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Background: The unfolded A1 subunit of cholera toxin (CT) enters the host cytosol by passing through a pore in the
endoplasmic reticulum (ER) membrane.
Results: ATP-dependent refolding of CTA1 by Hsp90 is sufficient for toxin export to the cytosol.
Conclusion: Hsp90 couples CTA1 refolding with CTA1 extraction from the ER.
Significance: This work provides a molecular basis for toxin translocation into the host cytosol.

Cholera toxin (CT) moves from the cell surface to the endo-
plasmic reticulum (ER) where the catalytic CTA1 subunit sepa-
rates from the rest of the toxin. CTA1 then unfolds and passes
through an ER translocon pore to reach its cytosolic target. Due
to its intrinsic instability, cytosolic CTA1 must be refolded to
achieve an active conformation. The cytosolic chaperone Hsp90
is involved with the ER to cytosol export of CTA1, but the mech-
anistic role of Hsp90 in CTA1 translocation remains unknown.
Moreover, potential post-translocation roles for Hsp90 in mod-
ulating the activity of cytosolic CTA1 have not been explored.
Here, we show by isotope-edited Fourier transform infrared
spectroscopy that Hsp90 induces a gain-of-structure in disor-
dered CTA1 at physiological temperature. Only the ATP-bound
form of Hsp90 interacts with disordered CTA1, and refolding of
CTA1 by Hsp90 is dependent upon ATP hydrolysis. In vitro
reconstitution of the CTA1 translocation event likewise
required ATP hydrolysis by Hsp90. Surface plasmon resonance
experiments found that Hsp90 does not release CTA1, even
after ATP hydrolysis and the return of CTA1 to a folded confor-
mation. The interaction with Hsp90 allows disordered CTA1 to
attain an active state, which is further enhanced by ADP-ribosy-
lation factor 6, a host cofactor for CTA1. Our data indicate
CTA1 translocation involves a process that couples the Hsp90-
mediated refolding of CTA1 with CTA1 extraction from the ER.
The molecular basis for toxin translocation elucidated in this
study may also apply to several ADP-ribosylating toxins that
move from the endosomes to the cytosol in an Hsp90-dependent
process.

Cholera toxin (CT)3 is an AB5 toxin containing two distinct
subunits. The A subunit consists of two domains, A1 and A2,

linked by a disulfide bond. The A1 domain is responsible for
catalytic activity, and the A2 domain acts as a tether between
the A1 domain and the B subunit. The homopentameric B sub-
unit is a highly stable ring-like structure with a central pore that
interacts with the A2 chain and contains binding sites for GM1
gangliosides on the plasma membrane of the host cell (1, 2).
Binding to GM1 triggers toxin endocytosis from the cell surface
and subsequent toxin delivery to the endoplasmic reticulum
(ER) via retrograde vesicular transport (3). Reduction of the
disulfide bond between the A1 and A2 domains occurs in the
ER (4, 5). Reduced CTA1 is released from its non-covalent asso-
ciation with the holotoxin by protein-disulfide isomerase (PDI)
(6 – 8). The isolated CTA1 domain then enters the cytosol and
interacts with host ADP-ribosylation factors (ARFs) to consti-
tutively activate the G protein stimulatory �-subunit (G�s)
through ADP-ribosylation (9 –11). Activation of G�s increases
adenylate cyclase activity, leading to a massive increase in the
amount of cAMP produced. The increased level of cAMP stim-
ulates Cl� release and inhibits Na� absorption in intestinal epi-
thelial cells, causing an efflux of water that generates the pro-
fuse watery diarrhea associated with cholera (12).

The isolated CTA1 polypeptide is an unstable protein that
assumes a disordered conformation at physiological tempera-
ture (13). The conformational instability of free CTA1 affects
many steps of the intoxication process (14, 15). For example,
CTA1 spontaneously unfolds after its PDI-mediated release
from the holotoxin in the ER (6). Unfolded CTA1 is then
exported to the cytosol through the ER-associated degradation
(ERAD) pathway (16 –20). The ER to cytosol translocation of
unfolded proteins by ERAD is a normal process that prevents
the accumulation of protein aggregates in the ER. Exported
ERAD substrates move through protein-conducting channels
in the ER membrane and are targeted for cytosolic degradation
by the 26 S proteasome in a ubiquitin-dependent manner (21,
22). A number of AB toxins exploit this system for A chain
passage into the cytosol (15, 23, 24). CTA1 and A chains from
other ER-translocating toxins contain an arginine over lysine
bias in their amino acid sequences. The lack of A chain lysine
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residues limits the number of ubiquitination sites, thereby
inhibiting toxin degradation by the 26 S proteasome (24 –28).
CTA1 is still subject to ubiquitin-independent degradation by
the core 20 S proteasome (13), a variant of the proteasome that
can only degrade unfolded proteins (29). The relatively long
half-life (t1⁄2 between 1 and 2 h) for cytosolic CTA1 suggests a
stabilizing interaction with host factors may protect CTA1
from rapid, ubiquitin-independent proteasomal degradation
(13).

CTA1 instability also plays a role in toxin extraction from the
ER to the cytosol. An early model of toxin translocation pro-
posed CTA1 spontaneously refolded as it emerged at the cyto-
solic face of the ER translocon pore (27). This would prevent
back-sliding into the pore and would thus provide an ER to
cytosol directionality to the translocation process. Yet the sub-
sequent discovery of CTA1 conformational instability indi-
cated the toxin could not independently refold at physiological
temperature and therefore required a host factor(s) for extrac-
tion to the cytosol (13, 30). Although most ERAD export is
mediated by the AAA ATPase p97 (31, 32), CTA1 translocation
does not require this cytosolic protein (33, 34). The ER to cyto-
sol translocation of unfolded CTA1 is instead facilitated by heat
shock protein 90 (Hsp90), a cytosolic ATP-dependent chaper-
one that plays a role in multiple cellular events including pro-
tein folding, protein stabilization, and refolding of denatured
proteins (35, 36). Loss of Hsp90 function trapped CTA1 in the
ER (37). This was the first demonstration for Hsp90-dependent
export of a soluble protein from the ER.

