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The Tibetan Plateau uplift and Cenozoic global cooling are thought
to induce enhanced aridification in the Asian interior. Although
the onset of Asian desertification is proposed to have started in
the earliest Miocene, prevailing desert environment in the Tarim
Basin, currently providing much of the Asian eolian dust sources, is
only a geologically recent phenomenon. Here we report episodic
occurrences of lacustrine environments during the Late Miocene
and investigate how the episodic lakes vanished in the basin. Our
oxygen isotopic (δ18O) record demonstrates that before the pre-
vailing desert environment, episodic changes frequently alternat-
ing between lacustrine and fluvial-eolian environments can be
linked to orbital variations. Wetter lacustrine phases generally
corresponded to periods of high eccentricity and possibly high
obliquity, and vice versa, suggesting a temperature control on
the regional moisture level on orbital timescales. Boron isotopic
(δ11B) and δ18O records, together with other geochemical indica-
tors, consistently show that the episodic lakes finally dried up at
∼4.9 million years ago (Ma), permanently and irreversibly. Al-
though the episodic occurrences of lakes appear to be linked to
orbitally induced global climatic changes, the plateau (Tibetan,
Pamir, and Tianshan) uplift was primarily responsible for the final
vanishing of the episodic lakes in the Tarim Basin, occurring at
a relatively warm, stable climate period.
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Once part of the Neo-Tethys Sea, indicated by the Paleogene
littoral-neritic deposits with intercalated marine strata (1),

the Tarim Basin in western China (Fig. 1) has experienced dra-
matic environmental and depositional changes during the Ce-
nozoic. The eventual separation of the basin from the remnant
sea probably occurred during the middle to late Eocene (1, 2),
and since then, terrestrial sedimentation and environment have
prevailed. Today, the basin has relatively flat topography with
elevation ranging between 800 and 1,300 m above sea level (asl),
surrounded by high mountain ranges with average elevation ex-
ceeding 4,000 m. Hyperarid climate prevails with mean annual
precipitation <50 mm and evaporation ∼3,000 mm. Active sand
dunes occupy 80% of the basin, forming the Taklimakan Desert,
the largest desert in China and the second largest in the world
(3). Thick desert deposits in the basin also provide a major
source for dust storms occurring in East Asia (4).
The Tibetan Plateau uplift, long-term global cooling, and the

associated retreat of the remnant sea during the Cenozoic,
through their complex interplay, may have all contributed to the
enhanced aridification in the Asian interior and eventually the
desert formation (2, 5–11). Although the onset of Asian de-
sertification is proposed to have started in the earliest Miocene
(12, 13), prevailing desert environment in the Tarim Basin,
currently providing much of the Asian eolian dust sources (4), is
only a geologically recent phenomenon (9). Previous lithological
and pollen studies (9, 14, 15) suggest that the currently prevailing
desert environment started probably at ∼5 Ma. However, what

kind of environmental conditions prevailed before that and how
the dramatic changes occurred largely remain elusive.
To better decipher the aridification history, we used a 1,050-

m-long, continuous sediment core retrieved from Lop Nor
(39°46’0’’N, 88°23’19’’E) in the eastern basin (Fig. S1). The core
site has a relatively low elevation (∼800 m asl) (Fig. 1) and thus
effectively records basin environment. Previous study sites came
from elevated basin margins (9, 14). The core mainly consists of
lacustrine sediments with associated fluvial-eolian sands (Fig. 2).
The core chronology was established previously based on pa-
leomagnetic polarity (15). The total 706 remanence measure-
ments on the continuous sediment profile allow straightforward
correlation with the CK95 geomagnetic polarity timescale (16)
and identification of 14 normal (N1–N14) and 13 reversal (R1–
R13) polarity zones over the last 7.1 Ma (Fig. S1). The CK95
timescale is largely consistent (within a few ky) with that inferred
from marine archives (17) over the last 5.23 Ma, and before
5.23 Ma a practical measure of chronological uncertainty was
estimated to be within ∼100 ky (18), assuring that the terrestrial
records can be directly compared with marine records and or-
bital changes at the timescale of >100 ky. The derived chronol-
ogy yields an average sedimentation rate of ∼200 m/Ma at lower
sections (>1.77 Ma), allowing high-resolution studies of the de-
sertification history at the critical interval.
Boron and oxygen isotopes from carbonates are important

