
Lysine 63-linked
Polyubiquitination Is
Dispensable for Parkin-
mediated Mitophagy*

Received for publication, May 13, 2014, and in revised form, September 27, 2014
Published, JBC Papers in Press, October 21, 2014, DOI 10.1074/jbc.C114.580944

Kahori Shiba-Fukushima‡, Tsuyoshi Inoshita§,
Nobutaka Hattori‡§1, and Yuzuru Imai§2

From the Departments of ‡Neurology and §Research for Parkinson’s
Disease, Juntendo University Graduate School of Medicine,
Tokyo 113-8421, Japan

Background: Lys-63-linked ubiquitination in mitochon-
dria occurs in PINK1/Parkin-mediated mitophagy, and
its important roles have been proposed.
Results: The suppression of Lys-63-linked ubiquitination
did not modulate PINK1/Parkin-mediated mitophagy
and Drosophila mitochondrial phenotypes.
Conclusion: Lys-63-linked ubiquitination is dispensable
for PINK1-Parkin pathway.
Significance: This is the first study to report the biologi-
cal significance of Lys-63-linked ubiquitination in PINK1-
Parkin pathway in vitro and in vivo.

PINK1/Parkin-mediated mitophagy is thought to ensure mito-
chondrial quality control in neurons as well as other cells. Upon the
loss of mitochondrial membrane potential (��m), Lys-63-
linked polyubiquitin chains accumulate on the mitochondrial
outer membrane in a Parkin-dependent manner. However,
the physiological significance of Lys-63-linked polyubiquiti-
nation during mitophagy is not fully understood. Here, we
report that the suppression of Lys-63-linked polyubiquitina-
tion through the removal of Ubc13 activity essentially affects
neither PINK1 activation nor the degradation of depolarized
mitochondria. Moreover, the inactivation of Ubc13 did not
modulate the mitochondrial phenotypes of PINK1 knock-
down Drosophila. Our data indicate that the formation of
Lys-63-linked polyubiquitin chains on depolarized mito-
chondria is not a key factor for the PINK1-Parkin pathway as
was once thought.

Mutations of the Parkin and PINK1 genes cause selective
degeneration of the midbrain dopaminergic neurons in auto-
somal recessive juvenile Parkinson disease (1, 2). The Parkin
and PINK1 genes encode a ubiquitin-ligase (E3)3 and a serine/
threonine protein kinase, respectively (3–7). Loss of the Parkin
and PINK1 genes in Drosophila leads to the degeneration of the
mitochondria in tissues with high energy demands, such as the
muscles and sperm, and genetic analysis has demonstrated that
PINK1 is an upstream regulator of Parkin, suggesting an impor-
tant role of Parkin and PINK1 in mitochondrial maintenance in
the midbrain dopaminergic neurons that are affected in Parkin-
son disease (8 –10).

A series of cell biological studies has provided strong evi-
dence that Parkin cooperates with PINK1 to induce mito-
chondrial autophagy or mitophagy when the mitochondria
are damaged (11–16). The reduction of ��m leads to the
accumulation and activation of PINK1 in the mitochondria
(12, 17), which leads to the phosphorylation of a latent form
of Parkin, priming its E3 activation (17, 18). PINK1 also
phosphorylates ubiquitin (19 –21), which in turn fully acti-
vates Parkin E3 activity, leading to Parkin translocation from
the cytosol to the mitochondria and the subsequent ubiquiti-
nation of mitochondrial proteins (14, 15). Ubiquitin modifi-
cation on the mitochondria induces the LC3-mediated
autophagic elimination of the damaged mitochondria, a
process known as mitophagy (11). The ubiquitination of
mitochondrial proteins mainly produces Lys-63-linked
polyubiquitin and only a small portion of Lys-48 linkages (22,
23). The Lys-63-linked polyubiquitin chain is proposed to
activate PINK1 (24) and the mitochondrial translocation of
Parkin (25). We examined the impact of Lys-63-linked
polyubiquitination on PINK1/Parkin-mediated mitophagy
in cells and mitochondrial maintenance in Drosophila and
report that Lys-63-linked polyubiquitination is dispensable
for PINK1 activation, mitochondrial clearance, and Drosophila
mitochondrial homeostasis.