CTA1 passes through one or more ER translocon pores (38 –
42) in an unfolded state and must achieve an active conforma-
tion in the cytosol to modify its G protein target in the lipid rafts
of the plasma membrane (43, 44). Refolding will not occur
spontaneously because CTA1 is an unstable protein. In fact, the
isolated CTA1 polypeptide has little to no enzymatic activity at
37 °C (45, 46). An interaction with ARF proteins will enhance
the activity of folded CTA1 and is required for productive
intoxication of cultured cells, but ARF alone cannot induce a
gain-of-structure or gain-of-function in disordered CTA1 (47).
Other host factors must therefore place cytosolic CTA1 in a
folded conformation that can be further activated by ARF pro-
teins. Lipid rafts were recently shown to exhibit a “lipochaper-
one” property that places disordered CTA1 in a folded, func-
tional state at physiological temperature. Furthermore, lipid
rafts are essential for the in vivo activity of cytosolic CTA1 (46).
Other host factors that could refold and/or activate cytosolic
CTA1 have yet to be identified. The high affinity interaction
between CTA1 and Hsp90 (37), combined with the established
chaperone activity of Hsp90, suggests Hsp90 could be another
host factor linked to the cytosolic activity of CTA1.

To generate molecular detail regarding the co- and post-
translocation roles of Hsp90 in CT intoxication, we performed
a structure/function analysis on the interaction between Hsp90
and CTA1. Biophysical measurements provided a mechanistic
basis for Hsp90-mediated extraction of CTA1 from the ER by
demonstrating that Hsp90 can convert disordered CTA1 to a
structured conformation. ATP hydrolysis was required for
Hsp90 to refold CTA1 and to maintain a high-affinity interac-
tion with the refolded toxin. ATP hydrolysis by Hsp90 was also

required for the ER to cytosol export of CTA1. The Hsp90-
mediated refolding of CTA1 thus appears to provide the driving
force for toxin extraction from the ER: refolded CTA1 could not
slide back into the translocon pore, thereby resulting in a uni-
directional ER to cytosol export. Hsp90 remains associated with
the refolded toxin and allows ARF6 to simulate the activity of
CTA1 at 37 °C. These studies have elucidated a new, Hsp90-
driven mechanism for toxin translocation that may apply to a
broad range of ADP-ribosylating toxins.

EXPERIMENTAL PROCEDURES

Materials—CTA, ATP, GTP, geldanamycin, protein A-Sep-
harose, and antibodies to CTA and CT were purchased from
Sigma. Antibodies against Hsp90 were purchased from Calbio-
chem (Darmstadt, Germany). The ARF6 antibody was from Santa
Cruz Biotechnology Inc. (Dallas, TX). ATP�S was purchased from
Enzo (Farmingdale, NY). AG50W-4X beads were purchased from
Bio-Rad. Cell culture reagents including Lipofectamine were pur-
chased from Invitrogen. Fetal bovine serum (FBS) was purchased
from Atlanta Biologicals (Flowery Branch, GA). Phosphate-buff-
ered saline with 0.05% Tween 20 (PBST) tablets were purchased
from Medicago (Research Triangle Park, NC). 35S-Labeled methi-
onine was purchased from PerkinElmer Life Sciences (Waltham,
MA). Hsp90 was purchased from Biovision (Milpitas, CA). Dieth-
ylamino(benzylidine-amino)guanidine (DEA-BAG) was synthe-
sized as previously described (48). Uniformly 13C-labeled CTA1-
His6 was produced as described in Ref. 6 and purified after an 18-h
isopropyl 1-thio-�-D-galactopyranoside induction at 18 °C as
described in Ref. 17. ARF6 was generated as previously described
(49). Large unilamellar vesicles (LUVs) mimicking the composi-
tion of the plasma membrane or lipid rafts were generated as pre-
viously described (46).

Isotope-edited Fourier Transform Infrared (FTIR) Spectro-
scopy—Samples for FTIR measurement were prepared in D2O-
based 10 mM sodium borate buffer (pD 7.0) containing 100 mM

NaCl as previously described (6). 13C-Labeled CTA1 was used
at 10 �M concentration, and a 2:1 molar ratio of Hsp90:CTA1
was used for all measurements involving both proteins. ATP
and ATP�S, when present, were used at 1 mM concentration.
Measurements were performed on a Jasco 4200 FTIR spec-
trometer (Easton, MD). As detailed in Ref. 50, amide I compo-
nents at the following wavenumbers were assigned to specific
secondary structures for 13C-labeled CTA1 in a D2O-based
buffer: 1604 � 4 cm�1, �-helix; 1577 � 7 cm�1, �-sheet; 1593 �
5 cm�1, irregular. Components around 1614 � 4 cm�1 were
assigned to turns and tabulated as “other” structures. Analysis
of CTA1 secondary structure was performed as described in
detail in the supplemental material of Ref. 6.

