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There are few general physical principles that protect the low-
energy excitations of a quantum phase. Of these, Goldstone’s theo-
rem and Landau–Fermi liquid theory are the most relevant to solids.
We investigate the stability of the resulting gapless excitations—
Nambu–Goldstone bosons (NGBs) and Landau quasiparticles—when
coupled to one another, which is of direct relevance to metals with
a broken continuous symmetry. Typically, the coupling between
NGBs and Landau quasiparticles vanishes at low energies, leaving
the gapless modes unaffected. If, however, the low-energy coupling
is nonvanishing, non-Fermi liquid behavior and overdamped bosons
are expected. Here we prove a general criterion that specifies when
the coupling is nonvanishing. It is satisfied by the case of a nematic
Fermi fluid, consistent with earlier microscopic calculations. In addi-
tion, the criterion identifies a new kind of symmetry breaking—of
magnetic translations—where nonvanishing couplings should arise,
opening a previously unidentified route to realizing non-Fermi
liquid phases.

non-Fermi liquids | spontaneous symmetry breaking | Goldstone modes |
strong magnetic fields

According to the Goldstone theorem, spontaneous breaking
of a continuous symmetry leads to gapless Nambu–Goldstone

bosons (NGBs). In a Lorentz invariant theory, these bosons are
expected to be well-defined excitations, even in the presence of
other gapless fields, such as massless Dirac fermions, providing a
powerful general mechanism for low-energy excitation (1). A key
ingredient leading to their stability is the fact that interactions with
NGBs are strongly constrained by symmetry, leading to suppressed
couplings at small momentum transfer.
In nonrelativistic systems, though, such general results are not

applicable. A particularly important scenario is spontaneous
symmetry breaking in a metallic environment, of which there are
numerous examples such as magnetic order in a metal. Do the
NGBs then survive as well-defined low-energy modes? Or does
coupling to the high density of gapless fermionic excitations of
the metal lead to overdamped excitations? In this work we es-
tablish a general criterion to answer this question based on the
pattern of symmetry breaking.
A closely related question has to do with the stability of the

Fermi liquid (FL) when coupled to gapless bosonic modes. Be-
sides NGBs, gauge bosons can be gapless over an entire phase,
i.e., photons of the electromagnetic field or emergent gauge
bosons of spin liquids or quantum Hall states. Alternately, one
can tune to a quantum critical point where gapless critical modes
centered at wave vector q= 0 interact with the FL. The latter two
cases, of gauge bosons or q= 0 quantum critical bosons coupled
to a Fermi sea, have been studied in many works (2–18). These
studies conclude that, for example in d= 2+ 1 dimensions, the
lifetime of excitations near the Fermi surface is significantly re-
duced, leading to an absence of well-defined quasiparticles and
a breakdown of FL theory. Similarly, the bosonic modes get
overdamped and can no longer be observed as well-defined
particle-like excitations. In some cases, however, superconduc-
tivity intervenes at low energies (19).

In contrast, coupling electrons in a metal to NGBs typically
leads to a much more benign outcome. We know, from examples
of magnons in ferromagnets and phonons in crystals, that NGBs
are typically underdamped even in a metallic environment and
the FL theory remains valid. In other words, in these cases the
coupling between NGBs and FLs is irrelevant, leading to effec-
tively independent fermionic excitations and NGBs at low ener-
gies. This is because interactions involving NGBs are very strongly
restricted by both broken and unbroken symmetries. In particular,
for these cases the scattering amplitude of electrons off NGBs
in the limit of small energy-momentum transfer must vanish. In
contrast, quantum critical modes and gauge bosons couple di-
rectly to fermions, without derivatives acting on the bosonic field.
However, there is one known exception to this rule. When the

continuous spatial rotation in d= 2+ 1 dimensions is spontane-
ously broken by a Fermi surface distortion (20–22), the resulting
orientational NGB strongly couples to electrons; i.e., their cou-
pling does not vanish in the limit of small energy-momentum
transfer. We refer to this type of coupling as nonvanishing cou-
pling. In this context, Oganesyan et al. (20) discussed non-Fermi
liquid (NFL) behavior and Landau damping of NGBs, in close
analogy with the case of critical bosons or gauge bosons coupled
to a FL. However, the deeper reason why this example violates
the standard rule of vanishing NGB–electron couplings in the
infrared has been left unclear. Also, whether this is the only pat-
tern of symmetry breaking with nonvanishing coupling remains an
open question.
In this article we formulate a simple criterion that allows one

to diagnose the nature of the NGB–electron coupling. If the
broken symmetry generator fails to commute with translations,
the coupling is anomalous and is nonvanishing in the infrared.