environmental indicators (19–25) and used here to infer the
environmental evolution in the Tarim Basin. We also present
total organic carbon (TOC), calcium carbonate (CaCO3),
ostracod, and grain size records to substantiate the isotopic
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evidence (SI Materials and Methods). Our δ11B profile shows
substantial, stepwise changes over the last ∼7.1 Ma (Fig. 2).
Carbonate δ11B values were −5.0 ± 1.6‰ (n = 3) before 6.0 Ma,
increased rapidly to ∼11‰ at 4.9–6.0 Ma, and then stayed at
roughly the same level (10.7 ± 2.2‰, n = 25) for the remaining
4.9 Ma. Higher-resolution δ18O, TOC, and CaCO3 profiles gen-
erally confirm the pattern observed in the low-resolution δ11B
one (Fig. 2). The δ18O values remained low, ranging from −10‰
to −4‰ over the last 4.9 Ma. However, δ18O values frequently
oscillated between −10‰ and 5‰ before that. Similarly, the
TOC profile shows consistently low organic carbon content (0–
0.2%) after 4.9 Ma and large fluctuations (0–1.0%) before then.
The CaCO3 profile also indicates consistently low values (0–25%)
after 4.9 Ma and large fluctuations (0–50%) earlier (Fig. 2).
The multiple proxy records strongly suggest that critical en-

vironmental changes must have occurred at ∼4.9 Ma. δ11B values
of carbonates from marine sources differ substantially from those
of nonmarine carbonates (19–21). δ11B values after 4.9 Ma are
close to those from marine carbonates, but values before 6 Ma
fall into the range of lacustrine carbonates (22). Positive δ18O
values before 4.9 Ma also indicate lacustrine environments at
that time. Carbonates from modern lakes in arid and semiarid
regions of northwestern China show similar positive δ18O val-
ues (23), due to strong evaporation processes. High TOC and
CaCO3 contents (Fig. 2) further support that lacustrine envi-
ronments existed in the basin before ∼4.9 Ma. δ18O values after
4.9 Ma are comparable to those in Cenozoic soil carbonates (24)
and ancient marine carbonates in the Tarim Basin (25). However,
the accompanying carbonate δ13C values throughout the record,
ranging from −4‰ to 1‰ (Dataset S1), are significantly higher
than those from Cenozoic soil carbonates reported (26), es-
sentially ruling out the possibility of soil carbonate source. Using
modern prevailing desert environment in the basin as an ana-
log, the combined δ11B and δ18O evidence thus suggests that

the sediment deposits in the basin after 4.9 Ma must be eolian-
fluvial in origin and their sources, at least carbonate grains, came
from weathered ancient marine carbonates in nearby regions.
Sedimentological and stratigraphic patterns in other exposed

sections from different parts of the basin (9, 14) share great
similarity with the Lop Nor core profile (Fig. S1). Episodic la-
custrine mudstones and/or siltstones during the Late Miocene
were present in all sections and were replaced by fluvial-eolian
deposits later. Studies of ostracod assemblages (27) also suggest
a shallow paleolake with brackish water environments in the
northern basin during the Late Miocene. Changes in the de-
positional environment from our Lop Nor profile alone could be
plausibly explained by a shift in basin center due to tectonic
compressions, as evidenced from the slightly uplifted central ba-
sin (Fig. 1). However, similar temporal changes occurring basin-
wide at ∼4.9 Ma argue against it. Instead, our results, together
with previous studies (5, 14, 15, 27), suggest that paleolakes were
widely present in the low lands of the basin during the Late
Miocene, much different from currently prevailing desert envi-
ronments with a few scattered small lakes. The existing evidence,
although still limited (Fig. 1), would point to the occurrence of a
possible megalake in the Tarim Basin during the Late Miocene.
Three high-resolution records, δ18O, TOC, and CaCO3, further

suggest that lacustrine environments before ∼4.9 Ma were not
permanent (Fig. 2). These large fluctuations indicate frequent
switches between lacustrine and fluvial-eolian environments in the
basin. High proxy values, δ18O in particular, appear to indicate
lacustrine environments, whereas low values, similar to ones after
4.9 Ma, correspond to fluvial-eolian deposits. This is consistent
with lithological features at this interval, showing argillaceous
limestone intercalated with clayey layers (15), the occurrence of
ostracod assemblages (Fig. 3) from lacustrine sediments, grain size
changes (Fig. S2), and detrital carbonate grains identified in
photomicrographs of fluvial-eolian deposits (Fig. S3).

