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Neurons remodel their connectivity in response to various insults,
including microtubule disruption. How neurons sense microtubule
disassembly and mount remodeling responses by altering genetic
programs in the soma are not well defined. Here we show that in
response to microtubule disassembly, the Caenorhabditis elegans
PLM neuron remodels by retracting its synaptic branch and overex-
tending the primary neurite. This remodeling required RHGF-1,
a PDZ-Rho guanine nucleotide exchange factor (PDZ-RhoGEF) that
was associated with and inhibited by microtubules. Independent of
the myosin light chain activation, RHGF-1 acted through Rho-depen-
dent kinase LET-502/ROCK and activated a conserved, retrograde
DLK-1 MAPK (DLK-1/dual leucine zipper kinase) pathway, which trig-
gered synaptic branch retraction and overgrowth of the PLM neurite
in a dose-dependent manner. Our data represent a neuronal remod-
eling paradigm during development that reshapes the neural circuit
by the coordinated removal of the dysfunctional synaptic branch
compartment and compensatory extension of the primary neurite.
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The connectivity of neuronal circuits is established first through
a highly dynamic phase of addition or elimination of axon

branches and synapses, followed by a maintenance phase in
which axon and dendritic branches show remarkable stability
during the lifetime of postmitotic neurons. Disruption of neuronal
circuits elicits remodeling responses that eliminate dysfunctional
neurites or synapses and may stimulate the regeneration of injured
axons. To enable these remodeling responses, neurons need to
sense the insults and signal to the effectors that execute either
retraction or extension of the neuronal structures. A well-studied
effector for neuronal remodeling is the dual leucine-zipper kinase
DLK, whose activation is required for both Wallerian degeneration
and axon regeneration after injury, depending on the species and
contexts examined (1–4). The DLK protein level is primarily con-
trolled by proteasomal turnover that depends on Highwire/RPM-1,
a ubiquitin E3 ligase that targets DLK for degradation (5). The
Caenorhabditis elegans DLK, DLK-1, is activated by calcium influx
during axon injury that triggers the dissociation of an inhibitory
DLK-1 isoform (6). A recent report suggests that C. elegans dlk-1 is
a direct transcriptional target of the FoxO transcription factor
DAF-16 in axon regeneration (7). Despite the extensive charac-
terization of DLK, little is known about how neurons sense various
insults and translate them into DLK-activating signals.
Microtubules are a major neuronal cytoskeleton component

that shapes and maintains synapses and axons (8, 9). Mutations
in Ankyrin and α-spectrin, two membrane skeletal proteins that
organize microtubules at presynaptic sites, triggered synaptic
bouton shrinkage and axon terminal retraction at Drosophila
neuromuscular junction, highlighting the central importance of
microtubules in the maintenance of synapses and axon branches
(10, 11). Recent studies in C. elegans showed that the microtu-
bule minus end-binding protein PTRN-1/CAMSAP maintained
synapse and neurite stability by stabilizing microtubule foci and
promoting microtubule polymerization (12, 13). ptrn-1 mutants
showed signs of neuronal remodeling, with loss of the synaptic
branch and overgrowth of the primary neurite in the PLM touch

neuron (12). However, how microtubules coordinate structural
stability and remodeling of neurons under insults remains in-
completely understood. Genetic or pharmacologic ablation of
microtubules in the C. elegans touch neurons reduced the ex-
pression of several touch neuron-specific genes through the ac-
tivation of the DLK-1 MAPK pathway (14). Because DLK-1 is
a major effector for neuronal remodeling, taken together, these
studies raise the possibility that microtubule disruption drives
neuronal remodeling through DLK-1 activation. How this is
achieved at the molecular level remains unknown.
In this study, we report that in the C. elegans touch neurons,

microtubules maintain axon branch stability by sequestering
a microtubule-associated RhoGEF, RHGF-1. Microtubule loss
caused by tubulin mutations released RHGF-1, which then in-
duced synaptic and axon branch defects and neurite over-
extension by activating a retrograde DLK-1 signaling pathway.
We propose that RHGF-1 functions to detect microtubule dis-
ruption, thus coupling microtubule disassembly to the activation
of the conserved remodeling effector DLK-1 to clear the dis-
abled axon branch compartment and promote excessive growth
of the primary neuronal process.

