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We propose a formal method to declare that findings from a primary
study have been replicated in a follow-up study. Our proposal is
appropriate for primary studies that involve large-scale searches
for rare true positives (i.e., needles in a haystack). Our proposal
assigns an r value to each finding; this is the lowest false discovery
rate at which the finding can be called replicated. Examples are
given and software is available.
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We are concerned with situations in which many features are
scanned for their statistical significance in a primary study.

These features can be single-nucleotide polymorphisms (SNPs)
examined for associations with disease, genes examined for differ-
ential expression, pathways examined for enrichment, and protein
pairs examined for protein–protein interactions, etc. Interesting
features are selected for follow-up, and only the selected ones
are tested in a follow-up study.
This approach addresses two goals. The first goal is to increase

the number of cases to increase the power to detect a feature, at
a lower cost. The second goal is to address the basic dogma of
science that a finding is more convincingly a true finding if it is
replicated in at least one more study. Replicability has been the
cornerstone of science as we know it since the foundation of
experimental science. Possibly the first documented example is
the discovery of a phenomenon related to vacuum, made by
Huygens in Amsterdam in the 17th century, who traveled to
Boyle’s laboratory in London to replicate the experiment and
prove that the scientific phenomenon was not idiosynchronic to
his specific laboratory with his specific equipment (1). In modern
research, the lack of replicability has deeply bothered behavioral
scientists that compare the behavior of different strains of mice,
e.g., in knockout experiments. It is well documented that in
different laboratories, the comparison of behaviors of the same
two strains may lead to opposite conclusions that are both sta-
tistically significant (refs. 2, 3, and 4, chap. 4). An explanation
may be the different laboratory environment (i.e., personnel,
equipment, measurement techniques) affecting differently the
study strains (i.e., an interaction of strain with laboratory). This
means that the null hypothesis that the effect is, say, nonpositive
is true in one laboratory, but false in the other laboratory, and
thus the positive effect is not replicated in both laboratories. In
genomic research, the interest is in the genetic effect on phe-
notype. In different studies of the same associations with phe-
notype, we seem to be testing the same hypotheses but the hy-
potheses tested are actually much more particular. Whether a
hypothesis is true may depend on the cohorts in the study that
are from specific populations exposed to specific environments
(for particular examples, see Results). However, if discoveries are
made, it is of great interest to see whether these discoveries are
replicated in different cohorts, from different populations, with
different environmental exposures and different measurement
techniques. The paramount importance of having replicated find-
ings is well recognized in genomic research (5). In particular, this is
so in genome-wide association studies (GWAS) (6, 7). As noted in

ref. 8, the anticipated effects for common variants in GWAS are
modest and very similar in magnitude to the subtle biases that may
affect genetic association studies—most notably population strati-
fication bias. For this reason, it is important to observe the same
association in other studies using similar, but not identical, sub-
populations and methods. Obviously, splitting the data from the
same study into two independent parts and doing the same
analysis on each does not answer the above concerns.
Replicability problems arise in many additional scientific areas,

and discussions of these problems reached prominent general-
interest venues, for instance refs. 9 and 10. We need to have an
objective way to declare that a certain study really replicates the
findings in another study. This paper makes a concrete, objec-
tive, easy to apply, and rigorously motivated way to determine
that a finding has been replicated.

Replicability vs. Metaanalysis
In many areas it is common to combine the results of studies that
examine the same scientific hypotheses by a metaanalysis. Pooling
results across studies is especially attractive when single studies are
underpowered, using the potential increase in power of combining
the studies, but the metaanalysis P value tests only the null hy-
pothesis of no signal in all studies. As a result, a strong signal in one
of the studies (with P value close to zero) is enough to declare the
metaanalysis finding highly significant. In statistical terms, denoting
the hypothesis that there is no real effect for feature j in study i by
H0iðjÞ, the metaanalysis P value tests the intersection null hy-
pothesis ∩iH0iðjÞ that there is no effect in all studies. Rejection of
the intersection hypothesis establishes that in at least one study
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The use of big data is becoming a central way of discovering
knowledge in modern science. Large amounts of potential
findings are screened to discover the few real ones. To verify
these discoveries a follow-up study is often conducted,
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in other areas where high-throughput methods are used. We
show how to decide whether promising findings from the
preliminary study are replicated by the follow-up study,
keeping in mind that the preliminary study involved an ex-
tensive search for rare true signal in a vast amount of noise.
The proposal computes a number, the r value, to quantify the
strength of replication.
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H0iðjÞ is false, but possibly only in a single one. Thus, a meta-
analysis discovery based on a few studies is no better than a dis-
covery from a single large study in assessing replicability.
In GWAS, a typical table of results reports the P values in the

