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With the advent of high-throughput technologies making large-
scale gene expression data readily available, developing appro-
priate computational tools to process these data and distill insights
into systems biology has been an important part of the “big data”
challenge. Gene coexpression is one of the earliest techniques de-
veloped that is still widely in use for functional annotation, path-
way analysis, and, most importantly, the reconstruction of gene
regulatory networks, based on gene expression data. However,
most coexpression measures do not specifically account for local
features in expression profiles. For example, it is very likely that
thepatternsofgeneassociationmay changeoronly exist in a subset
of the samples, especially when the samples are pooled from a
range of experiments. We propose two new gene coexpression
statistics based on counting local patterns of gene expression ranks
to take into account the potentially diverse nature of gene interac-
tions. In particular, one of our statistics is designed for time-course
data with local dependence structures, such as time series coupled
over a subregion of the time domain. We provide asymptotic anal-
ysis of their distributions and power, and evaluate their performance
against a wide range of existing coexpression measures on simulated
and real data. Our new statistics are fast to compute, robust against
outliers, and show comparable and often better general performance.

local rank patterns | bivariate association | random permutation statistics |
Stein’s approximation

Amajor challenge in systems biology is to understand the in-
tricate interactions and functional relationships between

genes and their regulation targets. As advances in high-through-
put technologies lead to the generation of enormous amounts of
genomic data, the last decade has witnessed a rapidly increasing
effort to develop computational tools to reconstruct gene rela-
tionships based on a wide range of “omic” data available, in par-
ticular transcriptomic or expression data. Coexpression methods,
which assess certain types of dependence between the expression
profiles of two genes, are one of the earliest tools used for this
purpose. The technique has been routinely used for functional
gene annotation (1, 2) and more importantly as a measure of edge
weights for reconstructing gene networks (3–7).
The problem of finding gene coexpression is closely related to

that of detecting bivariate association between two vectors. Since
the work by Eisen et al. (8), the Pearson correlation has been
adopted as the most widely used coexpression measure (3, 9, 10)
for its straightforward conceptual interpretation and computa-
tional efficiency. However, it is also known that the Pearson
correlation is unsuitable for capturing nonlinear relationships
and susceptible to high false discovery rates. Another class of
coexpression methods is based on mutual information (MI) (5,
11, 12, 13), which measures general statistical dependence rather
than a specific type of bivariate association. The computation of
MI involves discretization of the data and tuning parameters,
and obtaining P values requires computationally intensive per-
mutation tests. The practical benefits and shortcomings of MI
compared with correlation-based methods are still under inves-
tigation (11, 12, 14). More comparisons of different coexpression
measures and the coexpression networks constructed can be found
in refs. 15 and 16.

In the broader statistical literature, other methods available
for quantifying bivariate associations include the Renyi correla-
tion (17) measuring the correlation between two variables after
suitable transformations; various regression-based techniques
(14); and Hoeffding’s D (18), and distance covariance (dCov)
(19), for general statistical dependence. These methods are
not widely adopted in genomic applications yet. More recently,
Reshef et al. (20) proposed the maximal information coefficient
(MIC) as an extension of MI, but MIC was shown to have inferior
power to dCov (21) and MI (22) in various simulated scenarios.
Most of the methods mentioned so far, perhaps with the ex-

ception of MIC, do not specifically target dependence relation-
ships that can be local in nature and often assume the data are
random samples from a common distribution in the theoretical
analysis. However, real gene interactions may change as the in-
trinsic cellular state varies or only exist under a specific cellular
condition. Furthermore, with data integration now being a rou-
tine approach to combat the curse of dimensionality, samples
from different experimental conditions or tissue types are likely
to prescribe different gene relationships and thus create more
complex situations for detecting gene interactions. For instance,
a protein that positively regulates expression in one context
may act as a repressor in another [e.g., MECP2 (23)], or a gene
may participate in either neural development or hematopoiesis
depending on tissue type [e.g., EBF1 (24, 25)]. One possible
approach to discern local gene interactions is biclustering (26, 27),
which simultaneously clusters genes and samples. However, most
biclustering techniques are restricted to detecting simple subclasses
of linear associations. On the algorithm side, the optimizations of
most criteria for measuring the quality of given biclusters can
only be achieved locally, and their global behaviors are hard to
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characterize. Most algorithms also involve a number of tuning
parameters with little guidance on how to choose them.
Motivated by these observations, we propose two new coex-

pression measures based on matching patterns of local expression
ranks using count statistics. Our robust statistics specifically take
into account the local nature of gene associations while being
general enough to detect other common types of dependence
relationships. In particular, one of our statistics is designed for
time-course data with local dependence structures, such as time
series that are coupled over a subregion of the time domain. This
is a unique feature compared with other popular coexpression
measures. The statistics are fast to compute, and we provide
theoretical analysis of their asymptotic properties. We demonstrate
their applicability via comparisons to a comprehensive list of
existing methods on simulated and real data. Our new methods
show better precision, and have the important ability to detect
subtle gene relationships that are easily missed by other methods.