Results
C. elegans Tubulins MEC-12 and MEC-7 Are Required for PLM Axon Branch
Maintenance. The bilaterally symmetric C. elegans PLM touch neu-
rons extend an anterior process, which has a single collateral branch
that forms chemical synapses with axons in the ventral nerve cord
(Fig. 1A). Outgrowth of the PLM branch began during late em-
bryogenesis and was complete by 10–12 h posthatching [late stage 1
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larvae (L1)], followed by progressive enlargement of the presynaptic
varicosities that were enriched in synaptic vesicles, active zone
protein, mitochondria, and F-actin, marked by GFP::RAB-3, SYD-
2::GFP, TOMM20::mCherry, and mCherry proteins fused to the
filamentous actin-binding utrophin-calponin homology sequence
(mCherry::utCH), respectively (Fig. 1B) (15). This region also op-
posed the postsynaptic sites of the glutamatergic interneurons (Fig.
1C). This constitutes part of the neuronal circuit that mediates ac-
celerated forward movements on light touch stimulation on the
posterior body wall of the animal (16).
To investigate genes required for the development of the PLM

branch, we screened a few candidates by mutant analysis or
RNAi (Dataset S1). We found that PLM neurons in the null
mutants for the α-tubulin mec-12 (17, 18) or the β-tubulin mec-7
(e1607 and ok2152, respectively) (17, 19) generated the synaptic
branch similarly to the wild-type, but subsequently retracted it
(Fig. 1 D and F), indicating that mec-12 and mec-7 are essential
for PLM branch maintenance. These tubulin mutants also had
progressively smaller PLM presynaptic varicosities (Fig. 1 E and
G). This contrasts with the mutant for the ventral guidance gene
unc-6/netrin, which showed nonprogressive PLM branch defects
and suggested unc-6 was required for the outgrowth, rather than
the maintenance, of the PLM branch (Fig. 1F and Dataset S1).
The mec-12; mec-7 double mutants showed comparable PLM
branch defects to those of the mec-12 or mec-7 single mutants,
suggesting these two genes function in a common pathway (Fig.
1H). Touch neuron-specific expression of mec-12 or mec-7

rescued the PLM branch defects, confirming an autonomous role
for these tubulins (Fig. 1H).
Treatment of wild-type animals with the microtubule-depoly-

merizing drug colchicine induced PLM branch retraction in a
dose-dependent manner (Fig. S1A). Conversely, treatment of the
tubulin mutants with taxol, which stabilizes microtubules, sig-
nificantly rescued PLM branch defects (Fig. S1B), supporting
a role for microtubules in maintaining the PLM axon branch. Of
note, we found that it was critical to administer taxol at early larval
stages before significant branch retraction ensued (Fig. S1B). Ad-
ministration of taxol at L2 or later failed to show any rescue effects,
whereas transient taxol treatment in L1 was sufficient to rescue
a significant portion of branch retraction (Fig. S1B). This was
striking, given that most mec-12 or mec-7 animals still retained the
PLM branch at L2 (Fig. 1F). It raises the intriguing possibility that
PLM branch defects in the tubulin mutants involve signaling events
that commence early on microtubule loss.
In the wild-type, the PLM process stops behind the ALM soma,