In Vitro ADP-ribosylation Assay—To monitor the catalytic
activity of CTA1, the stated concentrations of CTA1-His6 were
placed in a 200-�l assay buffer containing 200 mM potassium
phosphate buffer (pH 7.5), 20 mM DTT, and 0.1 mg/ml of BSA.
Hsp90 at a 2:1 molar ratio to CTA1, equimolar ARF6, and/or
800 �M lipid raft LUVs were also present as indicated, as were 1
mM ATP, ATP�S, or GTP. CTA1 samples were incubated for 30
min at 25 or 37 °C, followed by the addition of the indicated
components for a further 1-h incubation at the indicated tem-
perature. The ADP-ribosylation reaction was initiated by addi-
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tion of 0.4 mg/ml of DEA-BAG and 25 �l of 10 mM NAD. Sam-
ples were then incubated at the indicated temperature for 2 h,
during which CTA1 (if active) was able to ADP-ribosylate the
DEA-BAG substrate. The reaction was stopped by the addition
of 800 �l of 30% AG50W-4X bead slurry. The samples were
vortexed for 30 s, followed by centrifugation at maximum speed
for 10 min. ADP-ribosylation of DEA-BAG inhibits its ability to
bind to AG50W-4X beads, so pelleting the resin leaves modi-
fied DEA-BAG in the supernatant. 400 �l of supernatant was
removed, and the intrinsic fluorescence of DEA-BAG (excita-
tion 361 nm, emission 440 nm) was read with a Bio-Tek (Win-
ooski, VT) Synergy 2 plate reader.

Surface Plasmon Resonance (SPR)—Experiments were per-
formed with a Reichert (Depew, NY) SR7000 SPR refractome-
ter using the same basic protocol outlined in Ref. 52. After
establishment of a baseline measurement (0 refractive index
unit; RIU) corresponding to the mass of the sensor-bound
CTA1, Hsp90, ARF6, or other ligands were perfused over the
CTA1-coated sensor slide. The protein concentration was 1600
ng/ml in PBST. A 5-min perfusion of ligand was followed by
a 5-min PBST wash. The flow rate for all steps was 41 �l/min.
Reichert Labview software was used for data collection. The
BioLogic (Campbell, Australia) Scrubber 2 software and
WaveMetrics (Lake Oswego, OR) Igor Pro software were
used to analyze the data and generate figures.

In Vitro Translocation Assay—CHO cells were seeded to
6-well plates in Ham’s F-12 media supplemented with 10% FBS
and incubated overnight at 37 °C with 5% CO2 to reach 60 –70%
confluence. Cells were washed twice with F-12 media, and 1 ml
of 100 ng/ml of CT was added to each well. Cells were then
incubated 2 h at 37 °C with 5% CO2. Cells were then washed
twice with PBS, and 0.5 ml of PBS with 0.5 mM EDTA was added
for a 5–10-min incubation at room temperature. 3 wells of cells
per condition were then collected in a microcentrifuge tube and
centrifuged at 2,400 � g for 2 min. PBS was removed, and cells
and digitonin buffer (0.04% digitonin in HCN buffer with 10
�l/ml of protease inhibitor mixture) were allowed to incubate
separately on ice for 10 min. Following this pre-incubation, 100
�l of digitonin buffer was added to each sample for 10 min. The
samples were then centrifuged at 16,200 � g for 10 min. The
supernatant, containing cytosolic components, and pellet, con-
taining membrane bound components, were separated for fur-
ther processing. Pelleted membranes were incubated with 800
mM NaCl or 2 M urea in PBS for 30 min at 4 °C to remove
membrane-associated proteins. The pellet was then washed
twice with PBS before purified Hsp90, ATP, Hsp90/ATP, or
Hsp90/ATP�S in HCN buffer was added for a 1-h incubation at
37 °C. After a 5-min spin at 16,200 � g, the supernatant was
collected and perfused over an SPR sensor slide coated with an
anti-CTA antibody.

RESULTS

Hsp90 Refolds Disordered CTA1 in a Process Requiring ATP
Hydrolysis—We performed isotope-edited FTIR spectroscopy
to examine the effect of Hsp90 on the folding state of CTA1
(Fig. 1). Uniformly 13C-labeled CTA1 was used to differentiate
between the spectra of CTA1 and unlabeled Hsp90. An �50
cm�1 shift in the spectra of the 13C-labeled protein allows it to

be resolved from the spectra of the unlabeled protein, thus facil-
itating analysis of the individual proteins (6, 50, 53). The spectra
of CTA1 alone (Fig. 1A) showed that, at 10 °C, CTA1 is in a
folded conformation with �34% �-helical, 42% �-sheet, and
17% irregular (i.e. undefined) structure (Table 1). The amount
of secondary and irregular structures in CTA1 at 10 °C was
consistent with previous FTIR measurements of folded CTA1
(6) and the structural content of holotoxin-associated CTA1 as
determined by x-ray crystallography (2, 54). As expected from
the intrinsic instability of CTA1, increasing the temperature to
37 °C caused CTA1 to unfold: it lost at least half of its initial
�-helical and �-sheet content, whereas the amount of irregular
structure increased to 54% (Fig. 1B, Table 1). In the absence of
ATP, Hsp90 cannot bind to CTA1 (37) and accordingly had no
appreciable effect on the structure of CTA1 when added to the
unfolded toxin at 37 °C (Fig. 1C, Table 1). However, the addi-
tion of Hsp90/ATP to unfolded CTA1 at 37 °C produced a sub-
stantial increase in both the �-helical and �-sheet content of
CTA1 with a corresponding loss of irregular structure (Fig. 1D,
Table 1). A 2:1 molar ratio of Hsp90:CTA1 was used for all
studies because Hsp90 functions as a dimer. Exposure of
unfolded CTA1 to Hsp90/ATP did not fully restore the toxin to
its native conformation, but CTA1 did gain 11% �-helical con-
tent and 18% �-sheet content while losing 26% irregular struc-
ture. Hsp90/ATP thus induces a gain-of-structure in the disor-
dered 37 °C conformation of CTA1. In contrast, Hsp90/ATP�S
did not substantially alter the structure of disordered CTA1
(Fig. 1E, Table 1). ATP�S is a non-hydrolyzable form of ATP.
Thus, the chaperone-driven refolding of disordered CTA1
required ATP hydrolysis by Hsp90. Control experiments using
FTIR spectroscopy demonstrated that ATP and ATP�S had no
direct effect on the structure of CTA1 (data not shown). Addi-
tional control experiments using SPR confirmed that Hsp90/
ATP�S could, like Hsp90/ATP, bind to CTA1 at physiological
temperature (data not shown).

