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Abstract

Drought stress occurring during the reproductive growth stage leads to considerable reductions in crop production 
and has become an important limiting factor for food security globally. In order to explore the possible role of drought 
priming (pre-exposure of the plants to mild drought stress) on the alleviation of a severe drought stress event later 
in development, wheat plants were subjected to single or double mild drought episodes (soil relative water content 
around 35–40%) before anthesis and/or to a severe drought stress event (soil relative water content around 20–25%) 
15 d after anthesis. Here, single or double drought priming before anthesis resulted in higher grain yield than in non-
primed plants under drought stress during grain filling. The photosynthesis rate and ascorbate peroxidase activity 
were higher while malondialdehyde content was lower in primed plants than in the non-primed plants under drought 
stress during grain filling. Proteins in flag leaves differently expressed by the priming and drought stress were mainly 
related to photosynthesis, stress defence, metabolism, molecular chaperone, and cell structure. Furthermore, the 
protein abundance of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit, Rubisco activase 
and ascorbate peroxidase were upregulated in primed plants compared with non-primed plants under drought stress 
during grain filling. In conclusion, the altered protein expression and upregulated activities of photosynthesis and 
ascorbate peroxidase in primed plants may indicate their potential roles in alleviating a later-occurring drought stress 
episode, thereby contributing to higher wheat grain yield under drought stress during grain filling.
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Introduction

It is known that the frequency and duration of extreme cli-
mate episodes are increasing (Ciais et  al., 2005). Drought 

events are limiting crop production, and particularly those 
occurring during the reproductive growth stage can lead to 
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significant reductions in yield and quality (Barnabas et  al., 
2008; Farooq et al., 2009).

The mechanisms of plant drought tolerance are complex 
and involve diverse and multiple physiological and molecu-
lar mechanisms (Shinozaki and Yamaguchi-Shinozaki, 2007; 
Farooq et al., 2009). It has been reported that the downregu-
lation of photosynthesis due to mild drought stress is mainly 
the result of a reduction in stomatal conductance, while the 
photosynthetic apparatus is not significantly affected (Cornic 
and Fresneau, 2002; Harb et al., 2010). As a consequence of 
severe drought stress events, both stomatal and non-stomatal 
limitations lead to a decline in photosynthesis (Bota et  al., 
2004; Flexas et  al., 2008), For example, electron transport 
from photosystem II (PSII) to PSI and enzymes of carbon 
metabolism [e.g. ribulose-1,5-bisphosphate carboxylase/oxy-
genase (Rubisco) and enzymes related to ribulose-1,5-bispho-
sphate synthesis] accounted for the lower photosynthesis rate 
under these conditions (Medrano et al., 2002; Tezara et al., 
1999).

The electron transport chain in the chloroplastic thyla-
koid membrane is the major source of reactive oxygen spe-
cies (ROS) under stress conditions (Apel and Hirt, 2004). 
Damage to the PSII oxygen-evolving complex (Canaani 
et al., 1986) and to the reaction centre (He et al., 1995; Reddy 
et al., 2004) may lead to the imbalance of electron generation 
and utilization, resulting in the generation of ROS (Reddy 
et al., 2004), and consequently cause lipid peroxidation of cell 
membranes (Murata et al., 2007). Antioxidant enzymes, such 
as superoxide dismutase, glutathione reductase and ascorbate 
peroxidase, play important roles in scavenging excess ROS, 
which are generated by abiotic stress (Jiang and Zhang, 2002; 
Hernández et al., 2012).

It has been shown that priming—the pre-exposure of plants 
to an eliciting factor—enables plants to become more toler-
ant to later-occurring biotic or abiotic stress events (Bruce 
et al., 2007). To date, many studies have focused on biotic-
induced priming and the mechanisms, which include, among 
others, the accumulation of mitogen-activated protein kinases 
(MPKs), epigenetic changes, and regulation of primary 
metabolism (Uwe et  al., 2006; Beckers and Conrath, 2007; 
Bruce et al., 2007; Conrath, 2011). Attention has also been 
given to chemical-induced priming, such as by nitric oxide 
(Tanou et al., 2009; Molassiotis et al., 2010), β-aminobutyric 
acid (Tsai et al., 2011), hydrogen sulfide (Christou et al., 2013; 
Shi et al., 2013), and acclimation mainly through regulation 
of defence-related genes/proteins as well as induction of anti-
oxidant mechanisms (Jakab et al., 2005; Filippou et al., 2012; 
Tanou et al., 2012).

However, fewer studies investigated abiotic stress-induced 
priming. It was found in Arabidopsis that multiple pre-expo-
sures to mild drought stress episodes increased the flexibility 
of the plant to cope with a recurring drought stress event, and 
that a stalled RNA polymerase II was involved in the tran-
scriptional drought memory (Ding et al., 2012). However, the 
duration between priming and the reoccurring stress was very 
short (several hours or days) (Bruce et al., 2007; Walter et al., 
2011). Whether plants are able to conserve the ‘memory’ of 
a previous stress episode to a subsequent stress event later 

in development, as well as the underlying mechanisms, is far 
from clear. Our previous studies have shown that priming with 
high temperatures (Wang et al., 2011, 2012) or waterlogging 
(Li C et al., 2011) before anthesis could alleviate the negative 
effects of the same stress occurring after anthesis, as exem-
plified by improved grain yields in primed plants compared 
with non-primed plants in wheat. Walter et al. (2011) found 
that plants experiencing an early drought episode showed a 
higher percentage of biomass and improved photo-protec-
tion than non-primed plants under a second drought event in 
Arrhenatherum elatius. However, Zavalloni et al. (2008) found 
that elevated temperature and mild drought applied early in 
development did not enhance tolerance to a later drought 
stress event in several grass species.

