other organ systems have revealed a complex 

interplay between the innate immune response and tissue metabolism (Odegaard and 

Chawla, 2013). The diseased brain has a well-documented alteration in metabolic state, with 

reduced glucose utilization and production associated with a broad range of metabolic 

changes. The innate immune system is an exquisitely responsive sensor of the metabolic 

state of the tissue in which these cells reside (Odegaard et al., 2007; Odegaard and Chawla, 

2013). In the liver, muscle and fat, metabolic perturbations associated with obesity and type 

II diabetes result in an increased abundance of macrophages in the tissues and elevated 

inflammatory cytokines reflective of a low grade inflammatory state. The cytokines in turn 

elicit insulin resistance and impaired glucose uptake by the tissue. These reciprocal 

interactions between the tissue and its endogenous macrophages contribute to disease 

pathogenesis. It is of particular importance that nuclear receptor agonists act to normalize 

both metabolism and inflammation. This may account for their ability to attenuate disease-

related pathologies and reverse behavioral impairment in animal models of 
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neurodegenerative disease. These types of interactions have yet to be explored in the brain 

and this is clearly an area in need of investigation.

PPARγ

PPARγ plays critical roles in lipid homeostasis through its ability to interact with fatty acids 

and other lipid metabolites (Beaven and Tontonoz, 2006). Its activation leads to the 

induction of genes associated with lipid uptake and storage. In the periphery PPARγ 

activation is associated with enhanced insulin sensitivity and thus two PPARγ agonists have 

been FDA approved (pioglitazone, ActosTM; rosiglitazone, Avandia™) for the treatment of 

type II diabetes. In addition, PPARγ activation is reported to improve mitochondrial 

metabolism and biogenesis (Alaynick, 2008).

The first report of the neurodegenerative disease-relevant actions of PPARγ agonists was 

published in 2000 (Combs et al., 2000) and was quickly followed by a flurry of studies in 

animal models of AD (Mandrekar-Colucci and Landreth, 2011), PD (Carta and Pisanu, 

2013), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) (Kiaei, 2008), stroke 

(Ouk et al., 2013), and traumatic injuries (Semple and Noble-Haeusslein, 2011; Mandrekar-

Colucci et al., 2013). The therapeutic relevance of targeting PPARγ has been documented in 

animal models for a number of neurodegenerative diseases and has resulted in several 

clinical trials for these disorders.

Alzheimer’s disease

The actions of PPARγ and its agonists in in vitro and murine models of AD have been well 

documented over the past decade and this work has been extensively reviewed (Heneka et 

al., 2007; Jiang et al., 2008a; Landreth et al., 2008; Nicolakakis and Hamel, 2010; 

Mandrekar-Colucci and Landreth, 2011; Sodhi et al., 2011; Mandrekar-Colucci et al., 2013). 

In 17 independent studies, oral administration of PPARγ agonists have been shown to be 

effective in many mouse models of AD, as measured by improved memory and cognition, 

suppression of inflammation and reduction of amyloid levels (Table I). There has been 

significant new work that has focused on the underlying mechanisms.

PPARγ agonist treatment of murine models of AD has been associated with the reversal of 

transgene-induced behavioral impairments, as evaluated in a number of different assays of 

cognition, memory and neural network function. It remains enigmatic exactly how the 

PPARγ-mediated improvement of behavior is effected. One proposed mechanism is that the 

robust anti-inflammatory effects of PPARγ suppress the levels of proinflammatory cytokines 

that have been linked to cognitive impairment. Whether anti-inflammatory effects are 

entirely responsible for reversal of the behavioral deficits remains to be convincingly 

demonstrated. Recent studies of PPARγ signaling in neurons argue that other mechanisms 

likely participate in the PPARγ-mediated enhancement of cognition and memory. The 

actions of PPARγ agonists on neurons have received comparatively little attention. PPARγ 

agonists are reported to stimulate Wnt signaling (Toledo and Inestrosa, 2010). Recent work 

by Dinely and colleagues have dissected the neuronal effects of PPARγ agonists and their 

underlying mechanisms which are summarized in this volume (Rodriguez-Rivera et al., 

2011; Denner et al., 2012; Nenov et al., 2014). It has also been reported that PPAR agonists 
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act to normalize synaptic function in AD mouse models (Searcy et al., 2012). The salutary 

effects of PPARγ agonists in AD mice have been postulated to arise from their ability to 

improve peripheral insulin sensitivity in type II diabetes and by extension work in analogous 

ways in the brain (Craft et al., 2013). However, there is no direct evidence to support the 

view that neurons are insensitive to insulin action, but they have been reported to exhibit 

changes in signal transduction pathways reflective of impaired insulin receptor signaling in 

AD models of rodents monkeys and in humans. Ferreira and colleagues have argued the 

insulin resistance results from the actions of microglia-derived TNFα. TNFa is elevated in 

the AD brain and causes the inactivation of elements necessary for insulin signaling 

(Ferreira et al., 2014).