Definitions and Asymptotic Properties
For a heterogeneous set of samples with potentially changing
gene interactions, we can define a general coexpression measure
by aggregating the interactions across all subsamples of size
k≤ n. For genes x and y with expression levels from n samples
x= ðx1; . . . ; xnÞ and y= ðy1; . . . ; ynÞ, we consider

W =
X

1≤i1<...<ik≤n
F
�
xi1 ; . . . ; xik ; yi1 ; . . . ; yik

�
; [1]

where Fð · ; · Þ is an interaction measure on local expression pro-
files ðxi1 ; . . . ; xikÞ and ðyi1 ; . . . ; yikÞ from a subset of k samples. In
this paper, we choose Fð · ; · Þ to be an indicator function com-
paring the rank patterns of the subsequences ðxi1 ; . . . ; xikÞ and
ðyi1 ; . . . ; yikÞ. Depending on the nature of the expression data
studied, we define two corresponding count statistics.

i) When dealing with time-course data, it is sensible to preserve
the order of the samples and consider only interactions
within contiguous subsequences. We define W1 as

W1 =
Xn−k+1

i=1

�
Iðϕðxi; . . . ; xi+k−1Þ=ϕðyi; . . . ; yi+k−1ÞÞ

+ Iðϕðxi; . . . ; xi+k−1Þ=ϕð−yi; . . . ;− yi+k−1ÞÞ
�
;

[2]

where Ið · Þ is an indicator function and ϕ is the rank function.
That is, ϕ returns the indices of elements in a vector after
they have been sorted in an increasing order. W1 counts the
number of contiguous subsequences of length k with match-
ing and reverse rank patterns, indicating positive and nega-
tive associations respectively.

ii) When the order of the samples is not particularly meaningful
(e.g., non-time-series data), we consider a more general
count that includes all subsequences of length k,

W2 =
X

1≤i1<...<ik≤n

�
I
�
ϕðxi1 ; . . . ; xikÞ=ϕ

�
yi1 ; . . . ; yik

��

+ I
�
ϕðxi1 ; . . . ; xikÞ=ϕ

�
−yi1 ; . . .; − yik

���
:

[3]

It is easy to see thatW2 is equal to the number of increasing (and
decreasing) subsequences of length k in a suitably permuted
sequence. Suppose σ is a permutation that sorts the elements
of y in an increasing order. Let z= σðxÞ be that permutation
applied to x; W2 can be rewritten as

W2 =
X

1≤i1<...<ik≤n

�
Iðzi1 < . . . < zikÞ+ Iðzi1 > . . . > zikÞ

�
: [4]

Asimple example of the two counts above is given in SIAppendix.
Both counts are symmetric with respect to x and y and efficient

to compute. CountingW1 has a running time ofOðkðlog kÞnÞ, while
counting W2 takes Oðkn log nÞ time using dynamic programing
and binary indexed trees. More details on the computation time
are given in SI Appendix, Proofs.

Asymptotic Distributions. We can derive the asymptotic dis-
tributions of W1 and W2 for different regimes of k assuming the
following: (i) The two sequences x and y are independent and
have no ties within themselves and (ii) at least one of x and y has
an exchangeable distribution. Note that the second assumption
implies the ranks of the expression vector with an exchangeable
distribution is a random permutation of f1; 2; . . . ; ng.
The Stein and Chen−Stein approximations (28, 29) give us the

following two asymptotic regimes for W1, the proof of which is
given in SI Appendix, Proofs.
Theorem 1. For n→∞, k≥ 3 and k=ðlog nÞα → 0 for some α< 1,