primary and follow-up study, side by side, as well as the meta-
analysis P values, for the SNPs with the smallest metaanalysis
P values. Table 1 (columns 1–6) is an example of such a table of
results (11). In replicability analysis, the null hypothesis of signal
in at most one study is tested, the rejection of which yields the
statistical significance of the replicability claim. In statistical terms,
the replicability claim is established for feature j by rejecting the
union null hypothesis H01ðjÞ∪H02ðjÞ.
Note that replicability is sometimes referred to as reproducibility,

but we prefer to view reproducibility as a property of each single
study, a distinction made in ref. 12.

The r Value for Replicability
If each study examines only a single hypothesis, and the hy-
pothesis in one study is rejected at the 0.05 level, and the hy-
pothesis in the second study is also rejected in the same direction
at the 0.05 level, then replicability is intuitively established. This
is also a sound claim, in the sense that the probability of claiming
that a finding is replicated if the null hypothesis is true in at least
one of the studies is at most 0.05. The need for a statistical
framework for establishing replicability becomes essential with the
use of high-throughput methods. The potential to err in inference
when more than one study is involved is more severe when each
study is examining simultaneously many features. The choices for
selection are much wider. Therefore, the statistical methods needed
are more complicated than the very intuitive statistical method for
establishing replicability when a single feature is involved.
Multiple-testing methods are widely used to adjust for the

effect of selection, either by controlling the probability of erro-
neously selecting even a single feature [i.e., the family-wise error
rate (FWER)] or by controlling the false discovery rate (FDR).
The concern regarding the selected claims of replicability is even
greater, because the selection takes place both after the primary
study and after the follow-up study. Our method reports the r
value that can be defined for either error rate for replicability
analysis. Here we emphasize the FDR:
Definition: The FDR r value for feature i is the lowest FDR level
at which we can say that the finding is among the replicated ones.
The smaller the r value is, the stronger the evidence in favor of

replicability of the finding. It can be compared with any desired
level of FDR in the same way that a P value is commonly compared
with the desired false detection parameter α.
In this work we introduce a method for computing r values for

features examined in primary and follow-up studies. We suggest
to complement tables of results that report for selected findings

the primary, follow-up, and metaanalysis P values with an addi-
tional column of r values. The r values in column 7 of Table 1 are
all below 0.05, concurring with the main replicability findings of ref.
11. The ranking of r values is different from the ranking of the
metaanalysis P values, indicating the novelty of the added in-
formation. Table 2 shows the results of a somewhat more com-
plicated example discussed below, where the difference between
the metaanalysis and the replicability conclusions is more dramatic.

Assessing Replicability from Follow-up Studies
We concentrate on the widely used design in “omics” that examines
m features in the primary study and only a fraction thereof in the
follow-up study. For other designs, see Assessing Replicability in
Other Designs.
When m= 1, as we discussed above, replicability is established

at the 0.05 significance level if both P values are at most 0.05.
When m> 1, the multiplicity of features should be taken into
account. Note that replicability cannot be assessed by the fol-
lowing common practice: Features are screened in a primary
study, then the features with promising results are followed, and
then the discoveries are based only on a testing procedure ap-
propriate for the single follow-up study. This is so for two rea-
sons: first, because screening is typically done without appropriate
control over false positives (examples in Results); and second,
even if the screening procedure controls the false positives at
a level appropriate for the single primary study, this level needs
to be further adjusted. Otherwise, applying a testing procedure
appropriate for the single follow-up study is not enough to offer
control over false replicability claims.
A simple approach can be to apply a multiple-testing pro-

cedure on the maximum of the two studies’ P values, setting
conservatively the maximum value at one if the feature was not
followed up. This is not recommended because the price paid for
multiplicity is too large. More powerful procedures for FWER
and FDR control were suggested for this design in ref. 13, in
which effectively the primary study P values have to be adjusted
for the multiplicity of m hypotheses, but the follow-up study
P values need to be adjusted only for the multiplicity of the
hypotheses followed up. Here we suggest a generalization of
the method of ref. 13, which offers further power gain in the
typical situation in omics research where most of the hypoth-
eses examined in the primary study are true null hypotheses.
We demonstrate our proposal on P values from GWAS.