Fig. 1. Digital elevation model of the Tarim Basin and surrounding mountain ranges. The studied 1,050-m sediment core is retrieved from Lop Nor (1), at a rel-
atively low elevation (∼800 m asl) in the eastern basin. Also indicated are locations of previous studied sections, near Sanju (2), Kuqa (3), and Korla (4) in the basin.
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To further investigate such episodic changes, we performed
spectral analysis on the δ18O record over the interval 4.5–7.1 Ma.
Strong spectral power at orbital frequencies were identified, with
periods of ∼400 ky throughout the interval, ∼41 ky particularly at
6–6.5 Ma, and ∼100 ky at 5–6 Ma and 6.5–7.1 Ma (Fig. S4).
Precessional ∼20-ky power might also have existed but was rel-
atively weak and discontinuous. Lacustrine phase as indicated by
high δ18O values and ostracod assemblages generally occurred at
periods of high eccentricity and obliquity (28) (Fig. 3). At 6–
6.5 Ma, δ18O shows clear correspondence to orbital obliquity
variation (Fig. 3A). Additionally, the number of low δ18O values
(fluvial-eolian environment) occurred more around 6.5, 6.1, 5.6,
and 5.2 Ma, at a ∼400-ky beat following orbital eccentricity
variation (Fig. 3B). The cluster of high δ18O values (>0‰) at
4.9–5.0 Ma signals the last occurrence of lacustrine environments
in the basin. Our orbital association thus allows us to precisely
determine the timing of desert formation at ∼4.9 Ma, ∼400 ky
(an eccentricity cycle) later than the age inferred from basin
margins (9, 14) and yet all occurring at eccentricity minima (Fig.
3B). As high eccentricity and obliquity generally correspond to
warm conditions at orbital timescales, lacustrine (wet) phase
could be associated with warm periods, consistent with the no-
tion that cooler conditions would reduce moisture in the atmo-
sphere and enhance continental drying (10, 11). We recognize
that the chronological uncertainty from the geomagnetic polarity
timescale before 5.23 Ma, within ∼100 ky (18), could confound
our association of wet phase with high obliquity, although it is
unlikely affected at the 400-ky eccentricity beat. However, the
opposite association, wet phase with low obliquity, and the
combination with high eccentricity, would require a different, yet

unknown mechanism that is inconsistent with the orbital theory
of Pleistocene ice ages.
Superimposed on the orbitally episodic changes, the δ18O re-

cord also shows a long-term trend of deteriorating lacustrine
conditions at 4.9–7.1 Ma. As δ18O values indicate two depositional
environments, lacustrine and fluvial-eolian, the range of δ18O
changes (between −10‰ and 5‰) does not vary much over this
period (Fig. 3). Rather, the duration of high δ18O vs. low values
would reflect the long-term trend. The mean δ18O values over
40-ky and 400-ky intervals both show a decreasing trend, with
dominant lacustrine phase before 6.1 Ma, more developed fluvial-
eolian environment at 5.7–6.1 Ma, a return to slightly better
lacustrine environment at 5.3–5.7 Ma, and lacustrine phase per-
manently vanished around 4.9 Ma (Fig. 4).
The gradual disappearance of the Tarim episodic lakes could

be potentially explained by the two driving forces, plateau uplift
(the Tibetan Plateau, Pamir Plateau, and Tianshan) and long-
term global cooling. However, the long-term global climate was
relatively warm and stable during this period (Fig. 4). The global
benthic δ18O record (29) shows that much of the Miocene
cooling occurred between 15 and 11 Ma, and the cooling be-
tween 8 and 5 Ma was minimal. Supporting this view, sea surface
temperature records from the northwestern Pacific (30) show
that almost no cooling occurred between 6 and 4 Ma (perhaps
further to 3 Ma) (Fig. 4). Particularly, the mean global climate
(29, 30) was even warmer at 4.1–4.5 Ma than at 5.7–6.1 Ma,
whereas lacustrine phase permanently disappeared after ∼4.9 Ma
(Fig. 4), indicating decoupling of the lake evolution from global
climate. Therefore, long-term global cooling might have played
a subordinate role in the lake disappearance.
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Fig. 2. Records of δ11B, δ18O, TOC, and CaCO3 changes in the Lop Nor profile. Representative photos show lithological changes mainly from lacustrine bluish
gray argillaceous limestone to fluvial-eolian brown/red clayey silt, as shown in the lithological column with visual colors indicated (15). High levels and large
fluctuations of proxy values occurred only before ∼4.9 Ma, and since then, those remain low and within a small range, largely similar to modern conditions.
The transition from episodic occurrences of lacustrine phases to prevailing desert environments thus appears to be permanent and irreversible.