T1d
W1 − μ1;n

σ1;n
→
D
Nð0; 1Þ; [5]

where μ1; n = 2ðn− k+ 1Þ=k!, σ21; n =VarðW1Þ. For n→∞, log n
k =

Oð1Þ,

dTV ðW1;ZÞ→ 0; [6]

where Z∼Poissonðμ1;nÞ and dTV is the total variation distance.
When x and y satisfy the first assumption and assuming

without loss of generality x satisfies the second assumption, the
ranks of z follow the distribution of a random permutation.
While the properties and asymptotic distribution of the longest
increasing subsequence (LIS) in a random permutation have
been much studied and the statistic itself has been used in a
number of applications (30–34), not so much attention has been
paid to increasing subsequences of length k. Here we use the
results in ref. 35 and the Stein approximation to derive a central
limit theorem for W2 for k growing sufficiently slowly. The proof
of the theorem is given in SI Appendix, Proofs, and the key lies in
obtaining a good upper and lower bound on the variance of W2.
Theorem 2. For n→∞, k≥ 3 and k=ðlog nÞα → 0 for some α< 1,

T2d
W2 − μ2;n

σ2;n
→
D
Nð0; 1Þ; [7]

where μ2; n = 2
� n
k

�.
k! and σ22; n =VarðW2Þ.

Asymptotic Power.Next we analyze the power of T1 and T2 under
specific alternative distributions. The first scenario we consider is
related to time-course data, where the temporal order of x and y
are preserved in subsequence analysis.
Theorem 3. Let x= ðx1; . . . ; xnÞ and y= ðy1; . . . ; ynÞ be two time

series with n observations, m of which are perfectly coupled in the
sense that ϕðxi; . . . ; xi+m−1Þ=ϕðyi; . . . ; yi+m−1Þ. As n→∞, m→∞,

i) T1 goes to infinity in the following regimes:
• For fixed k, if m∼ a1n, a1 > 2=k!, then T1=Ωð ffiffiffi

n
p Þ.

• For k→∞ and k=ðlog nÞα → 0, α< 1,

– if m≥ a2 · nk!, a2 > 2, then T1 =Ωð ffiffiffiffiffiffiffiffiffi
n=k!

p Þ;
– if m∼ a3n, a3 ∈ ð0; 1�, then T1 =Ωð ffiffiffiffiffiffiffi

nk!
p Þ.

ii) T2 goes to infinity in the following regimes:
• For fixed k, if m∼ b1n, bk1 > 2=k!, then T2 =Ωð ffiffiffi

n
p Þ.

• For k→∞ and k=ðlog nÞα → 0, α< 1,

– if m≥ en
k , then T2 =Ωð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n=k3=2

p
Þ;

– if m∼ b2n, b2 ∈ ð0; 1�, then T2 =Ωðbk2k!
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n=k5=2

p
Þ.

Here Ωð · Þ denotes asymptotic lower bound.
Remark 1. In the regimes above, using T1 and T2 as statistics

both lead to rejection of the null hypothesis with probability 1.
We also observe that for both T1 and T2, large k leads to
better power in the sense that (i) the statistics have a better
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convergence rate when m grows as a fraction of n and (ii) a
smaller lower bound on m can be achieved, consequently toler-
ating more noise in the data, while maintaining the power of the
tests going to 1. Comparing T1 and T2, T1 has better power in the
regime of fixed k because T1 allows for a smaller lower bound on
m while maintaining the power going to 1.
The next scenario we consider is when x and y follow a perfect

functional relationship with d strictly monotonic pieces. This is
a reasonable subclass of general functional relationships to study
since most smooth functions can be approximated by piecewise
strictly monotonic functions. In this case, the order of the data
does not have to be preserved, making T1 a less suitable statistic
than T2. We only analyze the power of T2.
Theorem 4. y= f ðxÞ for x∼iidUnif ð0; 1Þ, f can be decomposed

into a fixed number of d strictly monotonic pieces which have
lengths ℓ1; . . . ; ℓd when projected on to the x axis. As n→∞,

• For fixed k, if dk−1 < k!=2, then PðT2 ≥C
ffiffiffi
n

p Þ→ 1;
• For k→∞ and k=ðlog nÞα → 0, α< 1, then PðT2 ≥C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n=k5=2

p
k!=

dk−1Þ→ 1

for some constant C> 0.
Remark 2. In the regimes above, the power of the statistic T2

approaches 1. Larger k and smaller d lead to better convergence
rates and thus better power. Having fewer monotonic pieces
implies there are more uninterrupted counts in each piece con-
tributing to W2.
The proofs of the above theorems are in SI Appendix.