One of the most compelling effects of chronic PPARγ agonist treatment documented in 

earlier work is the reduction of amyloid plaque burden owing to induction of microglial 

phagocytosis of Aβ deposits (Pedersen et al., 2006; Escribano et al., 2009; Toledo and 

Inestrosa, 2009; Escribano et al., 2010; Rodriguez-Rivera et al., 2011; Denner et al., 2012; 

Masciopinto et al., 2012; O'Reilly and Lynch, 2012; Searcy et al., 2012; Yamanaka et al., 

2012). Recently, Mandrekar–Collucci reported that pioglitazone treatment as brief as 9 days 

was sufficient to clear up to 50% of plaques in 6 or 12 month old APP/PS1 mice and was 

associated with the appearance of amyloid-laden microglia in the cortex and hippocampus of 

the drug-treated mice (Mandrekar-Colucci et al., 2012). Similarly, Yamanaka reported that 

pioglitazone and a new PPARγ agonist, DSP-8658, stimulated the recruitment of microglia 

to plaques and promoted their clearance (Yamanaka et al., 2012). In vitro studies 

demonstrated that PPARγ agonists stimulated Aβ phagocytosis through induction of CD36 

expression. The effect of the PPARγ agonists was dependent upon RXRa expression, and 

was additively enhanced by simultaneous treatment with an RXR agonist. The same study 

observed that DSP-8658 was also able to stimulate microglial recruitment to plaques and 

increase their phagocytosis of Aβ in an AD mouse model. In each of these latter studies 

behavioral improvement was observed.

A frequent comorbidity and contributor to AD pathogenesis is cerebral amyloidosis, or the 

accumulation of Aβ peptides within the vasculature, which is associated with impaired 

vascular function (Park et al., 2011). PPARγ agonist treatment of mouse models also 

restored vascular reactivity and improved blood flow to the brain (Nicolakakis and Hamel, 

2010; Papadopoulos et al., 2013). Thus, PPARγ-mediated improvements in vascular 

function could provide another mechanism of therapeutic action.

There have been several phase I/II trials of pioglitazone and rosiglitazone in AD patients. A 

large phase III trial of rosiglitazone in mild/moderate AD failed to show clinical benefit 

(Gold et al., 2010). Currently, a phase III trial of pioglitazone is underway.

Parkinson’s disease

The initial report of the effects of PPARγ agonists in an MPTP model of PD by Breidert and 

colleagues found that pioglitazone prevented dopaminergic cell loss and suppressed the 

inflammatory response seen in this model (Breidert et al., 2002). Subsequently, there have 

been several studies implicating PPARγ in disease etiology. Many studies in murine models 

of PD (Schintu et al., 2009; Swanson et al., 2013) have found drug-induced prevention of 
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dopaminergic terminal and cell loss as well as prevention of functional deficits. In an MPTP 

model in monkeys, Swanson et al. reported that pioglitazone treatment ameliorated 

behavioral deficits and prevented the loss of several markers of dopaminergic function. 

Importantly, pioglitazone prevented dopaminergic cell loss, with a reduction in 

inflammation, similar to the effects observed in rodents (Swanson et al., 2011). The 

underlying mechanisms that subserve these effects remain controversial and have been 

postulated to be due to anti-oxidant effects (Martin et al., 2012), MAO-B inhibition (Quinn 

et al., 2008), or the antiinflammatory effects of PPARγ activation (Breidert et al., 2002; 

Dehmer et al., 2004; Carta and Pisanu, 2012).

A principal cofactor and regulator of PPAR action is PPARγ-coactivator 1α (PCG-1a) 

(Katsouri et al., 2012). PCG-1α participates in transcriptional complexes mediating the 

activation of PPARγ and other nuclear receptor-responsive genes. PCG-1α has been shown 

to play critical roles in insulin sensitivity, mitochondrial biogenesis, energy production, and 

neuronal viability. In MPTP treated mice, transgenic expression of PCG-1α prevented the 

loss of dopaminergic neurons (Mudo et al., 2012). PGC-1α levels are reduced in genetic 

models of PD (Katsouri et al., 2012) and in parkin mutant mice (Shin et al., 2011). PPARγ 

agonists have been shown to stimulate the expression of PGC-1α (Hondares 2006), 

providing another possible mechanism for PPARγ action in PD. There is currently a phase II 

trial of pioglitazone in early stage Parkinson’s underway.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is characterized by extensive loss of motor neurons. 