Table 1. Replicability analysis for FDR control for the study of
ref. 11: GWAS of IgA nephropathy in Han Chinese

Chr. Position Gene p1 p2 p_meta r value

6 32,685,358 HLA-DRB1 8.19e-08 8.57e-14 4.13e-20 0.0074
8 6,810,195 DEFAs 2.04e-07 1.25e-07 3.18e-14 0.0090
6 32,779,226 HLA-DQA/B 3.28e-08 3.57e-06 3.43e-13 0.0059
22 28,753,460 MTMR3 2.30e-07 2.02e-05 1.17e-11 0.0090
6 30,049,922 HLA-A 4.05e-09 3.68e-04 1.74e-11 0.0090
17 7,403,693 TNFSF13 1.50e-06 2.52e-05 9.40e-11 0.0413
17 7,431,901 MPDU1 5.52e-07 3.16e-04 4.31e-10 0.0169

The number of SNPs in the primary study was 444,882, and 61were followed
up. For the seven most significant metaanalysis P values, the position (columns
1–3), the primary and follow-up study P values (columns 4 and 5), the meta-
analysis P values (column 6), and the r values (column 7) are shown. Table S1
shows the results for all 61 SNPs followed up. The lower bound for f00 was
l00 = 0:8 for the r-value computation.

Table 2. Replicability analysis for FDR control for the study of
ref. 17 on GWAS of T2D

Chr. Position p.primary p1 p2 p_meta r value

7 27,953,796 1.55e-04 8.07e-05 1.34e-07 4.96e-14 0.0055
10 12,368,016 4.21e-04 5.40e-05 1.49e-04 1.21e-10 0.0055
12 69,949,369 1.80e-05 9.83e-03 4.35e-05 1.11e-09 0.1490
2 43,644,474 1.83e-04 1.62e-03 9.22e-05 1.12e-09 0.0441
3 64,686,944 5.44e-04 1.02e-04 3.47e-03 1.17e-08 0.0254
1 120,230,001 1.14e-04 2.89e-03 1.95e-03 4.10e-08 0.0604
12 53,385,263 3.18e-05 3.11e-03 8.81e-03 1.79e-07 0.0604
3 12,252,845 1.05e-05 4.50e-03 1.22e-02 1.97e-07 0.0765
1 120,149,926 1.35e-03 1.17e-03 7.84e-03 4.04e-07 0.0431
6 43,919,740 5.41e-05 1.46e-03 9.49e-02 4.03e-06 0.2090
2 60,581,582 3.38e-05 1.38e-03 6.54e-01 1.02e-04 1.0000

The number of SNPs in the first follow-up study was 68, and 11 were
followed up to the second follow-up study. For these 11 SNPs, the positions
(columns 1 and 2), the primary study P values and first and second follow-up
studies P values (columns 3–5), the metaanalysis P values from all three
studies (column 6), and the r values quantifying the evidence of replicability
from the first to the second follow-up study (column 7) are shown. The lower
bound for f00 was l00 = 0 for the r-value computation, because the set of SNPs
in the first follow-up study is already believed to be associated with T2D.
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However, the P values can obviously come from other appli-
cations such as exome-sequencing studies, ChIP experiments,
or microarray studies.
Let f00 denote the fraction of features, of the m features ex-

amined in the primary study, that are null in both studies. We
cannot estimate f00 from the data, because only a handful of
promising features (SNPs) are followed up in practice. However,
f00 is typically closer to one than to zero, and we can give
a conservative guess for a lower bound on f00, call it l00. In typical
GWAS on the whole genome, l00 = 0:8 is conservative. We can
exploit the fact that l00 > 0 to gain power.