Simulations
To investigate the power of our statistics in more realistic set-
tings, we considered four types of bivariate relationships, all of
which are illustrative of gene coexpression relationships likely to
exist in an expression dataset. It is essential to include a linear
type of relationship since pairwise gene relationships detected by
current analyses are still predominantly linear. As an example of
nonmonotonic associations, we considered a quadratic relation-
ship. The cross-shaped relationship may occur when two genes
switch from activators to repressors across different tissue types
or treatment conditions, or simply due to the changes in intrinsic
cellular state (36). These relationships have also been used as
illustrative scenarios in refs. 20 and 22 in the context of general
statistical dependence. An important additional example we
considered here pertains to the case of genes with time-course
data. We simulated two time series that were coupled over sub-
regions of the time domain. The robustness of the statistics was
tested against outliers—a ubiquitous feature of biological data.
Descriptions of the parameters used for each type of relationship
are provided in SI Appendix, Table S2.
Throughout the rest of the paper, the variances of W1 and W2

were estimated by Monte Carlo experiments. We compared the
power of T1 and T2 with seven other popular measures of de-
pendence (the Pearson, Spearman, and Renyi correlations,
Hoeffding’s D, dCov, MI, and MIC). An additional comparison
with LIS-based statistics (34) is provided in SI Appendix, Fig. S4.
We chose k= 5 for T1 and T2 guided by the log value of the
sample size 220. The results from other values of k are provided
in SI Appendix, Fig. S2. We note that the influence of k on the
power of T2 is negligible. While the choice of k has a bigger
effect on the power of T1 due to a smaller number of possible
values for the counts, the conclusions we draw from qualitative
comparisons with the other measures do not change. More
details on the computation of the statistics and their P values can
be found in SI Appendix, Simulations.
The power values of various statistics computed under four

types of dependence relationships are shown in Fig. 1. Un-
surprisingly, the Pearson and Spearman correlations can only
detect the linear relationship, with the Pearson correlation being
more sensitive to outliers. Across the first three types of de-
pendence, T2, Hoeffding’s D, MI, dCov, and Renyi are the only
statistics maintaining reasonable power throughout. Of these

statistics, Renyi andMI have the best performance on the quadratic
relationship, but are underpowered on the linear relationship. For
the linear scenario, we also computed a variant of T1 and T2
counting only the matching rank patterns (omitting the reverse
patterns), which are denoted T+

1 and T+
2 in the plot. These unidi-

rectional counts provide a way to significantly improve the power
when the monotonicity of the relationship is known. In fact, T+

2
demonstrates the best power while remaining robust to outliers. On
the cross relationship, T2 has a higher power than all of the other
statistics. T1 does not perform well on the first three types of rela-
tionships as it is designed for data with a temporal order.
T1 and T2 are the only statistics showing significant power on

the time-course data. Without respecting the order of the data
points, the scatter plot shows no obvious association pattern, mak-
ing it difficult for the other measures to detect the dependence
structure. T1 has a slightly better power than T2.
We remark here that although other dependence relationships

were tested in refs. 20 and 22, most of these are less often ob-
served in real gene coexpression patterns. Such examples include
sinusoidal, circular, and checkerboard relationships. For the
former two examples, we expect the power of T2 to be affected
by the noise level and the frequency of the sinusoidal wave. As
discussed in Theorem 4, the power of T2 is boosted by having
uninterrupted counts from monotonic pieces of the association
pattern. Since the checkerboard pattern is not piecewise mono-
tonic, we do not expect T2 to detect this type of relationships.
In addition, we performed simulations to show the behaviors

of the statistics conform to their derived asymptotics. Detailed
simulation procedures and results are described in SI Appendix,
Asymptotic Convergence.

Real Data Examples
In this section, we evaluate the performance of our new sta-
tistics on two gene expression datasets: the classic yeast gene
expression dataset (3), and a collection of microarray data for
Arabidopsis tissues downloaded from the National Center for
Biotechnology Information Gene Expression Omnibus.

Yeast Cell Cycle Data. The yeast expression data contain the ex-
pression levels of 6,178 genes from four reasonably long time-
course experiments with a total of 73 time points. More details
on data processing are in SI Appendix, Yeast Cell Cycle. We fo-
cused on the coexpression of 133 transcription factors (TFs)
(Dataset S1). Using all of the statistics discussed in simulations,
we computed 133× 133 coexpression matrices and compared
them to a total of 428 curated genetic and physical interactions
from BioGrid.
As we expected T1 to be more suitable for time-course data