Proteomics is an important tool both for understanding 
the mechanisms of plants in response to abiotic stress (Chen 
and Harmon, 2006; Caruso et  al., 2009; Kottapalli et  al., 
2009; Kamal et al., 2013) and for gaining insight into possible 
priming mechanisms (Tanou et al., 2012). Thus, it has been 
shown that salicylic acid induced drought tolerance in wheat 
seedlings through regulation of the proteins related to signal 
transduction, stress defence, photosynthesis and metabolism 
(Kang et al., 2012). However, to the best of our knowledge, 
proteome analysis has not been applied for revealing the 
mechanisms of drought priming in response to a later-occur-
ring drought stress event.

In the present study, we first subjected wheat plants to 
single and/or multiple mild drought priming events before 
anthesis, and then to a severe drought stress event during 
grain filling. Our hypothesis was that: (i) drought priming 
before anthesis would affect the synthesis and/or activities 
of enzymes related to photosynthesis and stress defence as 
mechanisms to enhance tolerance to drought stress occurring 
during the grain-filling stage; and (ii) there is no difference 
between drought priming once or twice on the alleviating 
effect of drought stress during grain filling.

Materials and methods

Experimental design
A pot experiment was performed outdoors under field conditions at 
the Research Centre Flakkebjerg, University of Aarhus, Denmark, 
in 2011. Each pot (height 18 cm and diameter 23 cm; 90 pots in total) 
was filled with 800 g of a mixture of soil and peat (v/v, 1:3). Six grains 
of commercial spring wheat (Triticum aestivum L. cv. Vinjett) were 
sown in each pot and thinned to three plants at the three-leaf stage 
(growth stage 13, according to Lancashire et al., 1991).

The experimental design is shown in Fig. 1. Drought priming was 
applied either once, during the stem elongation stages (37 d after sow-
ing, growth stage 39; see Lancashire et al., 1991) or twice, during both 
seedling (27 d after sowing, growth stage 17)  and stem elongation 
stages. The soil relative water content (SRWC) for the well-watered 
plants was set at 80–90%. Drought priming was applied by withhold-
ing watering for 5–7 d until the SRWC reached approx. 35–40% and 
maintained for 2 d. Drought stress was applied 15 d after anthesis 
by withholding watering for 5 d until the SRWC dropped to 20–25% 
and maintained for 3 d. The pots were weighed every day to moni-
tor the soil water content at the target level. To avoid the heat stress 
and drought stress interaction, during drought priming and drought 
stress treatment, both the control plants and the drought plants were 
moved to a growth chamber (PGV36; Conviron, Montreal, Canada), 
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at temperatures of 24/16 °C (day/night), a light intensity of 400 μmol 
photons m–2 s–1 and a humidity of 60%. After treatment, the pots 
were rewatered and moved outdoors until harvest maturity. There 
were no significant differences in phenological development of the 
plants among the treatments. Sampling and measurements were 
done at the end of drought priming at stem elongation and drought 
stress during grain filling. The last fully expanded leaves were used for 
physiological and proteome analysis during drought priming. Three 
treatments were included: non-primed plants (NN), drought prim-
ing applied at stem elongation stage (NP), and drought priming at 
both seedling and stem elongation stages (PP). The flag leaves were 
used for physiological and proteome analysis under drought stress 
during grain filling. Six treatments were included: control (NNC), 
no priming+drought stress during grain filling (NND), priming at 
stem elongation stage+non-stress during grain filling (NPC), priming 
at stem elongation stage+drought stress during grain filling (NPD), 
priming twice+non-stress during grain filling (PPC), and prim-
ing twice+drought stress during grain filling (PPD). All primed or 
drought-stressed plants were immediately rewatered after the sam-
pling and measurements.

SRWC and leaf relative water content (LRWC)
SRWC was calculated using the formula:

SRWC actual pot weight pot weight with dried soil
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LRWC was measured according to Jensen et al. (2000) and deter-
mined as follows:
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Three biological replicates were analysed.

Leaf gas exchange
Leaf gas exchange was measured as reported previously (Wang 
et  al., 2011) using an LI- 6400 portable photosynthesis system 
(LI-COR Biosciences, Lincoln, NE, USA) from 9:00 a.m. to 11:30 
a.m. A  standard 2 × 3 cm chamber and light-emitting diode light 
source were used to support a constant photosynthetically active 
radiation level of 1000 mol m–2 s–1. All measurements were taken at 
a constant flow rate of 500 ml min–1 and a CO2 concentration of 
400 μmol mol–1. Three biological replicates were analysed.

Determination of malondialdehyde (MDA) content and 
ascorbate peroxidase (APX) activity
The extract for determination of the membrane lipid peroxidation 
was prepared according to Tan et al. (2008) and Jiang and Zhang 
(2002). Leaf sample (0.1 g) was homogenized with a cold mortar 
and pestle in 3 ml of extraction solution [50 mM PBS (pH 7.0), 0.4% 
(w/v) polyvinylpyrrolidone] and with the addition of 1 mM ascorbic 
acid for the APX assay. The homogenate was centrifuged at 12 000g 
for 20 min at 4 °C, and the supernatant was collected and for further 
analysis.