Treatment of mouse SOD1 models of ALS with pioglitazone resulted in prevention of 

neuronal loss, preservation of neurological function and longer survival (Kiaei et al., 2005; 

Schutz, 2005; Shibata et al., 2008). Pioglitazone treatment was also shown to reduce 

inflammation. However, a clinical trial of pioglitazone in ALS patients showed no clinical 

benefit (Dupuis et al., 2012).

Huntington’s disease

Chiang et al. reported that PPARγ levels were reduced both in Huntington’s disease (HD) 

patient lymphocytes and the R6/2 HD mouse model. Treatment of HD mice with a PPARγ 

agonist prevented functional impairments in these mice, extended their survival, and also 

normalized the reduced expression of PCG-1α (Chiang et al., 2010). Administration of a 

pan-PPAR agonist resulted in elevation of PCG-1α levels, amelioration of behavioral 

deficits, and increased survival (Johri et al., 2012). A recent study using a different HD 

model found that rosiglitazone prevented neuronal loss, improved mitochondrial function 

and restored PGC-1α levels in the brain (Jin et al., 2013). These studies have led to the 

conclusion that PGC-1α deficiency underlies the mitochondrial dysfunction observed in HD 

(Johri et al., 2013).

LXR

LXRs are cholesterol sensors that play an essential modulatory role in cholesterol 

metabolism, lipogenesis, and the regulation of inflammation. Two isoforms of LXR exist, 
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LXRα, which is prominently expressed in liver, adipose tissue, adrenal glands, intestine, 

kidney, and macrophages, and LXRβ , which is expressed 2–5 times higher than LXRα in 

the brain (Whitney et al., 2002) and ubiquitously expressed at low levels throughout the 

body. The two isoforms are activated by the same endogenous ligands, namely 24(S)-

hydroxycholesterol, 22(R)-hydroxycholesterol 24(S),25-epoxycholesterol, and 27-

hydroxycholesterol, and transcriptionally regulate genes involved in reverse cholesterol 

transport. The principal LXR ligand in the brain is 24(S)-hydroxycholesterol. Activated 

LXRs also exhibit antiinflammatory action, as they are sumoylated and repress transcription 

at NFκB target genes by a mechanism similar to that of PPARγ (Lee et al., 2009).

LXRs have been shown to play an essential role in the normal CNS. Neuronal development, 

synaptogenesis, and learning and memory are dependent on cholesterol, and dysregulation 

of cholesterol metabolism has been implicated in several neurodegenerative disorders 

(Brown 3rd et al., 2004). LXR double knockout mice have CNS abnormalities, including 

increased lipid deposition and neurodegeneration (Wang et al., 2002), and LXRβ knockout 

mice exhibit adult-onset motor neuron degeneration (Andersson et al., 2005). Two widely 

used synthetic ligands, T0901317 and GW3965, have been developed as tools for the study 

of LXRs. LXRs have been studied in a number of neurodegenerative diseases and CNS 

injury models and the development of new LXR agonists with acceptable side effect profiles 

remains an active area of interest.

Alzheimer’s disease

The elevated risk associated with possession of the apolipoprotein e4 allele for sporadic AD 

indicates the importance of cholesterol metabolism in AD. LXRs act to regulate the 

expression of the APOE gene and its lipid transporters, ABCA1 and ABCG1. Apolipoprotein 

E (apoE) is the most prominent apolipoprotein in the brain, where it functions as an acceptor 

of cholesterol and phospholipids effluxed from cells and facilitates their transport as HDL-

like particles throughout the brain. Nascent apoE is lipidated by the lipid transporter ABCA1 

and subsequently by ABCG1, which acts to transfer additional lipids to already lipidated 

apoE particles. Although the mechanism by which apoE isoforms confer AD risk remains 

unclear, it is generally thought that the comparatively poor lipid-carrying ability of apoE4 

impairs its ability to facilitate soluble Aβ clearance, leading to accumulation of soluble 

amyloid species in the brain. Other mechanisms have also been postulated, reflective of a 

toxic gain of function associated with the E4 allele (Kim et al., 2009). ApoE has also been 

argued to play a role in clearance of amyloid from the brain into the peripheral vasculature 

and apoE4 is implicated in compromise of vascular integrity (Zlokovic, 2013). LXR, as a 

direct transcriptional regulator of apoE, ABCA1, and ABCG1, is an attractive therapeutic 

target and acts to increase Aβ clearance in mouse models of AD.