EXPERIMENTAL PROCEDURES

Antibodies, Reagents, Plasmids, and Cell Lines—The follow-
ing antibodies were used in the Western blot analysis: anti-
PINK1 (1:1,000 dilution; Novus Biologicals, BC100-494),
anti-Mfn1 (1:1,000 dilution; Abnova, clone 3C9), anti-Ubc13
(1:1,000 dilution; Life Technologies, clone 4E11), anti-poly-
ubiquitin (1:1,000 dilution; MBL International, clone FK2),
anti-Lys-63-linked polyubiquitin (1:1,000 dilution; Cell Signal-
ing Technology, clone D7A11), anti-Lys-48-linked polyubiqui-
tin (1:1,000 dilution; Cell Signaling Technology, clone D9D5),
anti-Tom20 (1:500 dilution; Santa Cruz Biotechnology,
FL-145), anti-HA (1:1,000 dilution; Roche Applied Science,
clone 3F10), anti-FLAG-HRP (1:2,000 dilution; Sigma-Aldrich,
clone M2), anti-actin (1:10,000 dilution; Millipore, MAb1501),
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anti-Hsp60 (1:10,000 dilution; BD Biosciences, clone 24/
Hsp60), anti-NDUFS3 (1:10,000 dilution; Abcam, 17D95), anti-
Drosophila Hsp60 (1:1,000 dilution; Cell Signaling Technology,
D307), and anti-Drosophila Mitofusin (dMfn) (1:2,000 dilution;
made in-house). The following antibodies were used for immu-
nocytochemistry analysis: anti-polyubiquitin (1:250 dilution;
MBL International, clone FK2), anti-Lys-63-linked polyubiqui-
tin (1:50 dilution; Millipore, clone Apu3), and anti-Tom20
(1:1,000 dilution; Santa Cruz Biotechnology, FL-145). Mouse
embryonic fibroblasts (MEFs) harboring wild-type or homozy-
gous loxP-flanked Ubc13 alleles (26) were stably transfected
with Cre recombinase controlled by Tet-On systems. Ubc13
genes were floxed out following Cre-mediated excision by
treatment with 1 �g/ml doxycycline (Dox) for 72 h to generate
Ubc13�/� MEFs. Wild-type Ubc13 MEFs were also treated
with Dox as a control. The plasmids encoding GFP-Parkin,
HA-Parkin, and PINK1-FLAG have been described previ-
ously (15, 27). MEFs and HeLa cells were retrovirally trans-

fected with pMXs-puro harboring PINK1-FLAG, HA-Par-
kin, and GFP-Parkin, and the infected cells were selected
with 1 �g/ml puromycin. The mitochondrial uncoupler car-
bonyl cyanide m-chlorophenyl hydrazine (CCCP) and the
ubiquitin-activating enzyme (E1)-specific inhibitor UBEI-41
were purchased from Sigma-Aldrich. The mitochondrial
uncoupler valinomycin and TUBE1-agarose were obtained
from Wako and LifeSensors, respectively.

Immunocytochemical and Biochemical Analyses—Cells plated
on 3.5-mm glass-bottom dishes (MatTek) were fixed with 4%
paraformaldehyde in PBS and permeabilized with 50 �g/ml digi-
tonin in PBS. The cells were stained with anti-Tom20 or anti-
ubiquitin antibodies. The cells were imaged using laser-scanning
microscope systems (LSM510 META, Carl Zeiss). Phos-tag
(Wako Pure Chemical Industries) Western blotting was per-
formed as described previously (18).