Computation of r Values for FDR Replicability.

i) Data input:
a) m, the number of features examined in the primary study.

b) R1, the set of features selected for follow-up based on
primary study results. Let R1 = jR1j be their number.

c) fðp1j; p2jÞ: j∈R1g, where p1j and p2j are, respectively, the
primary and follow-up study P values for feature j∈R1.

ii) Parameters input:
a) l00 ∈ ½0; 1Þ, the lower bound on f00 (see above); default value
for whole-genome GWAS is l00 = 0:8.

b) c2 ∈ ð0; 1Þ, the emphasis given to the follow-up study (Var-
iations section); default value is c2 = 0:5.

iii) Definition of the functions fiðxÞ; i∈R1; x∈ ð0; 1Þ:
a) Compute c1 = ð1− c2Þ=ð1− l00ð1− c2xÞÞ.
b) For every feature j∈R1 compute the following e values:

ej =max
�
1
c1

p1j;
R1

mc2
p2j

�
; j∈R1:

c) Let fiðxÞ=minfj:ej≥ei;j  ∈ R1gðejm=rankðejÞÞ, where rankðejÞ is
the rank of the e value for feature j∈R1 (with maximum rank
for ties).

iv) The FDR r value for feature i∈R1 is the solution to fiðriÞ= ri
if a solution exists in ð0; 1Þ and 1 otherwise. The solution is
unique; see SI Text, Lemma S1.1 for a proof.

The r values can be computed using our web application,
which is available in RStudio (spark.rstudio.com/shayy/radjust).
An R script is also available in RunMyCode, www.runmycode.org/
companion/view/542.
The adjustment in step iiic is similar to the computation of the

adjusted P values (14) for the Benjamini–Hochberg (BH) pro-
cedure (15), the important difference being that e values are
used instead of P values. The replicability claims at a prefixed
level q, say q= 0:05, are all indexes with r values at most 0.05.
The FDR for replicability analysis is then controlled at level 0.05;
details are in Derivation and Properties.
For l00 = 0, declaring as replicated the findings with r values at

most q coincides with procedure 3.2 in ref. 13. It is easy to see
that with l00 > 0, we will have at least as many replicability claims
as with procedure 3.2 in ref. 13. Next we show in GWAS ex-
amples and simulations that the power increases with l00 and can
lead to many more discoveries than with procedure 3.2 in ref. 13,
while maintaining FDR control.

Results. We consider three recent articles reporting GWAS,
where hundreds of thousands of SNPs are examined in the pri-
mary studies, and only a small fraction of these SNPs are ex-
amined in the follow-up studies. In these examples, the primary
and follow-up studies differ in the subpopulations examined and

may also differ in design and analysis. In addition, the primary
and follow-up studies may differ in quality. It is therefore of
scientific importance to discover which associations were repli-
cated. The examples differ in design and in the selection rules for
forwarding SNPs for follow-up. In the first example, there is one
primary study and one follow-up study, a few dozen SNPs are
followed up, and only a handful have r values below 0.05. In the
second example, the primary study is a metaanalysis of three
studies, more than a hundred hypotheses are followed-up, and
a few dozen SNPs have r values below 0.05. In the third example,
there are three stages: a primary study, then a follow-up study,
and then an additional follow-up study that is based on the first
follow-up study.
Our first example is GWAS of IgA nephropathy in Han Chinese

(11). To discover association between SNPs and IgA nephropathy,
444,882 SNPs were genotyped in 1,523 cases from southern China
and 4,276 controls from Singapore and from southern and
northern China, with the same ancestral origin. For follow-up,
61 SNPs were measured in two studies: 1,402 cases and 1,716
controls from northern China and 1,301 cases and 1,748 con-
trols from southern China. The 61 SNPs selected for follow-up
had primary study P values below 10−5. Table 1 shows the 7 SNPs
with the smallest metaanalysis P values, of the 61 SNPs followed
up. The associations for these 7 SNPs have been replicated with
r values ≤  0:05 for l00 = 0:8. The 7 SNPs clearly stand out from
the remaining 54 SNPs followed up that have r values of 1 (Table
S1). If the researcher is willing to assume only a lower bound of
0.5 or of 0 for f00, then the r values are larger than with l00 = 0:8.
Table S1 shows that with l00 = 0:5 and l00 = 0, respectively, only
6 and 5 SNPs had r values below 0.05.
Our second example is GWAS of Crohn’s disease (CD). To