A mixture of 1 ml of supernatant and 4 ml of reaction solution 
(thiobarbituric acid reactive substances (with 0.5% in 20% trichloro-
acetic acid)] were heated by incubating at 95 °C for 25 min and imme-
diately cooled in ice bath. The mixture was centrifuged at 12 000 g 
for 10 min, and supernatant was used to determined MDA content 
at 532 nm and 600 nm. APX (EC 1.11.1.11) was assayed according 
to Nakano and Asada (1981). In brief, 1 ml of reaction solution con-
tained 50 mM PBS (pH 7.0), 0.5 mM ascorbic acid, 0.1 mM H2O2, 
and 100 μl of  extraction supernatant. APX activity was observed 
by recording the decreased rate of ascorbic acid oxidized at 290 nm 
for 1 min. Absorbance was measured with a UV/visible spectropho-
tometer (UltrospecTM 2100 pro; Amersham Biosciences). Three 
biological replicates were analysed.

Protein extraction and quantification
Leaf protein extraction was performed according to Rinalducci 
et al. (2011), with minor modifications. Three biological replicates of 
fresh wheat leaves (0.5 g) were finely ground in liquid nitrogen. The 
powder was suspended in 5 ml of cold (–20 °C) 10% (w/v) trichloro-
acetic acid in acetone containing 0.07% (w/v) dithiothreitol (DTT) 
and one tablet per 50 ml of extraction solution Protease Inhibitor 
Cocktail tablets (Roche), vortexed, and incubated at –20  °C over-
night. The extraction was centrifuged at 35 000g for 1 h at 4 °C. The 
collected pellet was washed with 5 ml of chilled (–20  °C) acetone 
containing 0.07% (w/v) DTT, precipitated for 2 h at –20 °C, and then 
centrifuged at 20 000g at 4 °C for 30 min; the procedure was repeated 
three times to make sure the pellet was colourless. The supernatant 
was removed and the pellet was dried at 4 °C. The pellet was solu-
bilized in a freshly prepared buffer containing 9 M urea, 4% (w/v) 
CHAPS, 1% (w/v) DTT, and 1% (v/v) pH 4–7 ampholytes (GE 
Healthcare, Freiburg, Germany), 35 mM Tris (Sigma) via incubation 
at 30  °C overnight with continuous stirring (Thermo mixer). The 
mixture was centrifuged at 12 000g at room temperature for 20 min 
and the supernatant was analysed by two-dimensional gel electro-
phoresis. A small aliquot was used to determine protein concentra-
tion by a modified Bradford assay (Ramagli, 1999). Three biological 
replicates were analysed.

Two-dimensional gel electrophoresis
Isoelectric focusing was performed with the EttanTM IPGphor (GE 
Healthcare) using IPG strips (linear pH 4–7, 18 cm; GE Healthcare). 
Protein samples of 400 μg were added to a total volume of 350 μl 
of same solubilization solution containing 1% ampholyte pH 4–7 
(GE Healthcare) and a trace of orange G. The solution was thor-
oughly vortexed and loaded on the strip. Isoelectric focusing was per-
formed at 20 °C at a total of 67 kVh. IPG strips were subsequently 

Fig. 1. Diagram of the experimental design. Drought priming was applied 
either once during the stem elongation stage or twice during seedling 
and stem elongation. Drought priming was induced by withholding 
watering for 5–7 d until the soil water content reached approx. 35–40% 
for 2 d. Drought stress was applied 15 d after anthesis by withholding 
watering for 5 d until the soil water content dropped to 20–25% for 3 
d. N, non-priming at the respective growth stage; P, priming at respective 
stage; NN, non-primed plants; NP, drought priming only at stem elongation 
stage; PP, drought priming at both seedling and stem elongation stages; 
NNC, control; NND, no priming+drought stress during grain filling; NPC, 
priming at stem elongation stage+non-stress during grain filling; NPD, 
priming at stem elongation stage+drought stress during grain filling; PPC, 
priming twice+non-stress during grain filling; PPD, priming twice+drought 
stress during grain filling. The small up arrows indicate time of sampling/
measurement or harvesting. The primed plants and the drought-stressed 
plants during grain filling were rewatered immediately after the sampling 
and measurement.
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equilibrated in 5 ml of equilibration buffer [50 mM Tris/HCl (pH 8.8), 
6 M urea, 30% (v/v) glycerol, 2% (w/v) SDS, 0.01% (w/v) bromophe-
nol blue] with 1% (w/v) DTT (15 min), followed by 5 ml of equilibra-
tion buffer with 2.5% (w/v) iodoacetamide (15 min). Separation in the 
second dimension was performed in 12.5% acrylamide (40% T, 3% C) 
gels using an EttanTM Daltsix Electrophoresis Unit (GE Healthcare) 
according to the manufacturer’s protocol. Strips together with a 
molecular marker (Mark 12TM; Invitrogen, Denmark) were placed on 
the gels and overlaid with 0.5% molten agarose. Separation was per-
formed at 2 W per gel (45 min), followed by 12 W per gel (4 h) (until 
the dye front reached the gel bottom). Gels were stained overnight 
by colloidal Coomassie Brilliant Blue G-250 (Candiano et al., 2004). 
Three biological replicates were analysed.

Image analysis
Two-dimensional gels were scanned using a ScanMaker 9800XL 
(Microtek) at 300 dpi resolution in both colour and greyscale 
(16 bits). Spot detection and gel comparison were analysed using 
Progenesis SameSpots v.4.1 software (Nonlinear Dynamics, UK). 
The gel image from the control was chosen as a reference template, 
and spots in other gels were automated to match the reference gel and 
then edited manually to correct mismatched and unmatched spots. 
From the software, the average normalized spot quantity value was 
determined. The threshold of analysis of variance (ANOVA) was 
carried out at P≤0.05, power ≥0.8 and 1.5-fold change in average 
spot volume between treatments and the corresponding control was 
used to select the different spots for further mass spectrometry (MS) 
analysis. Spots had to be present on three replicate gels to be consid-
ered as present in a reproducible way.