Drosophila Genetics—Fly experiments were performed as
described (28). The w1118 (w�) line was used as a wild-type

FIGURE 1. The loss of Ubc13 activity impairs the accumulation of Lys-63-linked ubiquitin chains during Parkin-mediated mitophagy. A, MEFs
retrovirally introduced with GFP-Parkin were treated with Dox to remove Ubc13 genes and then treated with 30 �M CCCP for 6 h. Parkin and mitochon-
dria were visualized with GFP fluorescence (green) and anti-Tom20 (red), respectively. B, the mitochondrial translocation efficiency of Parkin treated as
in A was graphed. The values represent the means � S.E. of the percentages of cells exhibiting mitochondrial recruitment in three independent
experiments. The translocation efficiency was similar in Ubc13�/� and Ubc13�/� (3 h, p � 0.8024; 6 h, p � 0.1309 by Student’s t test). C, ubiquitin
accumulation was detected with anti-polyubiquitin (red) in cells treated as in A. D, accumulation of a Lys-63-linked ubiquitin (K63-Ubiquitin) chain was
detected with anti-Lys-63 linkage-specific ubiquitin antibody (red) in cells treated as in A. Scale bars � 10 �m. E, accumulation of Lys-63-linked
polyubiquitin (K63-Ub) but not of Lys-48-linked polyubiquitin (K48-Ub) was reduced in the absence of Ubc13 activity. Crude mitochondrial fractions from
MEFs expressing GFP-Parkin (1 	 106) treated with (�) or without (�) 30 �M valinomycin for 6 h were prepared. Polyubiquitin purified with TUBE1-
agarose in the mitochondrial fractions was detected by Western blot. poly-Ub, polyubiquitin. All experiments were repeated at least three times in A–D
and two times in E, and representative results were shown.
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genetic background. The Ubc13 RNAi line was obtained from
the Vienna Drosophila RNAi Center and was characterized in
Ref. 29. Other fly stocks used in this study have been described
previously (8).

RESULTS AND DISCUSSION
Because Ubc13 is an E2 enzyme crucial for generating

Lys-63-linked chains (30), we tested PINK1/Parkin-mediated
mitophagy in Ubc13 mutant cells to estimate the effects of Lys-
63-linked polyubiquitin chain formation. In the Ubc13 mutant
cells harboring the loxP-flanked Ubc13 gene, Ubc13 can be
inactivated by Dox-induced flox-out. We inactivated Ubc13 by
Dox treatment and induced the mitochondrial translocation of
GFP-Parkin and the accumulation of ubiquitin chains using
CCCP. The mitochondrial translocation of GFP-Parkin
occurred with similar efficiency (Fig. 1, A and B). In contrast,
the accumulation of total ubiquitin (Fig. 1, C and E) as well as
Lys-63-linked polyubiquitin (Fig. 1, D and E) in the mitochon-
dria was dramatically reduced in the absence of Ubc13 activity.
Accumulation of Lys-48-linked polyubiquitin in the mitochon-
drial fractions was similar between Ubc13�/� and Ubc13�/�

MEFs expressing GFP-Parkin (Fig. 1E).
Polyubiquitination induces the degradation of mitochondria

outer membrane proteins through the proteasome and recruits

LC3-mediated autophagy machinery (22). To test whether
autophagy is altered in Ubc13�/� MEFs, we examined the levels
of Mfn1, a known substrate of Parkin E3; a mitochondrial outer
membrane protein, Tom20; and a matrix protein, Hsp60. The
time-dependent degradation of Mfn1, Tom20, and Hsp60 in
Ubc13�/� MEFs was comparable with that in Ubc13�/� MEFs
(Fig. 2A). When Parkin is activated upon CCCP treatment,
Parkin is subjected to autodegradation by the proteasome (18).
The degradation efficiency of HA-tagged Parkin was similar
between Ubc13�/� and Ubc13�/� MEFs, suggesting that the
formation of Lys-63-linked polyubiquitin affects neither the
activation of Parkin nor the autophagic clearance of
mitochondria.