Significance

A remarkable feature of many particle systems is that although
they are described by equations respecting various symmetries,
they may spontaneously organize into a state that explicitly
breaks symmetries. An example is a crystal that breaks the
translation symmetry of space. In such cases, a celebrated
theorem predicts an excitation, the Goldstone mode. In this
paper we examine whether this continues to hold inside
a metal, where electrons can collide with the Goldstone exci-
tations. Our result is a one-equation criterion that specifies
whether the interactions between electrons and Goldstone
modes can be ignored or whether it completely changes their
character. In the latter case, unusual phases of matter such as
non-Fermi liquids or superconductors may arise.
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Furthermore, armed with this criterion we are able to identify
a new physical setting, distinct from the spontaneous breaking
of rotation symmetry, that also leads to nonvanishing cou-
plings and thus, if we follow standard arguments, to a NFL and
overdamped NGBs.

Results
General Criterion for Nonvanishing Couplings. Let us assume that
we are at zero temperature and we make no assumption about
spatial dimensionality except that it allows for spontaneous
symmetry breaking. NGBs can be associated with symmetry
generators that are spontaneously broken, which we label Qa.
Furthermore, to sharply define a Fermi surface we assume the
existence of a conserved momentum ~P. This could be either the
conserved momentum of continuous translation symmetry or
crystal momentum (of discrete translation symmetry). Let�

Qa;Pi
�
= iΛai: [1]

We now state the general criterion. If Λai = 0, this is the usual
situation where the coupling does vanish. However, if Λai ≠ 0,
then the coupling between the NGB and electrons does not
vanish in the limit of small energy-momentum transfer. Note that
this criterion is very general and involves only the pattern of
symmetry breaking. For any internal symmetry (e.g., spin rota-
tion or number conservation), the commutator is zero. Thus, for
nonvanishing couplings one must consider a space-dependent
symmetry. The simple case of broken space translation symmetry
has Qa =Pa and the commutator is again zero, which implies that
the corresponding Goldstone modes, the phonons, have vanish-
ing coupling to electrons at small momentum transfer, as is
well known.
However, for the case of rotational symmetry breaking,

Qa =Lz, which satisfies ½Lz;Pi�= ieijPj ≠ 0, where i; j∈ fx; yg. Thus,
nonvanishing couplings are expected in this case, consistent with the
results of Oganesyan and coworkers in the context of nematic order
in a 2D Fermi fluid (20–22).
This general criterion allows us to identify an entirely new

example of nonvanishing coupling. The criterion for non-
vanishing coupling is also fulfilled by spontaneous breaking of
magnetic translations. That is, begin with charged particles in
a uniform magnetic field, with magnetic translation symmetry.

Spontaneous formation of a crystal breaks this symmetry,
resulting in phonons. Now, the magnetic translation operator ~P
generates NGBs (phonons) and satisfies the nonabelian algebra,
½Px;Py�=−ieBN. Thus, electron–phonon interactions under a
uniform magnetic field are predicted to have nonvanishing
coupling as we verify by explicit calculation. This surprising
conclusion may be rationalized by imagining the fermions to hop
between sites of the corresponding tight-binding model. The
external magnetic field affects the phase of the hopping matrix
as tij → tij expði

R~xj
~xi
~Að~x′; tÞ ·d~x′Þ. However, a phonon fluctuation ~u

that changes the local flux per unit cell produces a fluctuation of
tij, as illustrated in Fig. 1. One can imagine this as resulting from
a fluctuating gauge field δB=B∇ ·~u=∇× δA. Therefore, for
electrons, some part of phonon fluctuation under a magnetic
field is equivalent to that of a vector potential δA=Bẑ×~u and
the problem resembles that of NFL behavior arising from min-
imal coupling to a fluctuating gauge field.