In-gel digestion and protein identification
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-
TOF) MS and MS/MS are commonly used for the protein identi-
fication of spots separated by two-dimensional electrophoresis gels 
(Jensen et  al., 1997; Rinalducci et  al., 2011; Huang et  al., 2012; 
Kausar et al., 2013). The spots analysed by Progenesis SameSpots 
software were excised manually and subjected to in-gel trypsin diges-
tion according to Yang et al. (2010). Aliquots (1 μl) of trypsin spot 
digests were applied to an Anchor ChipTM target plate (Bruker-
Daltonics, Bremen, Germany), covered by 1  μl of matrix solution 
(0.5 g l–1 of α-cyano-4-hydroxycinnamic acid in 70% acetonitrile, 
0.1% trifluoroacetic acid) and washed in 1 μl of 0.5% trifluoroacetic 
acid. Spectra were calibrated externally and internally using a trypic 
digest of β-lactoglobulin (5 pmol μl–1) and porcine trypsin autoly-
sis products, respectively. The trypsin autolysis products (m/z 842.51 
and 2211.10, respectively) were used as internal spectra calibration. 
Peptide mass fingerprinting and MS/MS data were acquired with 
Flex analysis 3.0 software (Bruker- Daltonics). Protein identifica-
tion was performed by searching the NCBInr (National Center for 
Biotechnology Information, http://www.ncbi.nlm.nih.gov/) database 
using an in-house Mascot server (http://www.matrixscience.com) 
integrated with BioTools v3.1 software (Bruker-Daltonics). The fol-
lowing parameters were applied: taxonomic category: Green plant, 
allowed global modification, carbamidomethyl cysteine; variable 
modification, oxidation of methionine; missed cleavages, 1; peptide 
tolerance, 80 ppm; and MS/MS tolerance ±0.5 Da. To be considered 
as a positive identification, the score of results had to be over the 
significance threshold level (P<0.05), and at least five matched inde-
pendent peptides for peptide mass mapping were required. Sequences 
encoding proteins of unknown function were subjected to a BLAST 
(Basic Local Alignment Search Tool; http://www.ncbi.nlm.nih.gov/
BLAST/) search in NCBI (Altschul et al., 1990). Functional classifi-
cations of identified proteins were based on Bevan et al. (1998).

Statistics
One-way ANOVA was applied to analyse the difference between 
treatments. Significant differences at P<0.05 among all treatments 

was determined by Duncan’s multiple range test (Sigmaplot 11.0; 
Systat Software).

Results

SRWC and LRWC

SRWC was maintained at around 37% during drought prim-
ing and at 25% under drought stress during grain filling 
(Fig.  2A, B). After drought priming, LRWC was lower in 
NP and PP compared with NN, and NP had a lower LRWC 
than PP (Fig. 2C). Under drought stress during grain filling, 
LRWC was lower in NND, NPD, PPC, and PPD, in relation 
to NNC (Fig. 2D).

Grain yield and leaf photosynthesis

Drought stress during grain filling (NND, NPD, and PPD) 
significantly decreased grain yield, in relation to NNC 
(Fig. 3). However, the primed plants (NPD and PPD) showed 
less yield reduction than non-primed plants (NND). In rela-
tion to NNC, grain yield was downregulated by 45, 30, and 
31% in NND, NPD, and PPD, respectively. In addition, 
drought priming before anthesis treatments (NPC and PPC) 
significantly downregulated grain yield compared with NNC.

After drought priming, the photosynthetic assimilation 
rate (Anet) was downregulated by 32 and 15% in NP and PP, 
respectively, in relation to NN (Fig. 4A). Under drought stress 
during grain filling, in relation to NNC, Anet decreased by 78, 
26, and 17% in NND, NPD, and PPD, respectively. Thus, the 
drought-primed plants (NPD and PPD) showed significantly 
higher Anet than the non-primed plants (NND) under drought 
stress during grain filling (Fig.  4B). Stomatal conductance 
(gs) in NP and PP was downregulated by 70 and 47%, respec-
tively, compared with NN (Fig. 4C). Drought stress also sig-
nificantly reduced gs in relation to NNC, while NPD and PPD 
showed significantly higher gs than NND (Fig. 4D). Internal 
CO2 concentration (Ci) was downregulated in NP and PP in 
relation to NN (Fig. 4E), while no significant differences were 
found under drought stress (Fig. 4F). There were no differ-
ences of Anet and gs among NNC, NPC, and PPC.

Leaf MDA content and APX activities

Leaf MDA content was upregulated by 33 and 30% in NP and 
PP, respectively, in relation to NN. Drought stress upregulated 
the MDA content significantly, while the MDA content in NND, 
NPD, and PPD was upregulated by 59, 28, and 42% respectively, 
relative to NNC. There were no significantly differences of MDA 
content among NNC, NPC, and PPC (Fig. 5A, B).