It has been proposed that Lys-63-linked ubiquitination of
PINK1 by TRAF6 is required for the mitochondrial accumula-
tion of PINK1 and mitochondrial translocation of Parkin upon
a reduction of ��m (24). PINK1 stabilization on the mitochon-
drial outer membrane stimulates its dimerization and is closely
correlated with its autophosphorylation at Ser-228 and Ser-402
in an intermolecular fashion (31), through which PINK1 kinase
activity is thought to be activated (32). We estimated the extent
of PINK1 accumulation and PINK1 autophosphorylation by
conventional Western blot and Phos-tag Western blot analyses,

FIGURE 2. Suppression of Lys-63-linked ubiquitin chain formation does not affect PINK1 activation or mitochondrial clearance. A, MEFs expressing
HA-Parkin were treated with 30 �M CCCP for up to 24 h and subjected to Western blot analysis. Mfn1 and Tom20 were used as markers of mitochondrial outer
membrane proteins. Hsp60 was used as a marker of mitochondrial matrix proteins. Actin was used as a loading control. B, MEFs expressing PINK1-FLAG were
treated with 30 �M CCCP as in A. The autophosphorylation of PINK1 and accumulation of PINK1 were estimated by Phos-tag Western blot with anti-PINK1
(Phos-tag WB) and conventional Western blot with anti-FLAG (WB). C, MEFs harboring loxP-flanked Ubc13 were treated with (�) or without (�) Dox for 72 h and
were further treated with CCCP for the indicated time periods. The degradation of Parkin, Mfn1, and Tom20 was analyzed by Western blot analysis. D, HeLa cells
stably expressing GFP-Parkin were pretreated with 60 �M UBEI-41 (E1 inhibitor) or dimethyl sulfoxide (DMSO) solvent for 1 h and were further treated with or
without 20 �M CCCP for 3 h. GFP-Parkin and mitochondria were visualized with GFP signal (green) and anti-Tom20 (red), respectively. Scale bars � 10 �m. All
experiments were repeated at least three times in A–C and two times in D.
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respectively (Fig. 2B). However, there was no evidence that
PINK1 accumulation and autophosphorylation were altered in
the absence of Ubc13 activity, suggesting that the formation of
the Lys-63-linked polyubiquitin chain is not a key factor in
PINK1 regulation in mitophagy.

Because MEFs are derived from a heterogeneous population
of cells, the response to PINK1/Parkin-mediated mitophagy
might differ among different batches of cells. To exclude this
possibility, we used the same batch of Ubc13 mutant cells,
which were treated with or without Dox. PINK1/Parkin-medi-
ated mitophagy was induced by CCCP treatment for up to 24 h.
We again confirmed that the efficiency of the degradation of
HA-Parkin, Mfn1, and Tom20 is comparable between Dox-
treated and untreated cells (Fig. 2C).

It has been reported that Parkin is also involved in xenophagy
for Mycobacterium tuberculosis, in which the co-localization of
a Lys-63-linked ubiquitin chain with phagosomes containing
M. tuberculosis was observed (33). Because the formation of
Lys-63-linked ubiquitination, the subsequent accumulation of
the ubiquitin adaptors, and the autophagy machinery are Par-
kin-dependent, Lys-63-linked ubiquitination likely mediates

the recruitment of autophagy-related proteins, as proposed in
studies of mitophagy (14, 22). Lys-63-linked ubiquitination is
also observed in Salmonella xenophagy (34). However, the
recruitment of the autophagy machinery occurred with the
same efficiency in Salmonella xenophagy (35). The results
describing both mitophagy and xenophagy suggest that the
autophagy machinery can recognize other polyubiquitin link-
ages in addition to Lys-63 or that Lys-63 linkage is not involved
in this step. Although Lys-63-linked ubiquitination is not
essentially required for mitochondrial translocation of Parkin,
the inhibition of all of ubiquitination reactions by an E1-specific
inhibitor completely suppresses Parkin translocation, suggest-
ing that ubiquitination is part of the regulation in Parkin trans-
location (Fig. 2D).