Proof of the General Criterion. The total Hamiltonian of the
system can be split into three pieces, Htot =Hel +HNGB +Hint,
and each of these terms commutes with symmetry generators.
We are mainly concerned with Hint, which we expand as a se-
ries in the NGB fields πa, Hint =Hð0Þ

int +Hð1Þ
int +⋯. Note that

H0 ≡Helðψ†;ψÞ+Hð0Þ
int ðψ†;ψÞ is the mean-field Hamiltonian that

defines a one-electron problem by picking a symmetry-broken
ground state. The interaction with NGBs is then determined by
symmetry; e.g., the linear coupling for a constant πa is simply
obtained by rotating the mean-field Hamiltonian by the corre-
sponding symmetry generator Qa (SI Text):

Hð1Þ
int =−

�
iπaQa;H0

�
: [2]

To set up the perturbation theory, we first solve the single-
particle electron problem described by H0 and obtain simulta-
neous eigenstates

��n~k� of H0 and the momentum ~P,

H0

���n~kE= en~k

���n~kE; ~P
���n~kE=~k���n~kE; [3]

where n is the band index. When the translation symmetry is
discrete, we replace the second relation with

Ti

���n~kE= ei
~k·~ai
���n~kE; Ti = ei

~P ·~ai ; [4]

where f~aigi=1;...;d are primitive lattice vectors. The interaction
of electrons and NGBs to lowest order can then be written as
(Fig. 2) (1)

Fig. 1. A previously unidentified route to strongly coupling NGBs and quasi-
particles—electron–phonon interaction in a uniform magnetic field. A lattice
distortion (phonon fluctuation) with ~∇ ·~u≠ 0 changes the local flux threading
each unit cell (darker blue indicates a larger flux), inducing fluctuations of the
phase of the hopping matrix tij . The phonon therefore couples like a gauge field
to the fermions, without spatial derivatives.

Fig. 2. (1) The bare vertex with one NG line. (2a and 2b) One-loop diagrams
for the self-energy of the boson. (3) The same for electrons.
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Hð1Þ
int =

X
n′;n;a

Z
ddkddk′
ð2πÞ2d

va
n′~k′;n~kc

†

n′~k′
cn~kπ

a
~q; [5]

where~q=~k′−~k and va
n′~k′;n~k

is the (bare) vertex function, which is

the matrix element of Hð1Þ
int . This can be written via Eq. 2 as

πa~qv
a
n′~k′;n~k =−iπa~q

D
n′~k′

����Qa;H0
����n~kE

= iπa~q
D
n′~k′

���Qa

���n~kE�en′~k′ − en~k
�
;

[6]

which, for low energy scattering n= n′ and ~q→ 0, is

va
n~k′;n~k ≈ i

D
n~k
���Qa

���n~kE~q · ~∇~ken~k: [7]

Clearly, as long as
�
n~k
��Qa
��n~k� is finite, the vertex vanishes as

~q→ 0. This is why scatterings of electrons off NGBs usually
vanish at ~q= 0, leaving behind well-defined NGBs and Fermi
liquid quasiparticles.
However, we can evade this conclusion if, and only if, the

matrix element
�
n~k′
��Qa
��n~k� diverges as ~k′→~k. To ensure an ap-

propriate divergence, we will need ½Qa;Pi�≠ 0 as we now explain.
If ½Qa;Pi�= iΛai ≠ 0, then the matrix element is

�
n~k′
��Qa
��n~k�=

−i
��
n~k′
��Λai

��n~k�=�k′i − ki
��

(SI Text). Substituting this in Eq. 7
and setting ~q→ 0, we have the coupling

va
n~k;n~k

=
X
i

D
n~k
���Λai

���n~kE∂kien~k; [8]

which is generically nonvanishing. This proves our claim that
when the symmetry generator corresponding to the NGB fails
to commute with translations, nonvanishing couplings result. If
the translation symmetry is discrete rather than continuous, we
simply replace Pi by the discrete translation operator Ti and
require ½Qa;Ti�≠ 0. Then the matrix element

D
n~k′
���Qa

���n~kE=−

D
n~k′
����Qa;Ti

����n~kE
ei~k′ ·~ai − ei~k ·~ai

[9]

is inversely proportional to ð~k′−~kÞ ·~ai, leading again to a non-
vanishing coupling in Eq. 7 even at ~k′=~k. Note that ½Qa;Ti�≠ 0
follows from ½Qa;Pi�≠ 0.
Before turning to specific examples we discuss consequences

of the nonvanishing couplings.