After drought priming, APX activities were upregulated 
by 23 and 19% in NP and PP compared with NN. Under 
drought stress during grain filling, compared with NNC, 
no significant difference of the APX activity in NND was 
observed, while APX activity was upregulated by 30 and 38% 
in NPD and PPD, respectively (Fig. 5C, D). There were no 
significant differences in NPD and PPD compared with the 
corresponding control NPC and PPC. NPC and PPC showed 
higher APX activity in relation to NNC.

http://www.ncbi.nlm.nih.gov/
http://www.matrixscience.com
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
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Proteome profiles

Representative gels of protein expression profiles in wheat 
leaves after priming before anthesis and drought stress during 
grain filling are shown in Fig. 6. In total, approximately 600 and 
400 protein spots were detected in samples after priming and 
drought stress, respectively, which corresponds well with previ-
ous studies (Budak et al., 2013; Donnelly et al., 2005; Fulda 

et al., 2011). Ten protein spots were detected as differentially 
expressed between the drought priming treatments (NP and PP) 
and the non-priming treatment (NN) (Fig. 6A), of which seven 
were successfully identified (Table 1). These identified proteins 
were classified as being related to photosynthesis, stress defence, 
cell structure, and unknown function. Compared with NP, six 
spots (403, 688, 2550, 2712, 2477, and 2726) were upregulated 
and four spots (2664, 2637, 2478, and 448) were downregulated 
in PP (Fig. 7). The upregulated proteins included: Rubisco large 
subunit (RLS, spot 403), peptidyl-prolyl cis-trans isomerase 
CYP38 (spot 688), 4-nitrophenyl phosphatase (spot 2550), and 
PSII stability/assembly factor HCF136 (spot 2726). The down-
regulated proteins included the Rubisco small subunit (RSS, 
spot 2664), thioredoxin-like protein CDSP32 (spot 2637), and 
the putative myosin heavy chain (spot 2478).

Under drought stress during grain filling (NND, NPD, 
and PPD), 29 proteins were differently expressed and suc-
cessfully identified as compared with NNC (Fig. 6B), and of 
these, 25 proteins spots were downregulated and four were 
upregulated by drought stress. The differential expression 
abundances are shown in Fig. 8. The identified proteins were 
classified as photosynthesis, stress defence, metabolism, 
molecular chaperone, protein synthesis, cell structure, and 
unknown function (Table 2). The protein spots identified as 
Rubisco activase (RCA, spots 3111 and 3016), RSS (spot 
3323), and APX (spot 3621)  were commonly upregulated, 
while the spot identified as fructose-bisphosphate aldo-
lase (FBA, spot 3572) was downregulated in primed plants 
compared with the non-primed plants (Fig. 9). In relation 
to NPD, spots identified as phosphoglycerate kinase (spot 
3042), actin (spot 3117), glutamine synthetase (spot 3149), 

Fig. 2. SRWC and LRWC under drought priming and drought stress. (A, B) SRWC under drought priming (A) and drought stress (B). (C, D) LRWC under 
drought priming (C) and under drought stress (D). See Fig. 1 legend for abbreviations. Different letters indicate significant differences at P<0.05 among all 
treatments as determined by Duncan’s multiple range test.

Fig. 3. Effect of drought priming on grain yield in wheat experiencing 
drought stress after anthesis. See Fig. 1 legend for abbreviations. Three 
biological replicates were performed. Different letters indicated significant 
differences at P<0.05 among all treatments as determined by Duncan’s 
multiple range test.
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and 2-Cys peroxiredoxin BAS1 (spot 3646) were downregu-
lated in PPD, while spots identified as glutamine synthetase 
(spot 3010), oxygen-evolving enhancer proteins (spot 3180), 
and Hypothetical protein MTR_026s0001 (spot 3339) were 
upregulated in PPD (Fig. 9). Two spots (3010, 3149) identi-
fied as glutamine synthetase showed contrasting expression 
profiles under drought stress during grain filling. Spot 3149 
was upregulated in NPD compared with NND and PPD. 
Spots 3010 and 3149 had similar pI values (5.1 and 5.3), 
while the lower molecular weight of  spot 3010 (43 kDa) 
compared with spot 3149 (49 kDa) might suggest that 3010 
is a fragment or another form of  glutamine synthetase 
(spot 3149).

Discussion

It is known that epigenetic modifications are involved in trans-
generational stress memory (Molinier et al., 2006; Schmitz et al., 
2011). However, it is not clear whether the mechanisms of epige-
netic modifications (histone and DNA modifications) are involved 

in stress memory within the same generation (Chinnusamy and 
Zhu, 2009). It has been shown that accumulation of mRNA 
and proteins of MPKs are involved in signalling mechanisms 
for pathogen priming. In particular, the upregulation of activi-
ties of MPK3 and MPK6 were found to enhance the immune 
response in Arabidopsis (Beckers et  al., 2009; Conrath, 2011). 
However, the mechanisms of abiotic stress-based priming on 
subsequent abiotic stress events are far from clear. The objective 
of this study was to study the effect and potential mechanisms 
of drought priming before anthesis on drought stress episodes 
occurring during grain filling. Both physiological and proteome 
studies were performed to elucidate differences between primed 
and non-primed plants under drought stress during grain filling, 
which may contribute to improved drought tolerance.