discover associations between SNPs and CD (16), 635,547 SNPs
were examined in 3,230 cases and 4,829 controls of European
descent, collected in three separate studies: NIDDK4, WTCCC5,
and a Belgian–French study. For follow-up, 126 SNPs were mea-
sured in 2,325 additional cases and 1,809 controls as well as in an
independent family-based dataset of 1,339 trios of parents and their
affected offspring. The two smallest P values in each distinct region
with primary study P values below 5× 10−5 were considered for
follow-up. Table S2 shows the 126 SNPs followed up. Applying our
proposal with parameter l00 = 0:8, we decide that 52 SNPs have
replicated associations at r values ≤  0:05. The 52 SNPs with repli-
cated associations did not correspond to the 52 SNPs with the
smallest metaanalysis P values. For example, the SNP in row 35 had
the 35th smallest metaanalysis P value, but its r value was 0.09, and
thus it was not among the 52 replicated discoveries. The last column
of Table S2 marks the 30 SNPs that were highlighted as “convinc-
ingly (Bonferroni P< 0:05) replicated CD risk loci,” based on the
follow-up study P values, in table 1 of the main text of ref. 16. These
30 SNPs have r values below 0.05, so they are a subset of the 52
replicated discoveries. Our replicability analysis discovers more loci,
in particular three loci (rows 34, 44, and 59 in Table S2) that did not
reach the conservative Bonferroni threshold of ref. 16 in the follow-
up study P values, yet were pointed out in table 2 of ref. 16 to be
“nominally (uncorrected P< 0:05) replicated CD risk loci.”
Our third example is GWAS of type 2 diabetes (T2D). To

discover association between SNPs and T2D (17), more than 2
million SNPs were imputed from about 400,000 SNPs collected
in 4,549 cases and 5,579 controls combined from three separate
studies: DGI, WTCCC, and FUSION. For follow-up, 68 SNPs
were measured in 10,037 cases and 12,389 controls combined
from additional genotyping of DGI, WTCCC, and FUSION. The
68 SNPs chosen for follow-up had primary study P values below
10−4, and they were in loci that were not discovered in previous
studies. For additional follow-up, 11 of the 68 SNPs were measured
in 14,157 cases and 43,209 controls of European descent combined
from 10 centers. The 11 SNPs forwarded for an additional follow-up
had P values below 0.005 in the first follow-up study, as well as
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metaanalysis P values below 10−5 when combining the evidence
from the primary study and the first follow-up study. Although there
was no evidence of replicability from the primary study to the fol-
low-up studies, there was evidence of replicability from the first
follow-up study to the second follow-up study. Table 2 shows the
11 SNPs followed up from the first follow-up study to the second
follow-up study. Applying our proposal with l00 = 0, we decide
that 5 SNPs have replicated associations with r-values ≤  0:05. Note
that we set l00 = 0 because most of the 68 SNPs in the first follow-
up study are already believed to be associated with the disease.

Derivation and Properties
Here we give the formal framework for replicability analysis and the
theoretical properties of our proposal. The family of m features
examined in the primary study, indexed by I = f1; . . . ;mg, may be
divided into four subfamilies with the following indexes: I00, I01, I10,
and I11, for the features with hypotheses that are, respectively, null
in both studies, null in the primary study only, null in the follow-up
study only, and nonnull in both studies. Suppose R replicability
claims are made by an analysis. Denoting by Rij the number of
replicability claims from subfamily Iij, R11 is the number of true
replicability claims, and R−R11 =R00 +R01 +R10 is the number of
false replicability claims.
The FDR for replicability analysis is the expected proportion

of false replicability claims among all those called replicated:

FDR=E
�
R00 +R01 +R10

maxðR; 1Þ
�
:

Definition:A stable selection rule satisfies the following condition:
for any j∈R1, fixing all primary study P values except for p1j
and changing p1j so that j is still selected, will not change the
set R1.
Stable selection rules include selecting the hypotheses with

P values below a certain cutoff or by a nonadaptive multiple-
testing procedure on the primary study P values, such as the BH
procedure for FDR control or the Bonferroni procedure for
FWER control, or selecting the k hypotheses with the smallest
P values, where k is fixed in advance.