Non-Fermi Liquid and Overdamped Goldstone Bosons. A non-
vanishing coupling connects our problem to well-studied
problems of a Fermi surface interacting with gauge or critical
bosons. The vertex ~v~k′;~k =−eð~k′+~kÞ=2m of the gauge coupling
−e~A ·~j does not vanish at ~k′=~k. Similarly, the Yukawa in-
teraction between q= 0 critical bosons and electrons is not
severely restricted by symmetries and nonvanishing couplings
are expected (e.g., Yukawa couplings). We can readily argue,
via the one-loop calculation below, that nonvanishing cou-
plings destabilize the fixed point of free NGBs and a decou-
pled Fermi liquid. The actual fate of this strongly coupled
problem—a non-Fermi liquid, a superconductor, or some other
state—requires a case-by-case analysis and is currently under active
investigation.
The boson self-energy correction Πabðν;~qÞ from diagrams 2a

and 2b of Fig. 2 is dominated by (SI Text)

Π
ab

�
ν;~q
�
=−iπ

ν��~q�� γab
�
q̂
�
;

γab
�
q̂
�
=
Z

ddk

ð2πÞd
va~k;~kv

b
~k;~k

δ
�
e~k
�
δ
	
q̂ · ~∇~ke~k



:

[10]

The first delta function puts the electron momentum ~k on the
Fermi surface and the second one further restricts ~k into a sub-
space where ~q is tangential to the Fermi surface. Note that the
correction in Eq. 10 vanishes if va~k;~k = 0 (we have suppressed the
band index n). The one-loop corrected boson propagator
D−1 =D−1

0 −Π has overdamped poles ν∝ − iq3 due to the singu-
larity in Eq. 10. Thus, the NGBs are destroyed (overdamped) by
interaction with the Fermi surface at this order.
Now, one can study the lifetime of fermionic quasiparticles by

evaluating diagram 3 of Fig. 2 with the corrected propagator D;
the result is (23)

τ−1 ≡ −2  Im  Σ∝ωd=3: [11]

Therefore, Landau’s criterion ωτ→∞ as ω→ 0 does not hold
when d≤ 3, implying the breakdown of the FL theory.
Thus, this one-loop treatment at least shows the instability of

FLs and NGBs against infinitesimal couplings with~v~k;~k ≠ 0. The
ultimate fate of these interacting systems continues to be an
active area of research (10, 12–14) and we do not expand further
on that aspect here. We merely establish the condition when
interactions with NGBs are relevant and render the decoupled
fixed point unstable, similarly to other well-studied cases.
Below, we demonstrate our general criterion through examples.

Examples
Internal Symmetries—Conventional Coupling. Let us first discuss
interactions between electrons and magnons in ferromagnets (in
the absence of spin-orbit interactions). The coupling between
the ferromagnetic order parameter ~n and the electron spin
~s=ψ†ð~σ=2Þψ (~σ is the Pauli matrix) may not contain any deriv-
atives; e.g.,

Hel−magnon = J~n ·~s: [12]

Hence it is not obvious that the electron–magnon vertex vanishes
in the limit of small momentum transfer. However, we know it
must from our general criterion, as the spin ~S and the momen-
tum ~P commute.
To see this more explicitly, we perform a local SUð2Þ rotation

Uð~x; tÞ defined by U†ð~x; tÞ~nð~x; tÞ ·~σUð~x; tÞ= σz. Now, the spin–spin
interaction becomes a Zeeman field along sz, while electron–
magnon interactions are included in derivatives of the rotated
electron field ∂μψ =Uð∂μ + iAμÞψ ′ through Aμ ≡ − iU†∂μU. If we
expand Aμ in series of NGB fields, each term contains one de-
rivative acting on them. Therefore, electron–magnon interac-
tions vanish in the limit of small energy-momentum transfer
(more details in SI Text).
In general, generators Qa of internal symmetries commute with

~P and therefore we always obtain vanishing couplings.