In the past 10 years, LXR agonists have been investigated in twelve separate studies (Table 

1) which demonstrate their efficacy in improving behavioral impairments and amyloid 

clearance in AD models, with some mixed results in the stimulation of plaque clearance 

(Koldamova et al., 2005; Lefterov et al., 2007; Riddell et al., 2007; Jiang et al., 2008b; 

Donkin et al., 2010; Fitz et al., 2010; Terwel et al., 2011; Wesson et al., 2011; Vanmierlo et 

al., 2011; Cui et al., 2012; Hu et al., 2013; Fitz et al., 2014). Vanmierlo et al. observed 
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improvements in hippocampal dependent memory but no change in plaque load with 

T0901317 treatment in APPSLxPS1mut mice (Vanmierlo et al., 2011). However, Riddell et 

al. only observed decreases in hippocampal Aβ42 with no change in cortical Aβ levels, 

although T0901317 treatment of Tg2576 mice mediated behavioral improvement (Riddell et 

al., 2007). The ability of LXR agonists to stimulate Aβ clearance and behavioral 

improvements is dependent on ABCA1 (Donkin et al., 2010; Fitz et al., 2010), indicating 

that LXR-mediated regulation of apoE lipidation state plays an important role in amyloid 

pathology.

Several groups have also shown that LXRs are able to modulate neuroinflammation in AD 

models primarily by modifying the responses of microglia and astrocytes (Zelcer et al., 

2007; Cui et al., 2012). LXR-mediated transrepression of the expression of neurotoxic pro-

inflammatory cytokines could be an additional mechanism for the behavioral improvements 

LXR agonists effect in AD models (Zhang-Gandhi and Drew, 2007; Ghisletti et al., 2009). 

The long-studied role of LXRs in peripheral macrophage inflammatory phenotype (Zelcer 

and Tontonoz, 2006; Hong and Tontonoz, 2008) and phagocytosis (A-Gonzalez et al., 2009) 

has recently sparked interest in the role of LXRs in microglia (Saijo et al., 2012) and the 

therapeutic value of LXR’s anti-inflammatory effect in AD models (Lefterov et al., 2007; 

Zhang-Gandhi et al., 2007; Cui et al., 2012).

Their anti-inflammatory properties and stimulation of reverse cholesterol transport makes 

LXRs an attractive therapeutic candidate for AD treatment, and one that is supported by an 

extensive literature in AD models. However, the poor side effect profile of LXR ligands 

precludes their clinical use. Better targeted or tissue-specific agonists of LXRs are currently 

in development (Hu et al., 2013) as potential AD therapeutics.

Parkinson’s disease

A novel role for LXRs in the developmental differentiation of dopaminergic neurons has 

recently been proposed by the Gustafsson group. Developmental midbrain neurogenesis is 

decreased in LXR double knockouts (Sacchetti et al., 2009). Moreover, activation of LXRs 

is important for in vivo development as well as sufficient for inducing ESCs to differentiate 

into dopaminergic neurons (Sacchetti et al., 2009; Theofilopoulos et al., 2012). This agrees 

with the observation that LXR double knockout mice have decreased neuronal numbers in 

the substantia nigra (Wang et al., 2002). Additionally, LXRβ knockout mice have increased 

death of dopaminergic neurons in the substantia nigra upon challenge with MPTP (Dai et al., 

2012) and β-sitosterol (Kim et al., 2008), which is attributed to increased activation of 

microglia. Dai et al. also report that treatment with LXR agonist GW3965 can protect 

against loss of dopaminergic neurons induced by MPTP (Dai et al., 2012).

PPARδ

The role of PPAR β/δ (hereafter referred to as PPARδ) in neurodegeneration is far less 

studied than that of its related family member, PPARγ. PPARδ is ubiquitously expressed in 

all cell types in the central nervous system (CNS) (Moreno et al., 2004) and has the highest 

CNS expression of the three PPARs (Braissant et al., 1996). Several synthetic PPARδ 
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activators have been produced and used in the research of CNS diseases although none are 

currently approved for clinical use.

PPARδ has important roles in neuronal function. Studies using mice deficient in PPARδ 

have revealed its vital role in many physiological processes, especially in the control of 

central and peripheral inflammatory reactions. PPARδ deficient mice are viable but show 

several defects in normal CNS biology and exhibit augmented inflammatory reactions. 

Specifically, PPARδ deficient mice show altered myelination (Peters et al., 2000) and 

impaired performance in memory tests with associated increases in inflammatory markers, 

astrogliosis and tau hyperphosphorylation (Barroso et al., 2013). PPARδ deficient mice 

show increased vulnerability to ischemic insults (Arsenijevic et al., 2006; Pialat et al., 2007) 

due to defects in antioxidant responses (Arsenijevic et al., 2006). PPARδ is also abundantly 

expressed in brain endothelia and controls vascular functions. Specific deletion of PPARδ in 

vascular smooth muscle cells leads to increased ischemic infarct size by increasing matrix 

metalloproteinase (MMP)-9 activity and by increasing the expression of several 

proinflammatory mediators (Yin et al., 2011).