Theorem 1. A procedure that declares findings with r values at
most q as replicated controls the FDR for replicability analysis at
a level at most q if the rule by which the set R1 is selected is
a stable selection rule, l00 ≤ f00, and the P values within the fol-
low-up study are jointly independent or are positive regression
dependent on the subset of true null hypotheses (property PRDS)
and are independent of the primary study P values, in one of the
following situations:

i) The P values within the primary study are independent.
ii) There is arbitrary dependence among the P values within the

primary study, when in step iii m is replaced by mp =m
Pm

i=11=i:
iii) There is arbitrary dependence among the P values within the

primary study, and the selection rule is such that the primary
study P values of the features that are selected for follow-up are
at most a fixed threshold t∈ ð0; 1Þ, when c1 computed in step
iiia is replaced by

~c1ðxÞ=max

(
a :a

 
1+

XØtm=ðaxÞ−1e

i=1

1
i

!
= c1ðxÞ

)
;

where c1ðxÞ= ð1− c2Þ=ð1− l00ð1− c2xÞÞ. Steps iiib and iiic remain
unchanged. In step iv, the FDR r value for feature i∈R1 is
ri =minfx : fiðxÞ≤ xg if a solution exists in ð0; 1Þ and 1 otherwise.

See SI Text, section S1, for a proof. The implication of item iii is
that for FDR replicability at level q, if t≤ c1ðqÞq=m, no modification
is required, so the procedure that declares as replicated all features
with r values at most q controls the FDR at level q on replicability
claims for any type of dependency in the primary study. Note that
the modification in item iii will lead to more discoveries than the
modification in item ii only if t< c1ðqÞq=ð1+

Pm−1
i=1 1=iÞ.

In SI Text, section S5, we show realistic GWAS simulations
that preserve the dependency across P values in each study.
For l00 ∈ f0; 0:8; 0:9; 0:95; 0:99g, the FDR of the procedure
that declares findings with r values (computed in steps i–iv of the
original proposal) at most 0.05 as replicated is controlled below
level 0.05, suggesting that this procedure is valid for the type of
dependency that occurs in GWAS. Because this procedure can
be viewed as a 2D variant of the BH procedure, and the BH
procedure is known to be robust to many types of dependencies,
we conjecture that for l00 ≤ f00, our procedure controls the FDR
at the nominal level q for most types of dependencies that occur in
practice, even if hypotheses with primary study P values above
c1ðqÞq=m are followed up. In Table S3 we further show the su-
perior power of our procedure over applying the BH procedure on
the maximum of the two studies’ P values (at level 0:05=ð1− l00Þ,
where the maximum value is set to 1 for j∉R1).

Variations
Choice of Emphasis Between the Studies. The e-value computation
requires combining the P values from the primary and the follow-
up study, using a parameter c2, which we set to be c2 = 0:5 in the
computation above. More generally, for FDR control we need to
first select c2 ∈ ð0; 1Þ. We shall show the effect the choice of c2 has
on the r values for given P values and argue from power consid-
erations that the choice c2 = 0:5 is reasonable.
The following procedure is identical to that of declaring the

set of findings with r values at most q as replicated; see proof in
SI Text, Lemma S1.1. First, compute the number of replicability
claims at level q as follows:

R2≜max

(
r :
X
j∈R1

I

��
p1j; p2j

�
≤
�
r
m
c1ðqÞq; r

R1
c2q
��

= r

)
:

Next, declare as replicated findings the set

R2 =

�
j :
�
p1j; p2j

�
≤
�
R2

m
c1ðqÞq; R2

R1
c2q
�
; j∈R1

	
:

From this equivalent procedure it is clear that a larger choice
c2 ∈ ð0; 1Þ will make the threshold that p2j has to pass larger, but
the threshold that p1j has to pass smaller, so for the extreme
choice c2 ≈ 1, the discovered findings can only be features with tiny
primary study P values, and for the extreme choice of c2 ≈ 0, the
discovered findings can only be features with tiny follow-up study
P values. For q small, the primary and follow-up study P values will
have the same threshold if ð1=mÞðð1− c2Þ=ð1− l00ÞÞ= c2=R1; i.e.,
c2 = 1=ð1+mð1− l00Þ=R1Þ, which is close to zero if R1=m is very
small (as is typical in GWAS). Therefore, this choice is not rec-
ommended unless the power of the follow-up study is extremely
large. For the choice c2 = 0:5, the threshold for the follow-up study
P value is larger than for the primary study P value by approximately
the factor mð1− l00Þ=R1, i.e., the ratio of the number of hypotheses
that should be adjusted for in the primary study to that in the fol-
low-up study. We show next that this choice is good from
efficiency considerations.
In simulations, detailed in SI Text, section S4, we observed that