Continuous Space Rotation—Nonvanishing Coupling. Our first non-
trivial example is the spontaneous breaking of continuous spatial
rotation symmetry. For concreteness, consider nematic order in
2+ 1 dimensions, in which a circular Fermi surface is distorted
into an ellipse in the ordered phase. The generator of SOð2Þ
spatial rotations is Lz, which does not commute with the mo-
mentum operator, ½Lz;Pi�= ieijPj ≠ 0 (where i; j∈ fx; yg). Hence,
from Eq. 8, we expect a nonvanishing coupling
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v~k;~k = eij

D
~k
���pj���~kE∂kie~k; [13]

where we assume a single band and, for simplicity, ignore spin.
To see this from an explicit calculation, suppose that the

spatial SOð2Þ rotation is spontaneously broken by the order pa-
rameter h~ni= ð1; 0ÞT . The Goldstone fluctuation θ of the order
parameter ~n= ðcos θ; sin θÞT can couple to the spinless electron
field ψ via, e.g., Hint = ðχ=2mÞ��~n · ~∇ψ��2 as both ∇ψ and ~n are
vectors. Expanding the interaction to first order in θ ½~n∼ ð1; θÞT �,
we have

Hð0Þ
int = χ

∇xψ†∇xψ

2m
; [14]

Hð1Þ
int = χθ

∇xψ†∇yψ +∇yψ†∇xψ

2m
: [15]

Hence, the single-particle electron Hamiltonian is given by

H0 =
~p2

2m
+ χ

p2x
2m

; [16]

leading to a single-particle dispersion e~k = ½ð1+ χÞk2x + k2y �=2m for
plane waves with wave vector k.
By directly evaluating the matrix element of Eq. 15 for plane

waves, we get

v~k′;~k =
χ

2m
�
kx′ky + kxky′

�
: [17]

This is consistent with our criterion in Eq. 13. Indeed, using
the above dispersion e~k and

�
n~k
��pj��n~k�= kj in Eq. 13, one gets

v~k;~k = χkxky=m, which agrees with Eq. 17 in the limit ~k′→~k.
Note that the vertex does not vanish at~k′=~k for generic points

on the Fermi surface, except for few high-symmetry points with
kx = 0 or ky = 0. Therefore, at most of a part of the Fermi surface,
the quasiparticle lifetime is heavily suppressed by the interaction
with the NGB θ that originated from spontaneously broken
continuous rotation. A nematic order of an elliptically distorted
Fermi surface (20, 21) and a ferromagnetic order in the presence
of a Rashba interaction (22, 24) are known examples of this
mechanism.
Finally, let us remark on a subtlety regarding space–time

symmetries. In certain cases, even if the spatial rotation is
spontaneously broken, NGBs associated with the broken rotation
may not appear. Suppose translations px;y are spontaneously broken
in 2+ 1 dimensions. Although rotation symmetry is also broken, it
does not lead to independent NGBs. Phonons originating from px;y
play the role of the NGB of ℓz as well, and the fluctuation θ asso-
ciated with ℓz is related to displacement fields by θ= ∂xuy −∂yux.
Although the field θ can couple strongly to electrons, these addi-
tional derivatives annihilate the scattering in the limit of small en-
ergy-momentum transfer. Even when only px or py is broken, ℓz
cannot produce an independent NGB. For example, helimagnets
in 3+ 1 dimensions with the spiral vector along the z axis break
pz − ℓz and ℓx;y but the phonon associated with pz plays the role of
NGBs of ℓx;y and orientational NGBs are absent (25–28).

Magnetic Translation—Nonvanishing Coupling. As a previously un-
identified example of nonvanishing couplings, we discuss con-
tinuous translation under a uniform magnetic field in 2+ 1
dimensions. Suppose that a crystalline order with lattice vectors
f~aigi=1;2 is spontaneously formed, breaking the magnetic trans-
lation and giving birth to phonons (NGBs). We assume an in-
teger flux quantum per unit cell for the commutativity of the

lattice translations Ti ≡ ei~P ·~ai , where ðPx;PyÞ is given by
ð−i∂x; −i∂y + eBxÞ in the Landau gauge ~A=−Byx̂. Due to an ef-
fective periodic potential, the electron band structure becomes
dispersive (Fig. 3). We are interested in coupling the NGBs
(phonons) to quasiparticle excitations near the Fermi surface of
a partially filled band.
In this case, the conserved (magnetic) momenta ~P also play

the role of broken generators Qa =Pa ða= x; yÞ that produce
phonons. Hence, we should look at the commutation relation
½Pa;Pb�=−ieabeB≠ 0. For discrete translations, we have ½~P;Ti�=
−eBẑ×~aiTi (no sum over i), and we expect nonvanishing coupling
from Eqs. 7 and 9:

~vn~k;n~k = eBẑ×~ai
	
~bi · ~∇~ken~k



: [18]

Here f~bigi=1;2 are reciprocal lattice vectors~ai ·~bj = δij. Therefore,
electrons may show NFL behaviors as a result of the nonvanish-
ing interaction with phonons. As we know, in the absence of the
magnetic field B= 0, the electron–phonon coupling is conven-
tional as one can see from Eq. 18.
Let us confirm the nonvanishing coupling in Eq. 18 from a

direct calculation. For simplicity, we assume one flux quantum
per square lattice unit cell and assume the mean-field lattice
potential experienced by electrons is

V
�
~x
�
=−V0

�
cos

2πx
a

+ cos
2πy
a

�
: [19]

The electrons and phonons interact with each other through
the potential Hint =V ð~x−~uÞψ†ψ . Expanding Hint in series of ~u,
we have

H0 =

	
~p− e~A


2
2m

+V
�
~x
�
; [20]

Hð1Þ
int =−~u · ~∇V : [21]

We diagonalize H0 in the strong magnetic field limit, perturba-
tively taking into account the lattice potential to the lowest order
in mV0=eB. In the Landau gauge, the lowest Landau level wave
functions that simultaneously diagonalize Ti are given by ref. 29
(SI Text):

Ψ~k ∝
X
m∈Z

e−ð1=2Þðy=ℓ+ kxℓ+ ð2πℓ=aÞmÞ2+iðkx+ð2π=aÞmÞx−ikyam: [22]

Therefore, the lowest electron band to first order in perturbation
theory is

A B

Fig. 3. (A) Electron band structure under a uniform magnetic field (Landau
levels). (B) A spontaneously generated periodic lattice potential Vð~xÞ pro-
duces dispersing bands. The quasiparticle excitation of the partially filled
band (filled states shaded in blue) has a reduced lifetime due to the non-
vanishing electron–phonon interaction.
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e~k =E0 +
D
~k
���V ���~kE= eB

2m
− ~V

�
cos
�
kya
�
+ cosðkxaÞ

�
[23]

with ~V ≡V0e−ðπℓ=aÞ
2
. Using our formula [18] and the disper-

sion above, we predict the nonvanishing coupling ~v~k;~k =
eB~Vað−sin kya; sin kxaÞ.
Now we directly compute the electron–phonon vertex by

evaluating matrix elements of Eq. 21 with the zeroth-order
wave function [22] and u= u~qei~q ·~x, which gives

~v~k′;~k = eB~Vae−
ðqℓÞ2
4 −iqy

k′x+kx
2 ℓ2

 
−sin ðk′y + ky + iqxÞa

2

sin ðk′x + kx − iqyÞa
2

!
: [24]

This indeed agrees with our formula when ~k′→~k.
Let us now note some important physical consequences. For

our results, it is important that spontaneous breaking of mag-
netic translation symmetry occurs in a system with a uniform
magnetic field. On the other hand, if the underlying symmetry is
regular translation, and magnetic flux is spontaneously generated
in the symmetry-breaking process (as in a skyrmion lattice), this
does not lead to nonvanishing coupling (30), and a Fermi liquid

results. A different but equally valid viewpoint on our result is to
consider the magnetic field being applied after breaking the
translation symmetry (as in a crystal), which should modify the
electron–phonon coupling. Therefore, in a clean metal, a mag-
netic field should induce a nonvanishing coupling between
phonons and electrons. Although in principle this would have
important consequences, in a typical solid, even at the highest
available magnetic fields there is a wide separation ℓ � a be-
tween the magnetic length ℓ= ðeBÞ−1=2 and lattice spacing a. The
typical dispersion of the Landau levels induced by the lattice, and
hence the coupling constant, is e−Cðℓ=aÞ

2 � 1 (SI Text). Thus, al-
though a nonvanishing coupling is expected, its absolute mag-
nitude is extremely small. A more promising physical scenario is
the quantum Hall regime, where ℓ∼ a, and where translation
symmetry breaking into stripe and bubble phases is predicted
and may have been observed in higher Landau levels (31–34).
We leave an analysis of this interesting possibility to future work.
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