The data generated from the use of PPARδ agonists show that PPARδ activation provides 

protection in many pathological CNS conditions largely due to its potent anti-inflammatory 

and antioxidant properties. PPARδ agonists have been shown to provide protection against 

neuronal degeneration in the MPTP model of Parkinson’s disease (Iwashita et al., 2007; 

Martin et al., 2013), stroke (Iwashita et al., 2007; Yin et al., 2010), EAE (Polak et al., 2005), 

spinal cord injury (Paterniti et al., 2010) and in a streptozotocin-induced experimental type 3 

diabetes (La Monte et al., 2006), all mainly via reducing inflammation and oxidative stress. 

However, it should be noted that one study reported that a PPARδ agonist was not able to 

reduce 6-OHDA induced neuron loss in vivo even though it reduced microgliosis (Sadeghian 

et al., 2012). The protection elicited by PPARδ activation has several possible underlying 

mechanisms. PPARδ interferes with NFκB signaling, thus leading to a dampened 

inflammatory milieu and decreased oxidative stress (Paterniti et al., 2010; Barroso et al., 

2013). PPARδ activation has been shown to decrease intracellular calcium concentration and 

reduce ROS production in vitro (Jin et al., 2012). In ischemic conditions PPARδ reduces 

MMP-9 activity, possibly by binding directly to the PPAR response element site in the 

MMP-9 promoter region (Yin et al., 2011). In addition, PPARδ activation has also been 

shown decrease apoptotic cell death by promoting the expression of bcl-2 (Paterniti et al., 

2010; Yin et al., 2010) and attenuating caspase-3 activity both in vitro (Iwashita et al., 2007; 

Yin et al., 2010) and in vivo in ischemic conditions (Yin et al., 2010) as well as in spinal 

cord injury (Paterniti et al., 2010). Interestingly, PPARδ upregulation in SRC-3 deficient 

mice has been shown to promote alternative activation of microglia in a mouse model of 

EAE, indicating another mechanism by which it modulates microglial activity (Xiao et al., 

2010).

So far only one study has assessed the possible protection of PPARδ agonists in a transgenic 

mouse model of Alzheimer’s disease. In a paper by Kalinin et al. (Kalinin et al., 2009) long 

term PPARδ agonist treatment reduced the subicular Aβ load and reduced astrocytic 

activation in 5xFAD mice. The reduction in the levels of Aβ was associated with increased 

expression of Aβ degrading enzymes neprilysin and insulin degrading enzyme, however, the 
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role of microgliosis in this context was not analyzed. An additional in vitro study indicates 

that PPARδ agonists also protect primary neurons from Aβ induced cell death (Madrigal et 

al., 2007).

The majority of studies have attributed the neuroprotective properties of PPARδ to its role in 

ameliorating inflammatory reactions. Indeed, the most well defined effect of PPARδ is its 

ability to suppress inflammation in macrophages. The evidence for a direct neuroprotective 

role of PPARδ in vitro (Smith et al., 2004) is somewhat controversial. In one study PPARδ 

ligand GW0742 alone was not able to rescue SH-SY5Y cells from MPP+ induced cell death 

as measured by LDH release, although in vivo administration attenuated MPTP induced 

neurotoxicity (Martin et al., 2013). In contrast, other PPARδ activators L-165041 and 

GW501516 were shown to be directly neuroprotective in vitro at very high concentrations 

(Iwashita et al., 2007). Treatment with GW0742 protected cerebellar granule neurons from 

low-KCl induced toxicity only during a 12-hour exposure period in high concentrations 

(Smith et al., 2004) and also protected a mouse hippocampal cell line against glutamate 

toxicity during the same 12 hour period of exposure (Jin et al., 2012). The treatment during a 

longer exposure period was no longer protective and longer exposure times (48 hours) to 

GW0742 actually induced cell death (Smith et al., 2004).

Overall, accumulating data supports the role for PPARδ in controlling inflammatory 

reactions. Whether PPARδ activation is directly neuroprotective or if its neuroprotective 

effects are mediated through suppression of inflammation needs clarification.

RXR

The actions of RXR agonists are diverse, owing to the ability of RXR to form permissive 

heterodimers with other type II nuclear receptors, and their complexity is poorly understood. 

In addition to acting as heterodimerization partners for type II nuclear receptors, RXRs can 

act as homotetramers to modulate DNA 3D architecture or as homodimers that associate 

with their target genes in the presence or absence of ligand (Dawson and Xia, 2012).

Only a few genes have been shown to be regulated by the RXR homodimer complex 

(IJpenberg et al., 2004), most prominently a subset of chemokines (Nunez et al., 2010). 