a phenomenon known as neurite tiling (20). Interestingly, in some
mec-12 and mec-7 animals, the PLM process extended beyond the
ALM soma or turned ventrally to contact axons in the ventral
nerve cord (Fig. 1I). Occasionally, growth cones or end foot-like
structures were visible at the distal PLM process of the tubulin
mutants. Emergence of the overgrowth phenotype paralleled
branch retraction in the PLM neuron (Fig. 1J). We confirmed that
this overextension phenotype was also caused by a loss of mec-12
and mec-7 functions autonomously in the touch neurons (Fig. 1K).
Taken together, microtubule disruption in the PLM triggers two
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Fig. 1. mec-12 and mec-7 are essential for the PLM
branch stability. (A) Schematic diagram of C. ele-
gans touch neurons. Anterior is to the left. (B) The
PLM presynaptic varicosities were enriched in syn-
aptic vesicles, the active zone protein SYD-2, the
mitochondria, and the synapse-specific F-actin. The
PLM neurite was labeled by zdIs5(Pmec-4::GFP) or
jsIs973(Pmec-7::mRFP) and pseudocolored in blue
and synaptic markers in white. (Scale bar, 10 μm.)
(C) Confocal image showing that the PLM pre-
synaptic varicosities (red) opposed GLR-1 clusters
(green) of the postsynaptic glutamatergic inter-
neurons. (Scale bar, 5 μm.) (D) Confocal images of
the PLM branch (arrow) in L4 larvae. Asterisks, PVM
neurons; arrowheads, PLM processes. (Scale bar, 20
μm.) (E) The PLM presynaptic varicosities, visualized
with zdIs5(Pmec-4::GFP), at the L4 stage. Boxed
regions were highlighted. (Scale bar, 10 μm.) (F)
Quantification of animals with intact PLM branches
at different larval stages. (G) The length of the PLM
presynaptic varicosities at different larval stages.
Error bar, SEM **P < 0.01; ***P < 0.001, Mann–
Whitney U test. (H) Quantification of L4 animals
with PLM branch defects. tm5083 and e1507
were other null alleles for mec-12 and mec-7, re-
spectively. ***P < 0.001, two-proportion z test. N.S.,
not significant. (I) Confocal images of PLM neurite
overextension in L4 larvae. Arrowheads, ventral
migration of the PLM process tip to reach the ven-
tral nerve cord; asterisks, ALM soma. (J) Quantifi-
cation of PLM branch retraction and neurite
overextension in mec-7 animals at different larval
stages. n > 30. (K) Quantification of L4 animals with
PLM neurite overextension. ***P < 0.001, two-
proportion z test.
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tightly coupled neuronal remodeling events: retraction of the syn-
aptic branch and overextension of the primary neuronal process.

RHGF-1 Mediates Axon Branch Retraction and Neurite Overextension
in the Tubulin Mutants. Studies in mammalian cells suggest that
microtubule depolymerization leads to RhoA activation (21, 22),
and RhoA activation has been shown to induce olfactory axon
retraction in Drosophila (23). To explore whether Rho or related
Rac signaling mediates PLM branch retraction on microtubule
disruption, we knocked down most of the putative RhoGEFs in
the mec-7 mutant by feeding RNAi in a genetic background
(strain: sid-1; mec-7; uIs71[Pmec-18::sid-1]) in which touch
neurons are the only RNAi-sensitive cells (see SI Materials and
Methods) (24, 25). We found that knockdown of two RhoGEFs,
rhgf-1 and rhgf-2, resulted in moderate but significant suppres-
sion of the branch defects of the mec-7 mutant (Dataset S1).
Because the rhgf-2 null mutant was lethal, we focused on the
genetic analysis of rhgf-1.
RHGF-1 is a multidomain protein that contains PDZ, RGS

(regulator of G protein signaling), C1 (phorbol esters/diacylglycerol
binding), DH (Dbl homology), and PH (pleckstrin homology)
domains (Fig. 2A) (26, 27). The GTP exchange activity of RHGF-1
resides in the DH domain. Previous studies indicated that RHGF-1
participated in neurotransmitter release (26, 28). Consistent with its
roles in the nervous system, rhgf-1 was expressed in many neurons in
C. elegans, including the PLM (Fig. 2B). Two available alleles, ok880
and gk217, are in-frame deletions of the DH and the C1 domains,
respectively (Fig. 2A) (26). We first tested rhgf-1(ok880) and found
that it significantly suppressed synaptic defects and branch retraction
(Fig. 2 C and D), as well as neurite overextension of the tubulin
mutants (from 14–25% to 0–3%). The rhgf-1(ok880)mutant was also
more resistant to branch defects induced by higher concentrations of
colchicine (Fig. 2E). Expression of RHGF-1 in the touch neurons
fully restored the branch defects of the mec-7 rhgf-1(ok880) or
mec-12; rhgf-1(ok880) double mutant to the level of the mec-7

or mec-12 single mutant (Fig. 2D). These data indicate that
rhgf-1 functions cell-autonomously in the PLM to mediate PLM
remodeling on microtubule disruption.
Expression of a RHGF-1::mCherry fusion protein revealed that