ATP Hydrolysis by Hsp90 Is Required for CTA1 Extraction
from the ER—To establish a molecular basis for the role of
Hsp90 in CTA1 translocation, we monitored the ER to cytosol
export of CTA1 with a series of in vitro reconstitution experi-
ments. CHO cells were exposed to CT for 2 h before selective
permeabilization of the plasma membrane with digitonin. Dis-
tinct cytosolic and intact endomembrane fractions were then
generated by centrifugation. The pelleted membranes were
washed with 800 mM salt to remove any peripheral membrane-
associated proteins. The minor pool of Hsp90, which is consis-
tently detected in association with the membrane fraction of
digitonin-permeabilized cells (17, 37, 55), was removed by this
wash (Fig. 2A). Pelleted membranes were then washed twice
with PBS before purified Hsp90, ATP, Hsp90/ATP, or Hsp90/
ATP�S was added to the membrane fraction for 1 h at 37 °C.
After a 5-min spin at 16,200 � g, the new supernatant from the
membrane fraction was collected and perfused over a SPR sen-
sor coated with an anti-CTA1 antibody. CTA1 translocation
across the ER membrane would place it in the supernatant and
would accordingly generate a positive SPR signal. Membrane
fractions incubated with Hsp90 alone, ATP alone, or Hsp90/
ATP�S did not produce a positive signal for CTA1 export (Fig.
2B). However, the addition of Hsp90/ATP promoted CTA1
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translocation from the ER membrane and accordingly gener-
ated a positive SPR signal (Fig. 2B). Identical results were
obtained when the pelleted membranes were washed with 2 M

urea instead of 800 mM salt (Fig. 2, C and D). We also found the
addition of ATP alone could support CTA1 translocation from
ER membranes that had not been washed with salt or urea (Fig.
2D), which was consistent with the results from a previous in
vitro CTA1 translocation assay (42). The inability of Hsp90/
ATP�S to support CTA1 translocation demonstrated that ATP

hydrolysis by Hsp90 was required for toxin export from the ER.
Because ATP hydrolysis by Hsp90 is also required to refold
CTA1, our collective observations support a model of toxin
translocation in which Hsp90 couples CTA1 refolding with
CTA1 extraction from the ER.

Hsp90 Preferentially Binds to Disordered CTA1 but Is Not
Released after CTA1 Refolding—A series of SPR experiments
was performed to characterize the interaction between Hsp90/
ATP and CTA1 (Fig. 3). Hsp90/ATP was perfused over a
CTA1-coated sensor slide at 15 °C, a temperature that main-
tains CTA1 in a folded conformation (13). A minimal interac-
tion between Hsp90 and CTA1 was recorded at this temper-
ature (Fig. 3A, dotted line). The temperature was then increased
to 37 °C to promote the unfolding of CTA1. As expected,
Hsp90/ATP bound readily to CTA1 at 37 °C (Fig. 3A, solid line).
Hsp90 thus appeared to specifically recognize the unfolded
conformation of CTA1. In support of this interpretation, we
found that Hsp90/ATP could bind to heat-denatured CTA1 at
15 °C (Fig. 3B). This demonstrated Hsp90/ATP is functional at
low temperature, so the weak interaction between Hsp90/ATP

FIGURE 1. Hsp90/ATP induces a gain-of-structure in disordered CTA1. The FTIR spectrum of 13C-labeled CTA1 was recorded in the absence or presence of
Hsp90. In the curve-fitting panels of the left columns, the dotted line represents the sum of all deconvoluted components (solid lines) from the measured
spectrum (dashed line). The right columns present the respective second derivatives. CTA1 samples incubated with Hsp90 were first heated to 37 °C for 30 min
prior to addition of a 2-fold molar excess of Hsp90. A, CTA1 structure at 10 °C. B, CTA1 structure at 37 °C. C, CTA1 structure in the presence of Hsp90 at 37 °C. D,
CTA1 structure in the presence of Hsp90/ATP at 37 °C. E, CTA1 structure in the presence of Hsp90/ATP�S at 37 °C.

TABLE 1
ATP-driven refolding of CTA1 by Hsp90
Deconvolution of amide I bands from the FTIR spectroscopy data of Fig. 1 was used
to calculate the percentages of CTA1 structure under the stated conditions. The
averages � S.D. from three to four individual curve fittings are shown.

% of CTA1 structure
Condition �-Helix �-Sheet Irregular Other

10 °C 34 � 2 42 � 2 17 � 2 8 � 0
37 °C 17 � 1 15 � 2 54 � 2 14 � 1
37 °C � Hsp90 20 � 1 19 � 3 52 � 3 9 � 1
37 °C � Hsp90/ATP 28 � 1 33 � 2 28 � 3 11 � 1
37 °C � Hsp90/ATP�S 16 � 1 12 � 2 52 � 2 19 � 2
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and folded CTA1 at 15 °C could be attributed to the conforma-
tion of CTA1 rather than to the temperature of the experiment.