16294 | www.pnas.org/cgi/doi/10.1073/pnas.1410890111 Liu et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410890111/-/DCSupplemental/pnas.201410890SI.pdf?targetid=nameddest=SF4
www.pnas.org/cgi/doi/10.1073/pnas.1410890111


Instead, the growth of surrounding mountain ranges (Tibetan,
Pamir, and Tianshan)may have blockedmoisture from the west and
south, changed air circulations, and eventually led to the permanent
lake disappearance within the basin. Today, the Tarim Basin
receives limited moisture from westerlies (31) through the Pamir
and Tianshan Ranges (and perhaps from the Indian Ocean in
summertime as well). Although the Indo–Eurasian convergence
since the Late Eocene resulted in high elevations of the Tibetan
Plateau and, to a lesser degree, surrounding mountains including
Pamir and Tianshan by the mid-Miocene time (8), tectonic activities
in broad areas around the Tarim Basin appear to be rejuvenated
since the Late Miocene. Tectonic deformations during the Late
Miocene–Early Pliocene inferred from growth strata, sedimentary
facies changes, and low-temperature thermochronologic studies
occurred in Tianshan to the north of the Tarim Basin, in the Kunlun
Mountains to its south and the Pamir to its west (32–35). Syntectonic
growth strata from the foreland basins of the Kunlun and Tianshan
Ranges (32) show that strong crust shortening and potential
mountain uplift initiated ∼6.5–5 Ma and lasted to the Early Pleis-
tocene (Fig. S5), similarly reported in northern Pamir (33). Ceno-
zoic sequences in the Pamir–Tianshan convergence zone, changing
from an arid continental plain to an intermountain basin by ∼5 Ma,
support surface uplift of the west margin of the Tarim Basin (34).
Occurrence of detrital apatite fission track ages from West Kunlun
Ranges (35) also peaked at ∼4.5 Ma (Fig. 4). Thus, the reactivated
uplift of Pamir andWest Kunlun Ranges and northward movement
of Pamir during the Late Miocene–Pliocene would progressively
block moisture into the basin and enhance regional aridity to
a certain threshold to terminate lacustrine environments even dur-
ing warm periods with favorable orbital configuration. Although
inconsistencies indeed exist in linking regional climatic and envi-
ronmental changes to tectonic events (8), the final vanishing of the
Tarim episodic lakes is better explained by tectonic factors.
Therefore, our multiple-proxy results consistently show that

the Taklimakan sand sea began to form at ∼4.9 Ma and that the

transition into prevailing desert environment was permanent and
irreversible. The episodic occurrences of lacustrine environments
at favorable climatic conditions (warm periods) during the Late
Miocene suggest that uplifted mountain ranges then were not
high enough to effectively block moisture from being transported
into the basin. The transition from episodic lacustrine environ-
ments to prevailing desert deposits was gradual, from 7.1 Ma (or
earlier beyond our record) to 4.9 Ma, for which we suggest that
although long-term global cooling enhanced the overall aridifi-
cation in the Asian interior during the Late Cenozoic (10, 11),
plateau uplift played a more important role in finally drying up
the episodic lakes within a relatively warm, stable climate period,
thus decoupling regional climate temporally from a global trend.
Our high-resolution records thus demonstrate that regional cli-
mate in the Tarim Basin reached a critical state in the Late
Miocene, with the dual effects from global climate conditions and
regional tectonic settings then. With global climate remaining rel-
atively stable and warm entering the Pliocene, by ∼3–4 Ma (Fig. 4),
drying up of episodic lakes at ∼4.9 Ma could thus be largely
attributed to rejuvenated tectonic activities.

Materials and Methods
We conducted 33 δ11B, ∼2,000 δ18O and CaCO3, and ∼1,000 TOC analyses
from the 1,050-m-long sediment core. High-resolution (2–4 ky) measure-
ments for the last three proxies were performed from the core depth of 300–
1,050 m to resolve detailed features at orbital timescales. For δ11B analysis,
about 5 g of clay sediments were dissolved in HCl and purified. The isotope
composition of boron was measured using a positive thermal ionization
mass spectrometry based on the measurement of Cs2BO2

+ with graphite
and reported in the delta (δ) notation relative to National Institute of
Standards and Technology standard NIST SRM951. Typical analytical
error is within 0.15‰. For δ18O analysis, ∼1 g of sediments was groun-
ded and sieved through a 100-mesh screen. Analyses of carbonate
samples were performed using an isotope ratio mass spectrometer
[MAT-252 (Finnigan)] with an automated carbonate preparation device
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(Kiel II). Oxygen isotope composition is expressed in the delta (δ) no-
tation relative to the V-PDB (Vienna-Pee Dee Belemnite) standard.
Typical analytical error is within ±0.1‰. Organic carbon content was
determined with the wet oxidation method, and CaCO3 was determined
by using the neutralization-titration method. Detailed methods and any
associated references can be found in SI Materials and Methods.
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