Response of priming on physiological traits in leaves 
and on grain yield

LRWC is often used as an index of the water status of the 
plant (Sinclair and Ludlow, 1986; Ali et al., 1999), and can be 
used as an indicator for drought tolerance in wheat (Loutfy 

Fig. 4. Effect of drought priming on net photosynthetic assimilation rate (Anet), stomatal conductance (gs), and internal CO2 concentration (Ci) of wheat 
leaves under drought priming and drought stress. (A, B) Anet under drought priming (A) and drought stress (B). (C, D) gs under drought priming (C) 
and drought stress (D). (E, F) Ci under drought priming (E) and drought stress (F). See Fig. 1 legend for abbreviations. Three biological replicates were 
analysed. Different letters indicated significant differences at P<0.05 among all treatments as determined by Duncan’s multiple range test.
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et al., 2012). In this study, primed plants showed higher sto-
matal conductance and higher leaf water content than non-
primed plants. Stomatal control is important for regulation of 
both water loss and CO2 assimilation in response to drought 
stress (Jones, 1998; Munns et al., 2010). Here, the higher sto-
matal conductance in primed than in non-primed plants was 
in accordance with the higher rates of photosynthesis. It has 
been shown that abscisic acid (ABA)-based chemical signals 
may regulate physiological responses to drought stress (Socias 
et al., 1997; Dodd, 2005), and that increased leaf ABA con-
centrations would lead to lower stomatal conductance. In 
this study, under drought priming, ABA and gs showed a 
negative correlation (Supplementary Fig. S1B at JXB online). 
However, there was no correlation between ABA and gs under 
drought stress during grain filling (Supplementary Fig. S2B 
at JXB online). Thus, the higher ABA concentration under 
grain filling might not have been responsible for stomatal clo-
sure. Instead, the higher leaf water status could have allowed 
the stomata to remain open in primed plants. In line with this, 
in drought-stressed soybean, Liu et  al. (2004) showed that 
exogenous ABA application during drought could enhance 
stomatal conductance and leaf water potential as compared 
with non-ABA-treated plants.

As alternative functions of ABA in abiotic stress response, 
ABA can induce genes encoding dehydration proteins (Zhu, 
2002) as well as the transcription of heat-shock proteins 
(Larkindale and Huang, 2004). In addition, it has been shown 
that accumulation of ABA can also trigger the generation 
of ROS leading to upregulation of activities of antioxidant 
enzymes (Jiang and Zhang, 2002; Penfield, 2008).

This was in accordance with our results showing a positive 
correlation of ABA with activities of APX under drought 
stress during grain filling (Supplementary Fig. 2A). Primed 
plants showed higher leaf ABA content, higher APX activ-
ity, and higher grain yield compared with non-primed plants. 
In other experiments, ABA levels in flag leaves during grain 
filling were higher in tolerant than in sensitive varieties, and 
have led to higher grain yield through regulation of assimilate 
partitioning into grains (Guóth et al., 2009).

In this study, the LRWC of primed plants PPD was sig-
nificantly higher than in non-primed plants (NND), and 
was higher in primed plants (PPD and NPD). The better 
maintenance of leaf water status in primed plants than in 
non-primed plants may have contributed to the better photo-
synthetic performance. Thus, the better maintenance of leaf 
water status could be a consequence of the priming effect, 
contributing to improved drought tolerance under drought 
stress during grain filling in primed compared with non-
primed plants. Furthermore, biochemical mechanisms also 
contribute to drought tolerance under prolonged drought 
stress (Costa França et al., 2000).

Photosynthesis is the primary process affected by water 
deficit and can lead to reductions in crop yield (Chaves, 1991; 
Flexas et al., 2004; Chaves et al., 2008). Our previous studies 
found that heat priming alleviated the inhibition of photo-
synthesis under a subsequent heat-stress episode (Wang et al., 
2011, 2014). In this study, there were no significant differences 
in the photosynthesis rate between primed plants under non-
stress (NPC and PPC) and non-primed plants under non-
stress during grain filling (NNC). However, primed plants 

Fig. 5. Effect of pre-anthesis drought priming on MDA content and APX activity in wheat leaves under drought priming and drought stress. (A, B) MDA 
content under drought priming (A) and drought stress (B). (C, D) APX activity under drought priming (C) and drought stress (D). See Fig. 1 legend for 
abbreviations. Three biological replicates were performed. Different letters indicated significant differences at P<0.05 among all treatments as determined 
by Duncan’s multiple range test.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru362/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru362/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru362/-/DC1
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under drought stress (NPD and PPD) showed significantly 
higher photosynthesis rates than did non-primed plants under 
drought stress (NND), suggesting that primed plants showed a 
higher capacity to protect photosynthetic activity in response 
to a later drought stress rather than the establishment of an 
altered state. It is known that mild drought stress lowered pho-
tosynthetic rate by stomatal limitations, while both stomatal 

and non-stomatal limitations occur during severe drought 
stress (Flexas et al., 2004; Lawlor and Tezara, 2009; Sengupta 
et al., 2011). Non-stomatal limitation is attributed to reduced 
carboxylation efficiency (Feller et  al., 1998), reduced ribu-
lose-1,5-bisphosphate regeneration (Kubien and Sage, 2008) 
or inhibition of RCA (Bayramov et al., 2010). According to 
Farquhar and Sharkey (1982), a decrease in gs and Ci means 