Hsp90/ATP interacts specifically with disordered CTA1
(Figs. 3, A and B) and will refold the toxin in an ATP-dependent
process (Fig. 1, Table 1), yet toxin refolding does not appear to

result in the dissociation of Hsp90. To further examine this
possibility, we perfused Hsp90/ATP over a CTA1-bound sen-
sor slide at 37 °C (Fig. 3C). After Hsp90/ATP was removed from
the perfusion buffer, the Hsp90-CTA1 complex was cooled to
15 °C in a stepwise manner. This process has previously been

FIGURE 2. ATP hydrolysis by Hsp90 is required for CTA1 extraction from the ER. CHO cells incubated with 100 ng/ml of CT for 2 h at 37 °C were treated with
digitonin to selectively permeabilize the plasma membrane. Following centrifugation, the intact membrane pellet was collected for further study. A, Western
blot analysis was used to detect Hsp90 and PDI in association with unwashed or salt-washed membrane pellets. Hsp90 and PDI protein standards (Std.) were
used as controls. B, purified Hsp90, ATP, Hsp90/ATP, or Hsp90/ATP�S in HCN buffer was added to the salt-washed membrane pellet for 1 h at 37 °C. To detect
the exported pool of CTA1, supernatant samples obtained after centrifugation were perfused over an SPR sensor coated with an anti-CTA1 antibody. C,
Western blot analysis was used to detect Hsp90 and PDI in association with unwashed or urea-washed membrane pellets. Hsp90 and PDI protein standards
(Std.) were used as controls. D, purified Hsp90, Hsp90/ATP, or Hsp90/ATP�S in HCN buffer was added to the urea-washed membrane pellet for 1 h at 37 °C. ATP
alone was also added to a membrane pellet that had not been washed with urea or salt. To detect the exported pool of CTA1, supernatant samples obtained
after centrifugation were perfused over an SPR sensor coated with an anti-CTA1 antibody.

FIGURE 3. Hsp90/ATP binds unfolded CTA1 and is not released after CTA1 refolding. A, Hsp90/ATP was perfused over a CTA1-coated SPR sensor at 15 °C
(dashed line) or 37 °C (solid line). The arrowhead denotes removal of Hsp90/ATP from the perfusion buffer. B, Hsp90/ATP was perfused at 15 °C over a SPR sensor
coated with heat-denatured CTA1. The arrowhead denotes removal of Hsp90/ATP from the perfusion buffer. C, Hsp90/ATP was perfused over a CTA1-coated
SPR sensor at 37 °C and was removed from the perfusion buffer after 300 s (arrowhead). This was followed by a stepwise temperature decrease to 15 °C, which
was held for 10 min, before returning the temperature to 37 °C. Upon return to 37 °C, the continued association of Hsp90 with CTA1 was verified by the addition
of an anti-Hsp90 antibody to the perfusion buffer (arrow). Note that the time scale for panel C is distinct from the time intervals in panels A and B.
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shown to promote the refolding of disordered CTA1 (13). The
temperature was then increased back to 37 °C to allow direct
comparison of the RIU signal before and after cooling (temper-
ature has a direct effect on the RIU signal (56)). We recorded
identical RIU signals before and after cooling, which indicated
Hsp90 did not appreciably dissociate from the temperature-
stabilized CTA1 subunit over the time course of the experi-
ment. The continued presence of Hsp90 on the CTA1-coated
sensor slide was verified with an anti-Hsp90 antibody that gen-
erated a positive signal when perfused over the sensor slide.
Thus, neither the chaperone- nor temperature-induced refold-
ing of CTA1 appeared to displace Hsp90 from its binding
partner.

Additional SPR experiments were performed to see if specific
host factors could promote the dissociation of Hsp90 from
CTA1. For these experiments, Hsp90/ATP was perfused over a
CTA1-coated sensor slide at 37 °C. Subsequent perfusions of
purified Hsp90 cofactors, the 20S proteasome, 26 S protea-
some, LUVs mimicking the composition of the plasma mem-
brane or lipid rafts, or the cytosolic fraction from �3.6 � 106

cells failed to separate Hsp90 from CTA1 (Table 2). Although
these in vitro studies may not fully replicate the in vivo condi-
tion, they suggest Hsp90 does not dissociate from CTA1 after
extracting the toxin from the ER.

Hsp90 Does Not Protect Cytosolic CTA1 from Degradation—
The cytosolic pool of CTA1 is degraded by a ubiquitin-inde-
pendent proteasomal mechanism with a half-life between 1 and
2 h (13, 49). Degradation likely involves processing by the core
20 S proteasome, which can only interact with disordered/un-
folded substrates (13, 29). Thus, the Hsp90-mediated refolding
of CTA1 could potentially protect the toxin from proteasomal
degradation. Furthermore, Hsp90 can directly associate with
the proteasome and thereby inhibit protein degradation (57,
58). To determine whether the continued association between
Hsp90 and CTA1 had an effect on the in vivo turnover of CTA1,
we used a plasmid-based system to express CTA1 directly in the
host cytosol (59). The Hsp90 inhibitor geldanamycin was then
used to inhibit the function of Hsp90 in CTA1-expressing cells.
Exogenous application of the CT holotoxin could not be used
for this experiment because geldanamycin blocks CTA1 trans-
location from the ER to the cytosol (37), thus preventing sub-
sequent interactions between CTA1 and the proteasome. Plas-
mid-expressed CTA1 was pulse-labeled with [35S]methionine
and chased for up to 4 h. The radiolabeled pool of CTA1 immu-
noprecipitated at 0, 0.5, 1, 2, or 4 h of chase was visualized by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis

with the Bio-Rad Personal Molecular Imager and quantified
with the Bio-Rad Quantity One software. In both untreated and
geldanamycin-treated cells, CTA1 exhibited a half-life between
1 and 2 h and was degraded with equivalent kinetics (data not
shown). These observations indicate the association of CTA1
with Hsp90 does not affect the half-life of the toxin.