RXR heterodimers are characterized as ‘permissive’ or ‘non-permissive’ based on whether 

ligation of either member of the heterodimer can elicit transcription. In the brain, permissive 

receptors include the PPARs, LXRs and the NR4A receptors (Rőszer et al., 2013) while 

non-permissive complexes are formed with RARs, thyroid and vitamin D receptors. Thus, 

RXR agonists can elicit pleiotropic actions through their actions on RXR homodimers as 

well as heterodimers containing permissive receptors. Recent work has shown that RXR 

agonists only regulate a subset of genes controlled by permissive receptors and that this 

subset is cell type-specific (Szeles et al., 2010). The basis for this restriction is not 

understood but explains why a broader range of effects of RXR agonists in the brain is not 

observed.
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Alzheimer’s disease

There are a limited number of studies investigating RXR actions in neurodegenerative 

disease, although these receptors have well established roles during development. The 

literature on RXR activation is confused by a number of studies which investigate the 

actions of docasohexanoic acid (DHA), an omega 3 –polyunsaturated fatty acid, and 

attribute its actions to its binding to RXRs (de Urquiza et al., 2000). However, DHA also 

binds to PPARs (Kliewer et al., 1997) and two GPCRs (Im, 2012), thus it is not possible to 

conclude that these are RXR-specific actions. RXRα levels have been found to be elevated 

in dementia in a manner correlated with cognitive impairment (Akram et al., 2010). Cramer 

et al. (Cramer et al., 2012) reported that the RXR agonist bexarotene resulted in the rapid 

reduction in soluble forms of Aβ in the brains of mouse models of AD, owing to the 

induction of the LXR target genes apoE and Abca1 and elevation of brain high density 

lipoprotein levels (Ulrich et al., 2013). The reduction in soluble Aβ species was associated 

with improved neural network function and reversal of behavioral deficits. This effect on 

soluble Aβ levels was also reported by Fitz (Fitz et al., 2013a), Veeraraghavalu 

(Veeraraghavalu et al., 2013) and Ulrich (Ulrich et al., 2013), but not others (Table I; see 

below). Importantly, bexarotene-mediated behavioral improvement was observed by Fitz 

(Fitz et al., 2013b), Boehm-Cagan (Boehm-Cagan and Michaelson, 2014) and Tesseur 

(Tesseur et al., 2013). Cramer et al. reported that bexarotene treatment also resulted in the 

rapid reduction in amyloid plaque burden (Cramer et al., 2012) and this finding has been 

controversial (Landreth et al., 2013) (see below).

Parkinson’s disease

In a remarkable paper, McFarland reported that in two rodent models of Parkinson’s 

bexarotene acted to prevent neuronal loss and prevented functional impairment (McFarland 

et al., 2013). These effects were achieved at very low drug levels. Bexarotene was 

postulated to act through the ability of RXRs to heterodimerize with Nurr1 and drive its 

transcriptional activities.

Nurr1

The NR4A receptors were first identified as immediate-early genes induced in the nervous 

system in response to a wide variety of extracellular stimuli such as seizures (de Ortiz and 

Jamieson, 1996), stress (Garcia-Yague et al., 2013) and neurotransmitters (Barneda-

Zahonero et al., 2012; Debernard et al., 2012). The NR4A family, including Nur77 (NR4A1; 

NGF-IA), Nurr1 (NR4A2; NGF-IB) and Nor-1 (NR4A3), are unique among type II nuclear 

receptors because the steric hindrance in their nominal ligand binding domains prevents 

them from accepting ligands. They were long thought to be constitutively active, but it has 

been recently shown that they can also play a role in transcriptional repression in a context 

dependent manner. NR4A transcriptional activity depends mainly on gene expression, 

miRNA targeting, alternative splicing, posttranslational modification, subcellular 

localization, and interactions with other nuclear receptors (Michelhaugh et al., 2005; 

Maxwell and Muscat, 2006; Sacchetti et al., 2006; Mohan et al., 2012; Yang et al., 2012).
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All three family members can signal at NBREs (or NurREs) as monomers or homo- or 

heterodimers with other NR4As. Importantly, Nurr1 and Nur77 can also signal in complex 

with RXRs at DR5 repeats, and NR4A/RXR heterodimers can be activated by RXR ligands. 

Synthetic ligands that bind directly to NR4A:RXR heterodimers and drive transcriptional 

activity have also been described (Morita et al., 2005; Ishizawa et al., 2012). Development 

of specific ligands for NR4As could be therapeutically relevant for a variety of diseases. 

Aside from their critical role in nervous system function, NR4As are implicated as 

regulators of glucose homeostasis (Close et al., 2013), fatty acid metabolism (Volakakis et 

al., 2009; Holla et al., 2011), cellular proliferation (Sirin et al., 2010), cancer (Mohan et al., 

2012), and immune regulation both in the periphery and in the brain.