for a given l00 the optimal c2, i.e., the choice of c2 that maximizes
power, has only a small gain in power over the choice c2 = 0:5. We
considered m= 1; 000 SNPs, of which f00 = 0:9 had no signal,
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f01 = 0:025 had signal only in the follow-up study, f10 = 0:025
had signal only in the primary study, and f11 = 0:05 had signal in
both studies. The power to detect the signal in the primary study
was set to be π1 = 0:1 for a threshold of 0:05=m, and the power
to detect the signal in the follow-up study was set to be
π2 ∈ f0:8; 0:5; 0:2g for a threshold of 0:05=R1. The selection rule
for follow-up was the BH procedure at level c1ðqÞq on the pri-
mary study P values, with q= 0:05. SI Text, section S3 has a dis-
cussion of the advantage of this selection rule over other
selection rules.
The power increased with l00 as well as with π2. Table S4 shows

that the gain in power of using l00 > 0 over l00 = 0 can be large.
Fig. S1 shows the average power and the power for at least one
true replicability discovery as a function of c2. Fig. S2 shows the
FDR as a function of c2.
Our simulations mimic the typical setting in GWAS on the

whole genome, where SNPs that are associated with the phe-
notype have typically low power (0.1 in the above simulations) to
pass the severe Bonferroni threshold of the large number of
hypotheses examined in the primary study, yet the power to pass
the far less severe Bonferroni threshold of the few dozen hy-
potheses examined in the follow-up study is greater (0.2, 0.5, or
0.8 in the above simulations). Therefore, for GWAS on the
whole genome, we recommend setting c2 = 0:5.

FWER Replicability. The FWER criterion,

FWER=Pr
�
R00 +R01 +R10 > 0

�
;

is more stringent than the FDR, yet it may sometimes be desired.
We define the FWER r value as the lowest FWER level at which
we can say that the finding has been significantly replicated. The
r value can be compared with any desired level of FWER. An
FWER-controlling procedure for replicability analysis was sug-
gested in ref. 13: That study applies an FWER-controlling pro-
cedure at level c1α on the primary study P values and at level c2α
on the subset of discoveries from the primary study that were
followed up, where c1 + c2 = 1. If a nonzero lower bound on f00 is
available, then this lower bound can be used to choose parame-
ters ðc1; c2Þ with a sum greater than 1. Specifically, for FWER
control using Bonferroni, the data input and parameters input are
the same as in our proposal for FDR replicability in steps i and ii,
but the computation in step iii is different. For feature j∈R1,

fBonfj ðxÞ=max
�
mp1j
c1

;
jR1j p2j

c2

�
; c1 =

1− c2
1− l00ð1− c2xÞ:

The Bonferroni r value for feature j is the solution to fBonfj ðrjÞ= rj
if a solution exists in ½0; 1Þ and 1 otherwise. The replicability claims
at a prefixed level α, say α= 0:05, are all indexes with r values at
most 0.05. The FWER for replicability analysis is then controlled at
level 0.05; see SI Text, section S6, for the proof.
We computed the Bonferroni r values in a GWAS of thyro-

toxic periodic paralysis (TPP) (18). In 70 cases and 800 controls
from the Hong Kong (southern) Chinese population, 486,782
SNPs were genotyped. Table S5 shows the four most significant
SNPs followed up in an additional 54 southern Chinese TPP
cases and 400 healthy Taiwanese controls. The associations were
successfully replicated with Bonferroni r values far below 0.05,
concurring with the claim that “associations for all four SNPs
were successfully replicated” (ref. 18, p. 1027).

Assessing Replicability in Other Designs
The concept of the r value is also relevant to the communication
of the results of replicability in other designs. If n> 2 studies
examine a single feature, then replicability of the finding in all
n studies is established at the 0.05 significance level if the

maximum P value is at most 0.05. However, if a weaker notion
of replicability is of interest, e.g., that the finding has been repli-
cated in at least two studies, then the evidence toward replicability
can be computed as follows. First, for every subset of n− 1 studies,
a metaanalysis P value is computed. Then, replicability in at least
two studies is established at the 0.05 significance level if the
maximum of the n metaanalysis P values is at most 0.05. This can
be generalized to discover whether the finding has been replicated
in at least u studies, where u∈ f2; . . . ; ng, as detailed in ref. 19.
If n≥ 2 studies examine each of m> 1 features, then for each