RHGF-1 was distributed throughout the neuronal soma, neurites,
and presynaptic varicosities of the PLM (Fig. 2B). Touch neuron-
specific expression of the full-length RHGF-1 (FL-RHGF-1) in
the wild-type at low level resulted in a small but significant re-
duction in the synaptic size, with rare PLM branch retraction
(Fig. 2F). These relatively mild phenotypes of RHGF-1 over-
expression could be explained by the presence of intact micro-
tubules, which may inhibit RHGF-1 activity. Consistent with this
hypothesis, low-concentration (0.125 mM) colchicine that nor-
mally caused no branch defects in otherwise wild-type animals
(Fig. S1A) dramatically sensitized the PLM neuron to RHGF-1
expression, with 25% of the transgenic animals losing their PLM
branch (Fig. 2F). The ability of RHGF-1 to induce branch defects
was almost completely abolished by removing the DH domain. In
contrast, overexpression of a RHGF-1 that contains only the
DH and PH domains (DH-PH RHGF-1) resulted in a 13%
and 27% branch loss without or with colchicine sensitization,
respectively (Fig. 2F). Importantly, expression of DH-PH RHGF-1
also resulted in PLM neurite overextension (13.3%, n = 30),
suggesting the GEF activity of RHGF-1 is necessary and suffi-
cient for PLM remodeling on microtubule disruption.
The more robust branch retraction phenotypes caused by DH-

PH RHGF-1, compared with the mild phenotypes by FL-RHGF-1
expression, suggest the N terminus of RHGF-1 inhibits its GEF
activity. Consistent with this, rhgf-1(gk217), which lacks the C1 do-
main, was very sensitive to colchicine and displayed branch defects
even at a very low concentration of colchicine (Fig. 2E). These
results indicate that the C1 domain, and possibly other domains
N terminus to the DH, could inhibit DH activity. To test this hy-
pothesis, we examined PLM branches in animals overexpressing
RHGF-1 variants that lacked the PDZ, RGS, or C1 domain. We
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Fig. 2. RHGF-1 mediates PLM branch retraction in the tubulin mutants. (A) The protein structures of RHGF-1 and various RHGF-1 mutants. (B) (Upper)
Confocal images of late L4 or young adult animals expressing GFP from the rhgf-1 promoter. rhgf-1was expressed in the nervous system and the spermatheca
(asterisks). (Scale bar, 50 μm.) (Middle) rhgf-1-expressing neurons in the head and the tail. Arrow, PLM. Anterior is to the left. (Scale bar, 10 μm.) (Lower) RHGF-
1::mCherry in the PLM soma (Left) and presynaptic region (Right, arrowhead). (Scale bar = 10 μm.) (C and D) Quantification of the synapse length (C) and
branch defects (D) in L4 larvae. *P < 0.05; ***P < 0.001, Mann–Whitney U test (n < 30) or t test (n > 30) for the synapse length and two-proportion z test for
the branch defects. N.S., not significant. (E) PLM branch defects with colchicine treatment in L4 larvae. (F) The effects of overexpressing RHGF-1 mutants on
the PLM branch in the wild-type L4 larvae with or without colchicine. *P < 0.05; ***P < 0.001, two-proportion z test. n > 25. (G) Microtubule sedimentation
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found that the RHGF-1 that lacked both the PDZ and the C1
domains (ΔPDZ+C1) induced PLM branch defects similar to those
caused by DH-PH RHGF-1 (Fig. 2F). This suggests that the PDZ
and the C1 domains exert inhibitory effects on RHGF-1.
Mammalian PDZ-RhoGEFs had been shown to be inhibited

by binding to microtubules (29). To test whether RHGF-1 binds
microtubules, we expressed HA-tagged RHGF-1 in worm neu-
rons, performed microtubule sedimentation, and assayed the
amount of RHFG-1 coprecipitated with microtubules. We found
that the full-length RHGF-1 coprecipitated with microtubules,
but the DH-PH RHGF-1 did not (Fig. 2G). These data indicate
that microtubules maintain axon branch stability by associating
RHGF-1 through its N terminus domain and inhibiting its GEF
activity. This conclusion was further supported by the colocali-
zation of microtubules and RHGF-1 in HeLa cells, which also
depended on the RHGF-1 N terminus domains (Fig. S2).
Because rhgf-1 is broadly expressed in the C. elegans nervous