Fig. 6. Representative two-dimensional electrophoresis gels of wheat leaf proteins during drought priming and drought stress. (A) Representative gel 
resulting from Progenesis Samespot software comparing the non-primed plants, stem elongation stage-primed plants, and twice-primed plants. (B) 
Representative gel resulting from Progenesis Samespot software comparing control plants, non-primed plants under drought stress, stem elongation-
primed plants under drought stress, and twice-primed plants under drought stress. Differentially expressed protein spots in the drought priming 
treatments and drought stress treatments are indicated by arrows and listed in Tables 1 and 2. Mr, relative molecular mass; pI, isoelectric point.
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that stomatal limitation is responsible for the decrease in pho-
tosynthesis, while a decrease in both photosynthesis rates 
and gs but higher Ci would indicate non-stomatal limitation 
inhibiting the CO2 assimilation. In accordance with this, in 
our experiment, it seems that the stomatal limitation occurred 
during drought priming, while under drought stress during 
grain filling the decrease in both the photosynthesis rate and 
gs with no difference in Ci during drought stress may indicate 
the non-stomatal limitation of photosynthesis. The higher 
photosynthesis rates in primed plants under drought stress 
during grain filling (NPD and PPD) may indicate less limi-
tation of both stomatal and non-stomatal factors. Inhibition 
of photosynthesis activity usually leads to higher production 
of ROS, which may cause oxidative damage to the photo-
synthetic apparatus, proteins, DNA, and lipids (Xiong et al., 
2002). MDA content is often used as an indicator of the extent 
of lipid peroxidation by ROS (Sairam et al., 2000; Wang et al., 
2014). We have reported that heat priming through upregula-
tion of both the activities and gene expression of superoxide 
dismutase, glutathione reductase, and peroxidase could allevi-
ate oxidative damage under subsequent heat stress in wheat 
(Wang et al., 2011, 2014). To counteract ROS damages, APX 
plays an important role by catalysing the conversion of H2O2 
to H2O (Mittler, 2002). It has been reported that drought-accli-
mated plants showed a higher APX activity, which enhanced 
oxidative stress tolerance compared with non-acclimated 
plants (Selote and Khanna-Chopra, 2006). In accordance 
with this, our results demonstrated that, with drought stress 
during grain filling, primed plants showed higher APX activ-
ity in relation to non-primed plants, which is in accordance 
with lower MDA content. These results indicated that priming 
induced upregulation of APX activity to alleviate oxidative 
damage under drought stress during grain filling.

Drought stress is one of the limiting factors for the wheat 
yield production (Li P et al., 2011), especially when it hap-
pened during the reproductive growth stage (Barnabas et al., 
2008). However, it has been observed that plants that experi-
enced drought stress during vegetative stage showed higher 

grain yield than non-acclimated plants under drought stress 
during the flowering stage (Yang et  al., 2011; Zhang et  al., 
2013). In this study, grain yield was significantly down-
regulated by drought stress, while the higher grain yield in 
primed plants may have resulted from the higher rates of 
photosynthesis and lower oxidative damage during grain 
filling compared with the non-primed plants. The reduction 
in grain yield (and no difference in rates of photosynthesis) 
under non-stress during grain filling (NPC and PPC) may be 
because pre-anthesis drought priming decreased kernel num-
bers (unpublished data). The higher yield in PPD than PPC 
might be related to drought stress-induced senescence that 
enhanced the remobilization of pre-stored assimilates from 
vegetative organs to gains (Plaut et al., 2004).

Response of priming on the leaf proteome

Drought priming
RSS and RLS are both important components of Rubisco, 
the key enzyme involved in photosynthetic CO2 assimilation 
(Caruso et al., 2009). There have been contrasting results in 
different studies on the regulation of Rubisco in response to 
drought stress, as some studies found upregulation (Zhou 
et al., 2011; Budak et al., 2013), some reported downregula-
tion (Ali and Komatsu, 2006; Plomion et al., 2006), and some 
reported both up- and downregulation (Caruso et al., 2009). 
In this study, the protein abundances of RSS and RLS were 
differently expressed in PP compared with NN and NP. Since 
the photosynthesis rate in PP was higher than in NP, and the 
lower photosynthesis rate may result from stomatal limita-
tion, it is suggested that the Rubisco activity may have not 
been significantly changed under mild drought stress during 
priming. Peptidyl-prolyl cis-trans isomerase CYP38, which is 
essential for PSII assembly (Fu et  al., 2007), and PSII sta-
bility/assembly factor HCF136, which is involved in assist-
ing the folding of proteins and is required for the assembly 
and stabilization of PSII, were upregulated in PP but down-
regulated in NP in relation to NN. The upregulation of these 

Fig. 7. Quantitative variations (expressed as average normalized volumes) of spots differently expressed by drought priming. See Fig. 1 legend for 
abbreviations. Numbers are the same as spot numbers shown in Fig. 6A. Different letters indicate significant differences at P<0.05 among all treatments 
as determined by Duncan’s multiple range test.
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Fig. 8. Quantitative variations (expressed as average normalized volume) of spots identified as differently expressed between primed plants and non-
primed plants under drought stress. See Fig. 1 legend for abbreviations. Numbers are the same as spot numbers shown in Fig. 6B. Different letters 
indicate significant differences at P<0.05 among all treatments as determined by Duncan’s multiple range test.

proteins may indicate a protective role of the photosynthetic 
apparatus in PP compared with NP, which is in accordance 
with the higher photosynthesis rate in PP than in NP.

Thioredoxin-like protein CDSP32, which is a chloroplas-
tic drought-induced stress protein of 32 kDa, was induced by 
oxidative stress (Broin et al., 2000). Here, after drought prim-
ing, Trx-CDSP32 was downregulated in PP in relation to NP. 
This may due to the absence of oxidative damage in PP under 
drought priming, as exemplified by no significant difference 
in MDA content between PP and NN. Putative myosin heavy 
chain has been identified in plants in response to heavy metal 
(Ahsan et al., 2007) and cold stress (Yan et al., 2006). However, 
the role of this protein is not clear. While the putative myosin 
heavy chain was downregulated in the PP treatment in this 
study, we were unable to relate the function of this protein 
to drought priming. As this protein was expressed in fully 
expanded leaves, it might be related to actin organization, 
organelle movement or signal transduction (Sparkes, 2011). 
Collectively, the different protein expression between PP and 
NP might be result of the priming effect during the seedling 
stage, which could be contributing to enhancing tolerance to 
mild drought stress during the stem elongation stage.