Parkinson’s disease

Nurr1 mutations are associated with rare genetic forms of PD, but are not a major genetic 

risk factor for PD (see Decressac 2013 for an excellent review of Nurr1 in PD) (Decressac et 

al., 2013). A substantial body of evidence indicates that Nurr1 is downregulated in sporadic 

PD patients. This downregulation is selective for neurons with α-synuclein inclusions, and 

decreased Nurr1 correlates with decreased dopaminergic signaling markers in these cells. 

Rodents highly express Nurr1 in the ventral tegmental area (VTA) and substantia nigra pars 

compacta (SNpc) throughout development and into adulthood (Saucedo-Cardenas and 

Conneely, 1996; Zetterstrom et al., 1996). Nurr1 overexpression directs the differentiation of 

mesodiencephalic dopaminergic neurons (mdDAs) in vitro by controlling transcription of 

the dopaminergic genes tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular 

monoamine transporter 2 (VMAT2), and RET receptor tyrosine kinase (cRET) (Decressac et 

al., 2013). In vivo, Nurr1 knockouts develop mdDAs, but these neurons exhibit 

dysfunctional neurotransmission during embryogenesis and are not maintained in newborn 

animals. Interestingly, mdDAs in Nurr1 heterozygous mice have an increased vulnerability 

to stressors including MPTP and also exhibit an age-dependent dysfunction that correlates 

with decreasing motor abilities (Jiang et al., 2005). Studies utilizing conditional knockouts 

of Nurr1 in mature dopaminergic neurons indicate that these effects cannot entirely be 

attributed to developmental Nurr1, but that Nurr1 plays an important ongoing role in the 

maintenance of mdDAs.

The role of Nurr1 in mdDA neuronal survival is probably due to a combination of factors, 

including maintenance of dopaminergic neurotransmission machinery expression and 

facilitating the response of mdDAs to GDNF (Decressac et al., 2012). Nurr1 has also been 

shown to mediate cAMP-response element binding protein (CREB)-induced neuroprotection 

in response to stress, by upregulating an anti-apoptotic gene program in hippocampal 

neurons (Volakakis et al., 2010) and increasing BDNF expression in cerebellar granule cells 

(CGCs) (Barneda-Zahonero et al., 2012). In fact, Nurr1 is transcriptionally regulated in a 

CREB-dependent manner (Altarejos and Montminy, 2011). Additionally, Nurr1 plays a role 

in DNA repair of double strand breaks in neurons (Malewicz et al., 2011) and nucleotide 

excision repair in melanoma cells (Jagirdar et al., 2013). In both cell types Nurr1 is recruited 

to nuclear foci containing DNA repair proteins via a mechanism involving poly(ADP-

ribose) polymerase-1 (PARP-1) and has a non-transcriptional critical role in DNA repair. 

Nurr1 is also induced by inflammatory stimuli in microglia and astrocytes and 
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downregulates inflammatory gene transcription by CoREST-dependent transrepression at 

NFκB target gene promoters (Saijo et al., 2009). Knockdown of Nurr1 in the SN resulted in 

an enhanced glial inflammatory response to LPS or α-synuclein and increased death of 

dopaminergic neurons, suggesting that anti-inflammatory activities of Nurr1 may also be 

important for PD pathogenesis.

McFarland et al. reported that bexarotene, acting though its ability to stimulate Nurr1:RXR 

heterodimers, prevented dopaminergic cell loss, and impairment of both motor and cognitive 

function in two different rodent models of PD (McFarland et al., 2013).

Alzheimer’s disease

Recent evidence from the Saura group indicates that Nurr1 levels are decreased in an AD 

mouse model as well as in late-stage AD patients (España et al., 2010; Parra-Damas et al., 

2014), and it has been reported that Nur77 levels decrease with age in an APP/PS1 mouse 

model of AD (Dickey et al., 2003). However, a direct role of Nurr1 in AD pathogenesis has 

yet to be studied. The involvement of Nurr1 in regulating neuronal survival, 

neuroinflammation, and hippocampal function and plasticity (Volakakis et al., 2010; Hawk 

et al., 2012; Bridi and Abel, 2013), however, makes it an attractive target for further study in 

AD and other neurodegenerative diseases.