than T2, we examined the interactions identified by T1 more
closely. These interactions reveal the ability of T1 to capture im-
portant bivariate associations missed by the other methods. Fig. 2
shows two pairs of TFs (BAS1 vs. GCN4; MSN2 vs. YAP1) whose
coexpression strengths were consistently ranked among the top 10
and top 20 by T1 with k= 7 but were assigned very low rankings by
all of the other methods. Both pairs correspond to previously
reported genetic interactions curated in BioGrid. However, their
scatter plots show no obvious trends or dependence patterns,
highlighting the importance of preserving the temporal order of
the data. More specifically, Gcn4p and Bas1p were shown to be
involved in cooperative transcriptional regulation of the ADE3
gene, which encodes an essential regulon enzyme for the bio-
synthesis of several amino acids (37). MSN2 and YAP1 are both
activators required for oxidative stress tolerance, and there is
a partial overlap between their H2O2-inducible regulons (38).
Studies using epistatic miniarray profiles (39, 40) have shown that
doublemutations inMSN2 andYAP1 lead to severe fitness defect.
Two more such examples can be found in SI Appendix, Fig. S5.
SI Appendix, Table S3, shows the number of known inter-

actions between TFs among strongly coexpressed pairs as ranked
by various statistics. Overall, T1 (with various choices of k) and
the Pearson correlation have the largest number of overlaps

Wang et al. PNAS | November 18, 2014 | vol. 111 | no. 46 | 16373

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

ST
A
TI
ST

IC
S

SE
E
CO

M
M
EN

TA
RY

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sd01.txt
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417128111/-/DCSupplemental/pnas.1417128111.sapp.pdf


with the known interactions, with T1 being the better of the
two at most cutoffs. These are followed by T2 and the Renyi
correlation.

Arabidopsis Microarrays. We integrated data from 13 microarray
experiments to create a metadata with 220 samples for 22,810
Arabidopsis genes. The samples were harvested from shoot

tissues and different regions of root tissues subject to various
stress experiments including salt, low pH, and sulfur deficiency
treatments. From ref. 41, we downloaded a list of genes involved
in the glucosinolates biosynthesis pathway in addition to the 30
pathways in ref. 15 to comprise a total of 510 unique pathway
genes (Dataset S2). We computed the pairwise coexpressions
between these pathway genes and all of the genes available to

A

B

C

D

Fig. 1. The power of various statistics rejecting at 5% significance level as level of contamination by outliers increases when the bivariate data follow (A) a
linear relationship, (B) a quadratic relationship, (C) a cross-shaped relationship, and (D) two partially coupled time series. The heat map in D shows the
absolute values of the Pearson correlations calculated at each time point including its neighboring 15 points.

A

B

Fig. 2. Expression levels of (A) BAS1 and GCN4 and
(B) MSN2 and YAP1 in four time-course experiments
(boundaries indicated by the dashed lines). The darker
solid lines highlight regions contributing to the counts
in T1. Both pairs of genes have reported genetic
interactions. Their coexpression strengths were con-
sistently ranked among the top 10 and top 20 by T1
with k = 7 but were assigned very low rankings by all
of the other methods.
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test the performance of various measures on distinguishing genes
in the same pathway. Our selection of k was guided by the log
value of the total sample size, which is ∼5. The results presented
here were obtained by setting k= 5 for T1 and k= 9 for T2. As
expected, T2 is not sensitive to the choice of k, and the results
below remain stable for a range of k. More information on data
processing can be found in SI Appendix, Arabidopsis Microarrays.
Fig. 3 shows the proportions of gene pairs (i) in the same

pathway, (ii) in two different pathways, and (iii) containing one
nonpathway gene among the top 50 and 80 pairs as ranked by all
of the methods. T2 achieves the best pathway enrichment, fol-
lowed by MI, the Spearman correlation, Hoeffding’s D, and T1.
As the samples are not composed of long time-course data, it is
not surprising that T1 is a less ideal statistic than T2. dCov and
Renyi are among the worst performing methods, with almost
no pairs in the same pathway, despite their good performance
in simulations. Extending the cutoffs to examine more highly
ranked pairs, in SI Appendix, Fig. S6, the same trend continues
for the best four methods until around the top 700 pairs, after
which they start to become indistinguishable. dCov remains at
the bottom of the list.
Fig. 4 shows two examples where the gene pairs are in the

same pathway, but their coexpression values remain significant
only under T2 at 5% level after Bonferroni correction. Some of
the sample points are color coded according to their tissue types
or treatments to highlight the different patterns of association
they exhibit and the lack of a consistent global structure. T2 is
more powerful in this situation due to its definition.
A closer look at the types of relationships detected by T2 and