system (27), we wonder whether inadvertent RHGF-1 activity
also disrupts synapses outsides the touch receptors. Pan-neuronal
DH-PH RHGF-1 expression resulted in loopy locomotion, and
the animals moved with exaggerated body bends (Fig. S3A). At
the cellular level, DH-PH RHGF-1 disrupted cholinergic motor
neuron synapses in the ventral and the dorsal nerve cords (Fig.
S3 B–D). This result indicates that the activity of RHGF-1 is
not restricted to the touch neurons and could be a general
mechanism that mediates synaptic and axon damage on loss of
intact microtubules.

DLK-1/MAPK Functions Downstream of RHGF-1 in PLM Remodeling on
Microtubule Disassembly. In a series of genetic experiments (Fig. 3A
and Fig. S4 and SI Results), we demonstrated that rhgf-1acted
through rho-1/Rho, ced-10/Rac, mig-2/Rac, and the Rho-dependent
kinase let-502/ROCK to mediate PLM branch defects in the tubulin
mutants, and it acted independent of the myosin light chain mlc-4
(Fig. S4C). Moreover, a gain-of-functionmig-2(gm103) mutation or
expression of the constitutively active amino acid substitutions,
RHO-1(G14V) or CED-10(G12V), triggered PLM branch defects
(Fig. S4A).
Genetic or pharmacologic ablation of microtubules in C. elegans

activates dlk-1, a MAPKKK (14). It had been reported that rpm-1
mutants, which had high dlk-1 activity, lost PLM branches (30).
These observations prompted us to investigate the role of dlk-1 in
PLM branch retraction in the tubulin mutants. Indeed, we found
that mutations in dlk-1, as well as mutations in the downstream
MAPK kinase mkk-4 and the MAPK pmk-3, suppressed PLM
branch defects of the mec-12 and the mec-7 mutants (Fig. 3B).
Our data suggest that Rho/Rac and dlk-1 MAPK signaling func-
tioned in a common pathway and autonomously in the PLM (Fig.
3B and Figs. S4B, S5A, and S6A), and when induced acutely with
heat shock, DLK-1 could trigger PLM branch retraction in stage 4
larvae (L4) larvae (Fig. S5B). Remarkably, locomotion defects
caused by pan-neuronal DH-PH RHGF-1 overexpression were
largely suppressed by the dlk-1 mutation (Fig. S3A). dlk-1 muta-
tions also suppressed PLM overextension in the tubulin
mutants or in animals with excessive RHGF-1 activity, and
overexpression of DLK-1 in the touch neurons triggered PLM
branch loss and primary neurite overextension in a dose-depen-
dent manner (Fig. 4 A and B). Although dlk-1 transcriptional
activity was not increased (Fig. S5C), DLK-1 protein level was
higher in the tubulin mutants, suggesting microtubule disassembly
leads to DLK-1 activation and stabilization (Fig. S5D).

DLK-1 Retrograde Signaling Contributes to PLM Branch Defects of the
Tubulin Mutants. These genetic experiments confirmed DLK-1
as a major effector for PLM neuronal remodeling in response to
microtubule disassembly. DLK-1 had been shown to localize to
the synapses and the axons in C. elegans (5). We also detected
a very low level of DLK-1 in the PLM soma (Fig. 4C). Both gene

products, MKK-4 and PMK-3, were localized to the PLM syn-
apse, with additional distribution in the process or the neuronal
soma (Fig. 4C). Localization of these MAPK components to
both synapses and the neuronal cell bodies suggests that active
DLK-1, MKK-4, and PMK-3 function either peripherally at the
synapse or centrally in the neuronal cell body. An intriguing
scenario is that communication between the synaptic and so-
matic MAPK components initiates the neuronal remodeling.
Previous studies in fly and mice had implicated DLK-1 as an