Reproducibility of nuclear receptor effects in mouse models of 

neurodegenerative disease

The first study of the effects of nuclear receptor agonists in AD models was published in 

2003 (Yan et al., 2003). Subsequently, 39 additional studies have been reported in 14 

genetic animal models using agonists to PPARγ, LXRs and RXRs. From this body of work 

it is quite clear that, in the context of AD models, nuclear receptor agonists have their most 

consistent and robust effects on cognition and learning. Of the studies that have evaluated 

behavioral endpoints, there are 31 reports of behavioral improvements, one report where 

drug toxicity precluded interpretation of behavior (Tesseur et al., 2013) and 5 reports of 

failure to observe behavioral improvements. Similarly, these agents reproducibly reduced 

inflammation and the number and activation status of microglia, and in some cases, 

astrocytes. In the 17 studies which examined this endpoint, only two did not observe these 

effects.

Other endpoints were less consistent and have generated substantial controversy. Aβ 

reduction following nuclear receptor agonist treatment was observed in 61% of the 36 

studies that measured deposited amyloid burden in 12 animal models of AD and 72% of 33 

studies found reductions in soluble Aβ species. A clear example of the variability of plaque 

reduction is provided by the 12 studies examining the effect of LXR agonists. Plaque loss 

varied from 0–65% in these studies. These studies differed in the animal models used, the 

LXR agonist, and the formulation used to treat the mice, as well as the length of the 

treatment period, but in all but one study behavioral improvement was observed. Recently, 

the ability of the RXR agonist bexarotene to reduce plaque burden has been called into 

question. Cramer et al. reported that brief treatments with bexarotene reduced plaque 
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burden, however, chronic drug treatment was not associated with plaque loss (Cramer et al., 

2012). Five reports have challenged the former finding in 3 different mouse AD models 

(LaClair et al., 2013; Price et al., 2013; Tesseur et al., 2013; Veeraraghavalu et al., 2013; 

Fitz et al., 2013a). These studies used a very different drug formulation in their treatments, 

in which bexarotene was administered solubilized in DMSO (or in a cyclodextrin vehicle) 

rather than as the clinical formulation (TargretinTM) as micronized crystals used by Cramer 

et al. (Cramer et al., 2012). New work has compared these preparations and shown that they 

yield very different pharmacodynamics and overall drug exposure (Chen et al., 2013).

Amyloid plaques are removed from the brain principally by microglial-mediated 

phagocytosis and there is now good evidence that nuclear receptor agonists promote 

phagocytosis. However, we currently have no reliable markers for drug action within these 

cells in the brain. Phagocytosis of fAβ is stimulated by bexarotene and this effect is reliant 

upon RXRα (Yamanaka et al., 2012). Clearly, sustained activation of RXR fails to maintain 

a phagocytically active population of microglia, as plaque loads rebound to normal levels 

after several months of drug treatment and the basis of this effect is unknown. Importantly, 

plaque burden is unrelated to cognitive improvement in both mice and men.

It should be noted that LaClair et al. reported that bexarotene failed to improve behavior in 

APP/PS1 mice, but the conclusions of this study are invalidated by the absence of any 

behavioral deficits in their untreated AD transgenic model (LaClair et al., 2013). Indeed, 

cognition and learning are the most critical measure of efficacy for AD-directed therapies 

and the highly reproducible effects of nuclear receptor agonists on behavior support the 

translation of these studies into clinical trials in AD.

The outcomes of nuclear receptor treatment in rodent models of other neurodegenerative 

diseases have been less variable. For instance, of 27 studies using agonists for PPARγ, 

PPARα, PPARδ, LXR, or Nurr1 in the treatment of Parkinson’s mouse or rat models, 23 

reported a positive outcome. One additional study in MPTP-treated monkeys (Swanson et 

al., 2011) reported no effects at 2.5mg/kg/day Pioglitazone, but a positive outcome was seen 

when that dose was doubled. The small number of studies performed in ALS and 

Huntington’s mouse models using nuclear receptor agonists also show promise, with all 

three studies in ALS models and 2 of 3 studies in Huntington’s models reporting positive 

outcomes.

While some outcome variability exists in nuclear receptor agonist studies, a strong 

persistence of positive outcomes in animal studies indicates that nuclear receptor agonists 

may be of therapeutic benefit in several neurodegenerative diseases. Many questions about 

the role of nuclear receptors in neurodegenerative disease remain unanswered, and further 

studies are required to elucidate the complex mechanisms behind the salutary actions of 

nuclear receptor agonists.
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Figure 1. Nuclear receptors are ligand-activated transcription factors
Nuclear receptors (type II) form obligate heterodimers with RXR and comprise the 

functional transcription factor. The nuclear receptor complex transactivates its target genes 

by binding to sequence specific elements in their promoters. Ligand binding results in 

dismissal of a corepressor complex and association with coactivators, resulting in 

transcription of the target gene. Nuclear receptors can also act as transrepressors. 

Sumoylation induces their direct association with NFkB positioned on the promoters of 

proinflammatory genes, preventing the dismissal of corepressor complexes and the initiation 

of transcription.
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