i∈ f1; . . . ;mg the P value for testing for replicability can be
computed as above, but instead of comparing each to 0.05, the
BH procedure is applied and the discoveries are considered as
replicated findings. The procedure was suggested in ref. 20, and
for n= 2 it amounts to using the maximum of the two studies’
P values for each feature in the BH procedure. The power of this
procedure may be low when a large fraction of the null hy-
potheses are true, because the null hypothesis for replicability
analysis is not simple, and the BH procedure is applied on a set
of P values that may have a null distribution that is stochastically
much larger than uniform. The loss of power of multiple-testing
procedures can indeed be severe when using overconservative
P values from composite null hypotheses (21). An empirical
Bayes approach for discovering whether results have been rep-
licated across studies was suggested in ref. 22 and compared with
the analysis of ref. 20, concluding that the empirical Bayes
analysis discovers many more replicated findings. The accuracy
of the empirical Bayes analysis relies on the ability to estimate
well the unknown parameters, and thus it is suitable in problems
such as GWAS, where each study contains hundreds of thou-
sands of SNPs, and the dependency across SNPs is local, but may
not be suitable for applications with a smaller number of features
and nonlocal dependency. A method based on relative ranking of
the P values to control their “irreproducible discovery rate” was
suggested in ref. 23. A list-intersection test to compare top-
ranked gene lists from multiple studies to discover the common
significant set of genes was suggested in ref. 24.
To summarize, although for m= 1 there is a straightforward

solution for the problem of establishing replicability, once we move
away from this simple setting the problem is more complicated. For
designs with more than one potential finding, it is very useful to
quantify and report the evidence toward replicability by an r value.
The r value is a general concept, but the r-value computation
depends on the multiple-testing procedure used, which in turn
depends on the design of the replicability problem.

Discussion
The r value was coined in the FDR context, in accordance with
the commonly used q value (25). We proposed the r value as an
FDR-based measure of significance for replicability analysis. We
showed in GWAS examples that the smallest metaanalysis P values
may not have the strongest evidence toward replicability of associ-
ation, and we suggest to report the r values in addition to the
metaanalysis P values in the table of results.
In practice, the primary study P values are rarely independent.

We prove that our main proposal controls the FDR on replica-
bility claims if the primary study P values are independent and
suggest modifications of the proposal that are more conservative
but have the theoretical guarantee of FDR control for any type
of dependency among the primary study P values. From empir-
ical investigations, we conjecture that the conservative mod-
ifications in items ii and iii of Theorem 1 are unnecessary for the
types of dependencies encountered in GWAS. For our second
example, of GWAS in CD, applying the more conservative
proposal in item ii of Theorem 1 resulted in 34 discoveries.
We saw examples where the primary study was composed of

more than one study, and more than one follow-up study was
performed. In the present work, we used all of the information
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from the primary studies for selection for follow-up, and to es-
tablish replicability the metaanalysis P values of the primary
studies and the metaanalysis P values of the follow-up studies
were used. Alternatively, each study can be considered on its own
toward establishing replicability, and inference can be based on
ru/n values that quantify the evidence that the finding has been
replicated in at least u out of n studies for 2 ≤ u ≤ n. The sci-
entific evidence of two out of two (2/2) studies is more con-
vincing than that of two out of three (2/3) studies or two out of n
(2=n) studies, and the scientific evidence of 3=n studies is more
convincing than that of 2=n toward replicability. This problem
has been addressed in ref. 19, but as was shown in ref. 13,
alternatives along the lines of the procedures suggested here may
benefit from increased power.
A referee pointed out that follow-up studies may be designed to

give more trustworthy data, using more expensive equipment, e.g.,
using PCR or fine linkage analysis. If the aim is to detect associa-

tions in the follow-up study, then there is no need to combine the
evidence from the primary study with that of the follow-up study.
However, if the aim is to detect replicated associations, then it may
be of interest to have unequal penalties for the error of discovering
a finding that is true only in the primary study and the error of
discovering a finding that is true only in the follow-up study. De-
veloping procedures that give unequal penalties to these two errors
is a challenging and interesting problem for future research, which
may be approached by using weights (26).
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