Hsp90/ATP Induces a Gain-of-function in Disordered CTA1—
The Hsp90-mediated refolding of CTA1 could potentially place
the toxin in a functional conformation at 37 °C. To determine
the effect of Hsp90 on the activity of CTA1, we performed an in
vitro toxicity assay using DEA-BAG as a substrate for the ADP-
ribosyltransferase activity of CTA1 (Fig. 4). The fluorescent
output from this assay is directly proportional to the amount of
substrate modified by CTA1 (60). As shown in Fig. 4A, the
folded conformation of CTA1 at 25 °C (circles) produced a con-
centration-dependent increase in the amount of modified
DEA-BAG. CTA1 activity at 25 °C was slightly elevated in the
presence of Hsp90/ATP (squares). When our ADP-ribosylation
assay was repeated at 37 °C, the disordered conformation of
CTA1 did not produce a concentration-dependent increase in
the amount of modified DEA-BAG (Fig. 4B, circles). The base-
line signal observed under this condition represents a back-
ground reading, as we have found CTA1 and heat-denatured
CTA1 produce similar DEA-BAG responses at 37 °C (47).
Addition of Hsp90 alone (triangles) or Hsp90/ATP�S (inverted
triangles) to the disordered conformation of CTA1 at 37 °C did
not restore enzymatic activity to the toxin (Fig. 4B). However,
the addition of Hsp90/ATP to disordered CTA1 (squares) pro-
duced a dramatic, concentration-dependent increase in toxin
activity. The gain-of-structure in disordered CTA1 resulting
from its interaction with Hsp90/ATP thus generated a corre-
sponding gain-of-function for the toxin ADP-ribosyltrans-
ferase activity. This gain-of-function was dependent upon ATP
hydrolysis by Hsp90, which was consistent with the structural
requirements for CTA1 refolding by Hsp90.

ARF6/GTP Can Bind and Activate the Hsp90-associated
CTA1 Polypeptide—The GTP-bound form of ARF is an allos-
teric activator of CTA1 (10, 11), and in vivo CT intoxication
requires an interaction between ARF and CTA1 (47). To deter-
mine whether ARF6/GTP could associate with the CTA1-
Hsp90 complex, sequential additions of Hsp90/ATP and ARF6/
GTP were perfused over a CTA1-bound SPR sensor slide (Fig.
5A). As indicated in the sensorgram, the presence of Hsp90/
ATP did not interfere with the binding of ARF6/GTP. The sta-
ble association of Hsp90 and ARF6 with CTA1 was verified by
the capture of anti-Hsp90 and anti-ARF6 antibodies on the sen-
sor slide at the end of the experiment (data not shown). We then
performed an in vitro toxicity assay to determine whether
ARF6/GTP could enhance the enzymatic activity of Hsp90-as-
sociated CTA1 (Fig. 5B). We found that ARF6 stimulation of
CTA1 activity was not inhibited by the presence of Hsp90.
Rather, the addition of both ARF6/GTP and Hsp90/ATP
enhanced the activity of CTA1 (Fig. 5B, triangles) above that
obtained with Hsp90/ATP alone (Fig. 5B, squares). Consistent
with our previous observations (47), ARF6 alone could not
induce a gain-of-activity in the disordered conformation of
CTA1 (Fig. 5B, circles). These collective observations indicate
optimal toxin activity involves contributions from both Hsp90

TABLE 2
Host factors do not displace Hsp90 from CTA1
Hsp90/ATP was perfused over a CTA1-coated SPR sensor at 37 °C. After plateau of
the resulting RIU signal, Hsp90 was removed from the perfusion buffer and replaced
with one of the listed host factors for a 300-s perfusion. The continued association of
Hsp90 with CTA1 was then confirmed with the addition of an anti-Hsp90 antibody
to the perfusion buffer, which provided a positive signal in every case.

Hsp90 cofactors CTA1 cofactors Other host factors

Hsp40 ARF6 Cytosolic extract
Hsc70 Lipid raft LUVs Plasma membrane LUVs
Hop 20 S proteasome
Aha 26 S proteasome
p23
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and ARF6: Hsp90 refolds CTA1 to a stable conformation,
which is then followed by ARF6 activation.

CTA1 Activity Is Enhanced by Host Factors in a Sequence-de-
pendent Manner—The G protein target of CTA1 is located in
plasma membrane lipid rafts that have been shown to induce a
gain-of-structure and function in disordered CTA1 (46). Previ-
ous experiments verified that lipid rafts did not dislodge Hsp90
from CTA1 (Table 2). To determine whether Hsp90-associated
CTA1 could interact with lipid rafts, CTA1 and Hsp90/ATP
were incubated at 37 °C for 10 min to allow complex formation
and subsequently perfused over a SPR sensor slide coated with
lipid raft LUVs (Fig. 6A). The resulting increase in RIU indi-
cated the complex of CTA1 and Hsp90 could bind to lipid rafts.
The bound components were then probed with anti-CTA and
anti-Hsp90 antibodies, verifying the presence of both proteins
on the lipid raft sensor (data not shown).

To assess the relative contributions of host factors to CTA1
activity, various combinations of Hsp90/ATP, ARF6/GTP, and
lipid raft LUVs were added to CTA1 in our ADP-ribosylation

assay (Fig. 6, B and C). Experiments were performed at 37 °C to
mimic physiological temperature. In Fig. 6B, host factors were
added to CTA1 after the toxin had been warmed to 37 °C for 30
min. Combinations of both ARF6/Hsp90 and ARF6/lipid rafts
returned the disordered toxin to a functional state. However,
toxin activity in the presence of ARF6/Hsp90 was around 2-fold
greater than the level of activity recorded for the CTA1 sample
exposed to a combination of ARF6 and lipid rafts. We hypoth-
esized that a combination of ARF6, Hsp90, and lipid rafts would
restore the greatest level of activity to disordered CTA1, but,
surprisingly, no activity was observed from the CTA1 sample
incubated simultaneously with all three host factors.