injury signal that elicits regenerative responses via retrograde axon
transport (3, 31). To directly visualize DLK-1 retrograde transport,
we expressed the kinase-dead DLK-1(K162A) tagged with Den-
dra2, which was more stable than the wild-type DLK-1 and had
been used previously in Drosophila for similar experiments (31).
Although it is a valid concern that the enzymatic activity of DLK-1
may somehow be required for its transport, it was previously shown
that kinase activity was dispensable for DLK-1 dimerization (6).
We first confirmed that microtubule polarity in the PLM neurite
mimicked vertebrate axons, with plus ends of microtubules ori-
ented distally (32). Our time-lapse imaging experiments showed
that DLK-1(K162A) puncta moved both anterogradely and retro-
gradely (Fig. 4D) and that the retrograde DLK-1 movements
were abolished by a temperature-sensitive mutation in dhc-1,
the cytoplasmic dynein heavy chain (33–35) (Fig. 4D). Ante-
rograde DLK-1 movements were also decreased in the dhc-1mutant,
possibly because kinesins in the neuronal soma were replenished via
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Fig. 3. Rho/Rac-ROCK (A) and the DLK-1 MAPK (B) pathways suppressed
PLM branch defects of the tubulin mutants. Quantification was performed
in L4 larvae in all experiments. *P < 0.05; **P < 0.01; ***P < 0.001, two-
proportion z test.
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dynein-dependent retrograde transport. Imaging of MKK-4 or
PMK-3 movements in the PLM neurite was not possible because
of their diffuse, nonpunctual distribution.
Having established DLK-1 retrograde transport in the C. elegans

PLM neurite, we tested whether elimination of dhc-1 ameliorates
PLM branch defects caused by MAPK activation. We achieved cell-
specific dhc-1 RNAi by simultaneously expressing the sense and
antisense dhc-1 RNA from the mec-7 promoter (transgenic dhc-1
RNAi; SI Materials and Methods). dhc-1RNAi markedly attenuated
PLM branch defects caused by DLK-1 overexpression (Fig. 4E),
although it did not significantly reduce PLM branch defects caused
by overexpression of the phosphomimetic, active MKK-4 or PMK-3
(Fig. 4E). Moreover, both transgenic dhc-1 RNAi and the tem-
perature-sensitive dhc-1(or283) mutation significantly suppressed
PLM branch defects of the mec-7 mutant (Fig. 4E). These data
support a model (Fig. 4F) that on microtubule disruption, active
DLK-1 triggered by RHGF-1 released from the microtubules-based
inhibition was retrogradely transported to the neuronal soma and
activated MKK-4 and PMK-3 in the cytoplasm to induce PLM
remodeling. Experiments further suggest that rpm-1 is part of this
pathway and likely acts downstream of Rho/Rac/ROCK signaling,
but upstream of dlk-1 (Figs. 4F and Fig. S5D). Considering the
variability of RNAi expressed in the form of extrachromosomal
arrays, we cannot complete rule out that MKK-4 or PMK-3
may also signal retrogradely in a dynein-dependent fashion.

Unfortunately, available dhc-1 temperature-sensitive alleles failed
to survive upshift to restrictive temperature in embryogenesis,
which is necessary to interfere with the MKK-4 and PMK-3
functions that begin before the animals hatch. Additional
genetic tools are necessary to test definitely the role of MKK-4
and PMK-3 in retrograde DLK-1 signaling.