Drought stress during grain filling
The protein spots identified as RCA, RSS, and APX were 
upregulated, and FBA was downregulated in primed plants 

(NPD and PPD) compared with non-primed plants (NND), 
suggesting that these proteins may be involved in drought tol-
erance by priming. RCA removes inhibitors from the catalytic 
sites of Rubisco (Portis, 1995) and is reported to be impaired 
under water-deficit conditions (Tezara et  al., 1999). Under 
drought stress during grain filling, eight proteins spots were 
identified as RCA, and have also been found in other plant 
proteome studies (Ciais et  al., 2005; Donnelly et  al., 2005; 
Caruso et al., 2009). These additional spots identified as one 
protein might be due to cleaved isoforms of the same pro-
tein (Hurkman et  al., 1994) or post-translational modified 
isoforms (Weiss and Görg, 2007). Here, two spots identified 
as RCA and one spot identified as RSS were significantly 
more highly expressed in primed plants (NPD and PPD) 
than in non-primed plants (NND). The higher RSS and RCA 
abundance in primed plants (NPD and PPD) indicated the 
contribution to higher photosynthesis rate compared with 
non-primed plants (NND) under drought stress during grain 
filling.

Changes in both amounts and activities of APX have been 
identified as an indicator of a redox status to counteract ROS 
damage under water deficit (Mittler, 2002). The upregulated 
expression of APX protein, higher activities of APX, and 
lower MDA content in primed plants compared with non-
primed plants in the present study indicated a higher capac-
ity for ROS scavenging and lower cell lipid peroxidation. 
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This may indicate that primed plants can activate the antioxi-
dant defence system when subjected to subsequent drought 
stress episodes.

It has been reported that increased photosynthesis and 
antioxidative defence-related proteins play important roles 
in hybrid Bermuda grass to adapt to drought stress (Zhao 
et al., 2011). In our study, the differences in protein expres-
sion between primed plants (NPD and PPD) and non-primed 
plant (NND) indicated that photosynthesis and antioxidant 
defence-related proteins may play important roles in priming 
and drought stress during grain filling.

In our study, we did not find regulation of  proteins related 
to signal transduction may be because the signalling pro-
teins usually are only induced at the very early stage of 
stress sensing (maximum one day) and may not be related to 
long-lasting stress tolerance (Harb et al., 2010; Pastor et al., 
2012).

FBA exist in two isoforms, a chloroplastic FBA and a cyto-
solic FBA, and are involved in gluconeogenesis and glycolysis 
(Schnarrenberger and Krüger, 1986; Michelis and Gepstein, 
2000). In this study, two spots were identified as FBA, and 
one of them was downregulated in primed plants, while the 
other one was upregulated in NPD compared with PPD and 
non-primed plants, suggesting that FBA was regulated by 
drought stress. Several spots identified as FBA showing dif-
ferent expression have also been found in other studies (Xu 
and Huang, 2008; Zhao et  al., 2011). The upregulation of 
proteins involved in glycolysis, such as FBA and phospho-
glycerate kinase (Houston et  al., 2009), in NPD compared 
with PPD indicated the higher energy demand in NPD under 
drought stress. In accordance, glutamine synthetase, which 
plays an important role in nitrogen metabolism (Caruso et al., 
2009), was expressed more highly in NPD than in PPD. This 
might indicate a higher ATP demand for nitrogen metabolism 
in NPD than in PPD.

The 2-Cys peroxiredoxin BAS1 is the target of  the Trx-
CDSP32, which plays roles in protecting the photosynthetic 
apparatus against oxidative damage (Broin et  al., 2002). 
Oxygen-evolving enhancer protein is a manganese-stabiliz-
ing protein for PSII core stability (Yi et  al., 2005). Actin, 
which is involved in the cell structure, was upregulated in S
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NPD compared with PPD. The higher expression of  proteins 
related to actin and 2-Cys peroxiredoxin BAS1 but lower 
expression of  oxygen-evolving enhancer protein 1 in NPD 
compared with PPD may be related to the measured higher 
expression of  PSII stability related proteins (peptidyl-prolyl 
cis-trans isomerase CYP38 and PSII stability/assembly fac-
tor HCF136) and cell structure-related protein (putative 
myosin heavy chain) but lower expression of  Trx-CDSP in 
NP compared with PP under drought priming. These results 
suggest that these differences may have been ‘conserved’ 
from drought priming rather than induced by drought stress 
during grain filling.

Conclusions

The single or double drought priming events before anthesis 
resulted in higher grain yield under drought stress during 
grain filling. The primed plants showed higher leaf  water 
status, higher photosynthesis rates, higher APX activity, 
and lower cell membrane peroxidation than did the non-
primed plants. Furthermore, the protein abundances of 
RSS, RCA, and APX were upregulated in primed plants 
compared with non-primed plants. Both the upregulated 
synthesis (expressed as protein abundance) and activities 
of  proteins involved in photosynthesis and stress defence in 
primed plants could be contributing to the priming effects 
enabling the plants to cope with the drought stress during 
grain filling. In addition, proteins involved in general metab-
olism (glycolysis and nitrogen metabolism) were differently 
expressed in plants primed once or twice under drought 
stress, which might indicate that these processes are differ-
ently regulated.
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