In vivo, CTA1 will initially interact with Hsp90 at the ER
membrane before encountering the lipid raft environment
where its G�s target is located. Furthermore, our data suggest
Hsp90 remains bound to the cytosolic pool of CTA1 after facil-
itating the translocation event. We therefore hypothesized that
sequential interactions between CTA1 and Hsp90, followed by
contact with lipid rafts, would allow the refolded toxin to main-

FIGURE 4. Hsp90/ATP increases the in vitro ADP-ribosylation activity of CTA1. 2-Fold dilutions of CTA1 were incubated with DEA-BAG, a substrate for
ADP-ribosylation, in the absence or presence of 2-fold molar excess Hsp90. Substrate modification by CTA1 results in a fluorescent signal that is proportional
to the level of toxin activity. A, CTA1 was incubated in the absence or presence of Hsp90/ATP at 25 °C, a temperature that maintains the toxin in a folded
conformation. B, CTA1 was placed in a disordered conformation by incubation at 37 °C for 30 min. Hsp90, Hsp90/ATP, or Hsp90/ATP�S was then added for a 1-h
incubation at 37 °C before initiating the ADP-ribosylation reaction with the addition of NAD and DEA-BAG. Error bars indicate S.E. of 12–16 replications from 4
independent experiments.

FIGURE 5. Hsp90/ATP does not affect the ability of ARF6/GTP to bind and activate CTA1. A, Hsp90/ATP was perfused over a CTA1-coated SPR sensor at
37 °C and was removed from perfusion buffer as indicated by the first arrowhead. ARF6/GTP was subsequently perfused over the CTA1-Hsp90 complex
(indicated by the second arrowhead) and was removed from the perfusion buffer as denoted by the third arrowhead. B, 2-fold dilutions of CTA1 were incubated
at 37 °C for 30 min before the addition of ARF6/GTP, Hsp90/ATP, or both Hsp90/ATP and ARF6/GTP. After a 1-h incubation at 37 °C, NAD and DEA-BAG were
added to initiate the ADP-ribosylation reaction. Error bars indicate S.E. of 8 –12 replications from 3 independent experiments.
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tain a functional conformation that could be further activated
by ARFs. To test this model, we warmed CTA1 to 37 °C and
then added Hsp90/ATP, lipid rafts, or both. After 1 h at 37 °C,
ARF6/GTP and (if applicable) the other missing host factor
were added for another hour at 37 °C. The ADP-ribosylation
reaction was then initiated with the addition of substrate and
NAD and allowed to proceed for 2 h at 37 °C. As a reference
point for previous experiments, we also added Hsp90/ATP and
ARF6/GTP simultaneously to disordered CTA1 at 37 °C. Toxin
activity under this condition was set at 100%, and results from
other conditions were expressed as percentages of this value
(Fig. 6C). No toxin activity was recorded when disordered
CTA1 was exposed to a combination of Hsp90 and lipid rafts
before the addition of ARF6, but some level of activity was
obtained when lipid rafts were added before Hsp90 and ARF6.
A much greater level of activity was recorded when Hsp90 was
added before lipid rafts and ARF6. This sequence of additions
also promoted a greater level of activity than was recorded for
the simultaneous exposure to Hsp90 and ARF6, which indi-
cated lipid rafts could enhance activity of an Hsp90-ARF6-
CTA1 complex. Collectively, our data suggest the order of host
factor interaction is important for CTA1 to achieve maximum
activity.

DISCUSSION

CT binds the cell surface, is internalized, and undergoes ret-
rograde transport to the ER where CTA1 is separated from
CTA2/CTB5. Due to the thermal instability of CTA1, it spon-
taneously unfolds following holotoxin disassembly. The ERAD
system then recognizes unfolded CTA1 and exports the toxin
to the cytosol. We previously reported that the cytosolic chap-
erone Hsp90 is active in the ER to cytosol export of CTA1. Our
current structure/function analysis provides a molecular basis
for the Hsp90-driven extraction of CTA1 from the ER and sug-

gests a post-translocation role for Hsp90 in promoting CTA1
activity.

As shown by isotope-edited FTIR spectroscopy, Hsp90
refolds CTA1 in a process that requires ATP hydrolysis by
Hsp90 (Fig. 1, Table 1). Translocation of CTA1 from the ER is
also dependent on ATP hydrolysis by Hsp90 (Fig. 2). These data
provide experimental support for a new model of toxin trans-
location involving a mechanism in which Hsp90 couples CTA1
refolding with CTA1 extraction from the ER. Refolded CTA1
would not slide back into the translocon pore, thus resulting in
unidirectional movement of CTA1 from the ER to the cytosol.

Our initial studies on Hsp90-CTA1 interactions were
inspired by reports documenting the role of Hsp90 in the endo-
some to cytosol translocation of certain AB-type, ADP-ribosy-
lating toxins (61– 63). Cells lacking functional Hsp90 due to
drug treatment or RNAi sequester these toxins in the lumen of
the endosomes and are accordingly resistant to intoxication
(61– 65). However, the molecular mechanism for toxin translo-
cation across the endosomal membrane has not been deter-
mined. Our mechanistic studies on Hsp90-CTA1 interactions
provide a possible molecular basis for the Hsp90-dependent
movement of toxin A chains across the endosomal membrane:
as with CTA1, Hsp90 could facilitate translocation from the
endosomes by coupling toxin refolding with toxin extraction
from the endosomes. Although this model requires experimen-
tal validation, it suggests our studies on the modulation of
CTA1 structure/function by Hsp90 could be broadly applicable
to the family of AB-type, ADP-ribosylating toxins. Our obser-
vations may also provide a foundation to understand the p97-
independent translocation of select endogenous ERAD sub-
strates (66, 67).