Discussion
Our observations suggest a neuronal remodeling paradigm during
C. elegans development that reorganizes the touch neuronal circuit
by the coordinated removal of the dysfunctional synaptic com-
partment and compensatory growth of the primary process. In this
work, we identified RHGF-1 as a major factor that induces struc-
tural remodeling when neuronal microtubules are disrupted.
RHGF-1 activation triggers synaptic and axon branch retrac-
tion and excessive extension of the primary neurite, all through
the conserved remodeling effector DLK-1. The finding that
RHGF-1 is normally associated with and inhibited by micro-
tubules makes RHGF-1 an ideal sensor that monitors micro-
tubule integrity, with its remodeling activity fine-tuned by the
degree of microtubule disassembly. Of note, this function of rhgf-1
is distinct from its role as a regulator of neurotransmitter release
at the cholinergic motor synapses that depends on G protein
signaling (26).
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Fig. 4. DLK-1 induced PLM branch defects and PLM
process overgrowth. (A) Quantification of PLM
neurite overextension in L4 larvae. DH-PH RHGF-1
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mM colchicine. (B) PLM branch defects and neurite
overextension in L4 larvae under different DLK-1
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test. AVM, ; ALM, . (C) Localization of MAPK com-
ponents in the PLM neuron of L4 larvae. (D) DLK-1
(K162A) time-lapse imaging in L4 animals. (Upper)
Representative kymographs of DLK-1 movements.
Arrows and arrowheads mark representative DLK-1
(K162A) puncta that moved in retrograde and ante-
rograde directions, respectively. (Lower) Quantifica-
tion of retrograde and anterograde movement
events. (E) Effects of dhc-1 RNAi or dhc-1(or283) on
PLM branch defects in L4 animals with the mec-7
mutation or excessive activity of DLK-1, MKK-4, or
PMK-3. *P < 0.05; ***P < 0.001, two-proportion z
test. mec-7 animals were reared at 25 °C after L1 and
scored at L4 for PLM branch defects. N.S., not signifi-
cant. (F) Mechanistic model of neuronal remodeling
after microtubule disruption.
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Two studies of the C. elegans PTRN-1/CAMSAP suggest this
microtubule minus end-binding protein maintains synapse and neu-
rite stability (12, 13). The ptrn-1 mutant showed PLM remodeling
phenotypes remarkably similar to those of the mec-12 and mec-7
tubulin mutants, highlighting the importance of the microtubule as
a central regulator of structural stability and plasticity of the
neuronal circuit. Interestingly, neuronal remodeling in the ptrn-1
mutant also depended on dlk-1, which had been implicated in
both Wallerian degeneration and axon regeneration (1, 2, 4, 36). In
these studies, it was not clear how dlk-1 was activated on micro-
tubule disruption in the developmental (the ptrn-1 cases) or post-
developmental (the axon injury models) contexts. Our data suggest
that RHGF-1 may function through the LET-502/ROCK as a
proxy for microtubule perturbation to activate DLK-1. Because the
substrate (microtubule), the sensor (RHGF-1), and the effector
(DLK) are conserved, we hypothesize that this neuronal remod-
eling paradigm could be a shared feature of the nervous system in
different organisms.
DLK activates transcription of both apoptotic and regenerative

genes in mammalian neurons (37). In the tubulin mutants,
overextension of the primary neurite paralleled elimination of the
synaptic branch. It is possible that compartment-specific DLK
regulators are involved in mediating distinct DLK effects in
different subcellular compartments. A future challenge is the
identification of molecules that act in a compartment-specific
way to coordinate synaptic or branch maintenance and axon
regeneration.

Experimental Procedures
C. elegans Strains and Genetics. Strains were cultured and maintained as
described (38). All alleles and transgenes used in this study are available
online in Supporting Information.

Microtubule Sedimentation Assay. The microtubule sedimentation assay was
performed as described, with modifications (39). In brief, unc-119; twnEx187
[Punc-119::FL-RHGF-1::HA, Punc-119::mec-12, Punc-119::mec-7, unc-119(+)]
and unc-119; twnEx188[Punc-119::DH-PH RHGF-1::HA, Punc-119::mec-12,
Punc-119::mec-7, unc-119(+)] transgenic animals were collected in 0.1 M
Pipes (pH 6.94), 4.0 mM MgCl2, 5 mM EGTA, 0.1 mM EDTA, 0.9 M glycerol,
1 mM PMSF, and 1 mM DTT (PMEG) at 4 °C and resuspended in cold PMEG
with protease inhibitor. Worms were manually homogenized and centri-
fuged at 20,000 × g for 45 min, the supernatant was further centrifuged at
150,000 × g for 60 min, and the pellet was discarded. The translucent su-
pernatant was added with 2 mM GTP, 10 pM taxol, 1 U/mL hexokinase,
50 mM glucose, and 25–50 nm AMP-PNP and incubated on ice for 90 min
for microtubule polymerization. Microtubules were sedimented through
20% (vol/vol) sucrose cushion in PMEG with 10 pM taxol by centrifugation at
20,000 × g for 90 min. The pellet was resuspended in 1 mL PMEG with 10 nM
taxol and 50 mM NaCl. Microtubules and associated proteins were pelleted at
20,000 × g for 40 min and dissolved in water for further analysis.
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