The formation of Lys-63-linked polyubiquitination by Ubc13
and Uev1a is involved in the TNF signaling in both mammals
(36) and Drosophila (29). Knockdown of Bendless (Ben), an
ortholog of Ubc13, suppresses TNF signaling in Drosophila,
suggesting that the formation of Lys-63-linked polyubiquitina-
tion is inhibited (29). Muscular mitochondria in the thorax, in
which Ben was inactivated, showed a normal gross morphol-

FIGURE 3. Inhibition of Ubc13 does not modulate the mitochondrial phenotypes caused by PINK1 inactivation. A, fluorescent images of the indirect flight
muscle in 7- and 30-day-old adult flies expressing the indicated shRNAs are shown. To visualize the mitochondria, the mitoGFP (green) transgene was
co-expressed, and the muscle tissue was counterstained with phalloidin (magenta). Representative images from three independent samples in each genotype
are shown. Experiments were repeated two times. Scale bar � 10 �m in the fluorescent images. B, the protein levels of dMfn, complex I subunit NDUFS3, and
Hsp60 from the thoraxes of 7-day-old adult flies were analyzed by Western blot. Coomassie Brilliant Blue (CBB) staining around the dMfn migration position
confirms that approximately equivalent amounts of protein were loaded. C, the band intensities of dMfn and NDUFS3 were normalized to each Coomassie
Brilliant Blue signal. The values (arbitrary units (A.U.)) represent the means � S.E. from 4 –5 independent samples as in B. Although dMfn and NDUFS3 levels
showed increasing and decreasing tendencies, respectively, with PINK1 inactivation as reported (28), there were no statistical differences between any
combinations. N.S., not significant. n � 4 –5. D, ATP contents of thorax muscle tissues of 7-day-old adult flies were measured. ATP contents were normalized
against the protein levels. The values represent the means � S.E. from five independent samples. *, p � 0.05, **, p � 0.01 by Tukey-Kramer test. Fly genotypes
used in A–D are as follows: UAS-mitoGFP/UAS-LacZ RNAi; MHC-GAL4/� (LacZ RNAi), UAS-mitoGFP/UAS-Ben RNAi; MHC-GAL4/� (Ben RNAi), UAS-mitoGFP/UAS-
LacZ RNAi; MHC-GAL4, UAS-PINK1 RNAi/� (PINK1 RNAi, LacZ RNAi), UAS-mitoGFP/UAS-Ben RNAi; MHC-GAL4, UAS-PINK1 RNAi/� (PINK1 RNAi, Ben RNAi).
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ogy, implying that Lys-63-linked ubiquitination is dispensable
for mitochondrial maintenance under steady-state conditions
(Fig. 3A). In contrast, PINK1 activity is essential for maintaining
mitochondrial homeostasis because inactivation of PINK1
largely leads to mitochondrial degeneration, as described pre-
viously (Fig. 3A) (8). The mitochondrial degeneration by PINK1
inactivation was no longer modulated by the suppression of Ben
activity, even in old flies (Fig. 3A). Consistent with the histo-
chemical analysis, levels of a mitochondrial outer membrane
protein Mitofusin, which is a ubiquitination substrate of Parkin,
as well as the mitochondrial complex I subunit NDUFS3, were
not altered by Ben inactivation (Fig. 3, B and C). In addition, the
absence of Ben did not affect mitochondrial ATP production
(Fig. 3D).

In conclusion, this study revealed that Lys-63-linked ubiq-
uitination is dispensable for the PINK1-Parkin pathway.
Although Lys-63-linked ubiquitination by Parkin has been sug-
gested to be important for the suppression of protein toxicity by
Parkin, further investigations will be required to determine
whether specific roles of Lys-63-linked ubiquitination in the
PINK1-Parkin pathway exist (37, 38).
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Addendum—After submission of this study, two studies using
siRNA against Ubc13 reported that Ubc13 has a role for the
autophagy process of Parkin-mediated mitophagy (39) and Parkin
translocation (40). As we also observed some delay in mitophagy in
our initial study using siRNA, we feel that certain sequences of
siRNA affect mitophagy.
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