its closest competitor MI reveals that MI is underpowered on

linear relationships with outliers, an issue also reported by ref.
14. An example is shown in SI Appendix, Fig. S7, for two pairs of
genes in the same pathway, where the bulk of the samples follow
a linear trend but they failed to be identified by MI at an un-
adjusted significance level of 5%. On the other hand, both pairs
were assigned significant P values by T2 and other statistics, in-
cluding the Pearson and Spearman correlations.
We also examined the performance of each method in in-

dividual pathways. SI Appendix, Table S4, shows the methods
with the highest counts of same pathway pairs in 20 pathways
achieving statistically significant enrichment of pathway genes.
T2 outperforms all of the other methods in 12 pathways out of
20, followed by MI and T1, which are the best methods in 4 out of
20 pathways. Note that in the four pathways where MI achieves
the highest counts, it is always tied with T2, whereas T2 and
T1 are the unique maxima in six and four pathways, respectively.
This implies T1 and T2 are potentially more accurate than the
other methods in capturing certain coexpression relationships.

Discussion
Statistically, the problem of discovering gene coexpression is to
detect bivariate associations between gene expression profiles. In
this paper, we propose two new statistics capable of detecting local
dependence structures within expression data, motivated by the
observation that real gene relationships may have disparaging
behaviors in large heterogeneous samples. The statistics are fast
to compute, and their asymptotic distributions under the null
assumption of independence and exchangeable sample distri-
butions can be derived.

A B

Fig. 3. Number of gene pairs in the same pathway
(green), in different pathways (red), and containing
a nonpathway gene (blue) among (A) the top 50 pairs
and (B) the top 80 pairs as ranked by each method.

A B

Fig. 4. Expression levels of two gene pairs in the same
pathway (A) AT4G27550 and AT4G39770, and (B)
AT2G45560 and AT3G11180 with some samples
color coded according to their tissue types or
treatments: shoot_salt, shoot tissues under salt stress;
stele_protoph_salt, stele and protophloem cells under
salt stress; columell_root, columella root cap under salt
stress, low pH, and sulfur deficiency; whole_root_salt,
whole root under salt stress; whole_root_pH, whole
root under low pH; root_low_pH, other root cells un-
der low pH.
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As demonstrated in both simulation and the yeast cell cycle
data, T1 specializes in detecting local associations in time-course
data. In particular, when such associations are not visible within
the global association pattern, T1 offers an attractive alternative
to other commonly used coexpression measures. The statistic T2,
which considers more general local patterns of dependence, is
effective on a variety of functional and nonfunctional relationships.
However, as T2 relies on counts from monotonic subpatterns, it
is sensitive to noise on high-frequency sinusoidal relationships.
Both statistics involve a tuning parameter k. Asymptotic con-

siderations suggest that values around log n are reasonable
choices since this is within the normal regime of convergence and
larger k values are preferable based on the power studies. In
simulations, fluctuations of k around log n have very little effect on
the results of T2 (SI Appendix, Fig. S2). For the Arabidopsis data,
a range of k can be chosen (5–10) with a small impact on the final
results. Due to the more discrete nature of its distribution, T1 is
more sensitive to the choice of k. However, for the yeast cell cycle
data, the interacting gene pairs in Fig. 2 received consistent high
rankings with k= 6−9. More comparisons of different k values are
provided in SI Appendix, Table S3. In practice, choosing k also in-
volves a tradeoff between precision and recall—a common theme of
most tuning parameter problems. Larger k would favor higher pre-
cision but make the statistics less robust to noise and outliers. More
thorough studies investigating how it affects the performance of
the statistics in relation to the structure of data would be desirable.

Our definitions and asymptotic analyses of the two unnor-
malized countsW1 andW2 naturally suggest further investigation.
Modifying the current definitions to account for ties in the data
would be a desirable addition. Extending W1 to capture temporal
dependence patterns with lags would be important for discovering
delayed regulations (42). At a more fundamental level, other
choices of the interaction measure Fð · ; · Þ in Eq. 1 would be
interesting to explore. For instance, we can consider relaxing the
exact pattern matches to approximate matches, or replacing the
indicator function itself with a correlation-based statistic. In terms
of asymptotics, it would be of theoretical interest to study the
limiting distribution of W2 for k beyond the log regime. In prac-
tice, there often exist inherent dependence structures among
the gene samples, especially in time-course data. Thus, removing
the exchangeability assumption in the analysis of the null dis-
tributions would improve computational accuracy of the P values.
Alternatively, it would also be interesting to study the sample
dependence directly by reversing the roles of genes and samples
and applying a similar technique.
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