Hsp90/ATP preferentially interacts with unfolded CTA1
(Fig. 3A) and thus acts as a typical chaperone in this fashion. An
unusual feature of the Hsp90-CTA1 interaction occurs when

FIGURE 6. CTA1 activity is enhanced by host factors in a sequential manner. A, Hsp90/ATP and CTA1 were incubated at 37 °C for 10 min at a molar ratio of
2:1 to promote complex formation. The complex was then perfused over a SPR sensor coated with LUVs mimicking the composition of a lipid raft. The
arrowhead indicates when the Hsp90-CTA1 complex was removed from the perfusion buffer. B, CTA1 samples (1 �g/ml) were incubated for 30 min at 37 °C
before the addition of the indicated host factors for 1 h at 37 °C. NAD and DEA-BAG were then added for 2 h at 37 °C before CTA1 activity against the DEA-BAG
substrate was recorded. Data represent the averages � ranges of 2 independent experiments with 4 replications each. C, CTA1 samples (1 �g/ml) were
incubated for 30 min at 37 °C before the addition of a host factor or factors as denoted by the � sign to the left of the slash. After 1 h at 37 °C, additional host
factors were added for another hour at 37 °C as denoted by new � signs to the right of the slash. NAD and DEA-BAG were then added for 2 h at 37 °C before CTA1
activity against the DEA-BAG substrate was recorded. Data represent the averages � ranges of 2 independent experiments with 4 replications each.

Hsp90 Couples CTA1 Refolding to CTA1 Extraction from the ER

NOVEMBER 28, 2014 • VOLUME 289 • NUMBER 48 JOURNAL OF BIOLOGICAL CHEMISTRY 33651



Hsp90 couples its refolding of CTA1 to CTA1 extraction from
the cytosol. Another unusual feature of the Hsp90-CTA1 inter-
action involves the continued association of Hsp90 with
refolded CTA1. This association was not disrupted by the pres-
ence of specific binding partners for CTA1 or Hsp90. Even
exposure to a cytosolic extract did not dislodge Hsp90 from
refolded CTA1 (Table 2). It is possible we have not identified
proper conditions for the separation of Hsp90 from CTA1, but
our observations suggest Hsp90 remains bound to CTA1 after
toxin translocation to the cytosol. Attempts to detect a co-im-
munoprecipitated cytosolic complex of Hsp90 and CTA1 by
Western blot or SPR were unsuccessful, possibly because of the
extremely low quantity of CTA1 that reaches the cytosol of
intoxicated cells and the background signal from our anti-
Hsp90 antibody. However, with the available data, we posit
Hsp90 remains associated with CTA1 after toxin extraction
from the ER. Due to the intrinsic instability of CTA1, dissocia-
tion from Hsp90 in the host cytosol would place the toxin in an
unfolded, inactive, and protease-sensitive conformation. The
exploitation of cellular processes by CT may therefore involve a
mechanism that promotes productive intoxication by preserv-
ing a post-translocation/post-refolding interaction between
CTA1 and Hsp90.

The continued association between Hsp90 and refolded
CTA1 has an impact on the activity of CTA1. In vitro ADP-
ribosylation assays documented a gain-of-function at physio-
logical temperature that resulted from the Hsp90-mediated
refolding of disordered CTA1. This gain-of-function was
dependent on ATP hydrolysis (Fig. 4B), consistent with the
requirement of ATP hydrolysis for the Hsp90-mediated refold-
ing of CTA1 (Fig. 1). ARF6 could bind to the CTA1-Hsp90
complex (Fig. 5A) and increased the activity of CTA1 above the
gain-of-function obtained through the addition of Hsp90/ATP
alone (Fig. 5B). Lipid rafts also induce a gain-of-function in
disordered CTA1 at physiological temperature (46), yet no
ADP-ribosylation activity was detected after the simultaneous
addition of Hsp90/ATP, ARF6/GTP, and lipid rafts to disor-
dered CTA1 (Fig. 6B). In contrast, substantial CTA1 activity
was obtained when ARF6 and lipid rafts were added to a pre-
formed CTA1-Hsp90 complex (Fig. 6C). These collective
observations indicate the order of host factor interaction is
important for CTA1 activity and are consistent with the in vivo
sequence of CT intoxication: CTA1 first encounters the mem-
brane-associated pool of Hsp90 during the translocation event,
likely remains associated with Hsp90 in the cytosol, and then
recruits ARF proteins to enhance the ADP-ribosylation of G�s
in the lipid raft microenvironment of the plasma membrane.

Western blot analysis from a previous study failed to detect
Hsp90 in cytosolic fractions that facilitated in vitro CTA1 trans-
location, leading some to question the link between Hsp90 and
CTA1 translocation (68). However, this interpretation is based
upon a negative result from an assay that did not use a salt wash
to strip Hsp90 from the membrane fraction. We have used a
range of experimental approaches to document the essential
role of Hsp90 in CTA1 translocation and cholera intoxication.
Protein-protein interactions monitored by SPR have demon-
strated Hsp90 specifically recognizes the unfolded conforma-
tion of CTA1 in an ATP-dependent process. Biophysical and

biochemical assays have shown that ATP hydrolysis by Hsp90 is
required for Hsp90 to induce a gain-of-structure and gain-of-
function in disordered CTA1. In vitro reconstitution of the
CTA1 translocation event likewise required ATP hydrolysis by
Hsp90: the addition of Hsp90/ATP but neither Hsp90 nor
Hsp90/ATP�S to salt- or urea-washed membranes was suffi-
cient for CTA1 export. ATP�S has been previously reported to
block in vitro CTA1 translocation, although the affected host
protein was not identified (68). Multiple cytosolic host factors
may be active in the CTA1 translocation event, but our in vitro
reconstitution assay has shown, for the first time, that Hsp90/
ATP is sufficient for toxin export to the cytosol. In previous
work we demonstrated cells lacking functional Hsp90 due to
RNAi or drug treatment trap CTA1 in the ER lumen and are
therefore resistant to cholera intoxication (37). Thus, through
the combination of in vivo and in vitro assays, we have estab-
lished that Hsp90 is necessary and sufficient for CTA1 translo-
cation. We have also provided experimental support for a
model of Hsp90-driven translocation that couples toxin refold-
ing with toxin export from the ER. Further elucidation of this
model should generate additional insights into a new mecha-
nism of translocation with potential applications to other ADP-
ribosylating toxins and p97-independent ERAD substrates.
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