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Hybridization plays an important role in the evolution of certain
groups of organisms, adaptation to their environments, and
diversification of their genomes. The evolutionary histories of
such groups are reticulate, and methods for reconstructing them
are still in their infancy and have limited applicability. We present
a maximum likelihood method for inferring reticulate evolutionary
histories while accounting simultaneously for incomplete lineage
sorting. Additionally, we propose methods for assessing confi-
dence in the amount of reticulation and the topology of the
inferred evolutionary history. Our method obtains accurate esti-
mates of reticulate evolutionary histories on simulated datasets.
Furthermore, our method provides support for a hypothesis of
a reticulate evolutionary history inferred from a set of house
mouse (Mus musculus) genomes. As evidence of hybridization in
eukaryotic groups accumulates, it is essential to have methods
that infer reticulate evolutionary histories. The work we present
here allows for such inference and provides a significant step to-
ward putting phylogenetic networks on par with phylogenetic
trees as a model of capturing evolutionary relationships.

reticulate evolution | incomplete lineage sorting | phylogenetic networks |
maximum likelihood

Phylogenetic trees have long been a mainstay of biology, pro-
viding an interpretive model of the evolution of molecules and

characters and a backdrop against which comparative genomics
and phenomics are conducted. Nevertheless, some evolutionary
events, most notably horizontal gene transfer in prokaryotes and
hybridization in eukaryotes, necessitate going beyond trees (1).
These events result in reticulate evolutionary histories, which are
best modeled by phylogenetic networks (2). The topology of a
phylogenetic network is given by a rooted, directed, acyclic graph
(rDAG) that is leaf-labeled by a set of taxa (Fig. 1; more details
are provided inModel and SI Appendix). Reticulation events result
in genomic regions with local genealogies that are incongruent
with the speciation pattern. Several methods and heuristics use
this incongruence as a signal for inferring reticulation events and
reconstructing phylogenetic networks from local genealogies.
These methods, which are surveyed elsewhere (2–4), assume that
reticulation events are the sole cause of all incongruence among
the gene trees and seek phylogenetic networks to explain all of the
incongruence. A serious limitation of these methods is that they
would grossly overestimate the amount of reticulation in a dataset
when other causes of incongruence are at play. Indeed, several
recent studies (5–9) have shown that detecting hybridization in
practice can be complicated by the presence of incomplete lineage
sorting (ILS) (Fig. 1).
Recently, a set of methods was devised to analyze data

where reticulation and ILS might both be simultaneously at
play (10–15). However, these methods are all applicable to
simple scenarios of species evolution and mostly assume
a known hypothesis about the topology of the phylogenetic
network. As reported (16, 17), we devised methods for com-
puting the likelihood of a phylogenetic network, given a set of
gene tree topologies. Still, these methods did not allow for
inference of phylogenetic networks (they assume a given
phylogenetic network topology and compute its likelihood).

To the best of our knowledge, the first method to conduct
a search of the phylogenetic network space in search of opti-
mal phylogenies is described in a study by our group (18).
However, this method is based on the maximum parsimony
criterion: It seeks a phylogenetic network that minimizes the
number of “extra lineages” resulting from embedding the set
of gene tree topologies within its branches.
Progress with phylogenetic network inference notwithstanding,

methods of inferring reticulate evolutionary histories while ac-
counting for ILS are still considered to be in their infancy and
inapplicable broadly (9). This inapplicability stems mainly from
two major issues: the lack of a phylogenetic network inference
method and the lack of a method to assess the confidence in the
inference. Here, we develop methods that resolve both issues and
carry phylogenetic networks into the realm of practical phyloge-
nomic applications. For the inference, we propose operations for
traversing the phylogenetic network space, as well as methods for
assessing the complexity of a network. For measuring branch
support of inferred networks, we use the bootstrap method.
Furthermore, we derive, for the first time to our knowledge, the
distribution (density) of gene trees with branch lengths, given
a phylogenetic network, and use it in inference. Our methods
provided very good results on simulated datasets. We also applied
our methods to a dataset of thousands of loci from five house
mouse (Mus musculus) genomes. The analysis yielded a well-
supported evolutionary history with two hybridization events.

Model
We seek to infer a phylogenetic network Ψ that models the
(potentially reticulate) evolutionary history of a set X of species,
where multiple individuals might be sampled per species. We use
the phylogenetic network model given by Nakhleh (2). A
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phylogenetic X-network, or X-network for short, Ψ is an rDAG
whose leaves are bijectively labeled by the set X of taxa and
whose every internal node (except the root) has in-degree 1 and
out-degree greater than 1 (tree nodes) or in-degree 2 and out-
degree 1 (reticulation nodes). We use V ðΨÞ and EðΨÞ to denote
the set of nodes and edges, respectively, of phylogenetic network
Ψ. Every edge (or branch) b of Ψ has a length λb = tb=Nb in co-
alescent units, where tb is the duration of edge b in generations
and Nb is the population size corresponding to branch b. A
consequence of this setting is that the phylogenetic network does
not have to be ultrametric. Furthermore, whereas the model
does not require or necessitate a constant population size across
all branches of the network, the population size and number of
generations of each branch are dependent, given the branch’s
length. In other words, the values of neither of these two
parameters can be uniquely determined, given the length of
a branch in our model (e.g., doubling both keeps the branch
length unchanged). As is common in the literature in this area,
we use a single composite parameter Ψ to denote the phyloge-
netic network topology and its branch lengths.
Tracing the evolution of a lineage from a leaf of the network

back toward the root follows the multispecies coalescent model
on trees, yet with one major difference: As a lineage encounters
a reticulation node, it tracks one of the two parents of that node
according to an inheritance probability. Because the probabilities
of inheritance vary from one hybridization event to another in
the network, and because different loci may provide different
hybridization signals in the population (Fig. 1), the inheritance
probabilities are given by a jEðΨÞj×m matrix Γ, where m is the
number of independent loci (given the species phylogeny) in the
dataset being analyzed and the entries of Γ satisfy three con-
ditions for every 1≤ j≤m: (i) Γðb; jÞ∈ ½0; 1� for every b∈EðΨÞ,
(ii) Γðb; jÞ= 1 for every edge b incident into a tree node, and (iii)
Γðb; jÞ+Γðb′; jÞ= 1 for every distinct pair b; b′∈EðΨÞ such that
b and b′ are incident into the same reticulation node. For an
edge b incident into node v in Ψ, the entry Γ½b; j� denotes the
probability that a sample from locus i tracks branch b when

“entering” the population represented by node v. It is important
to note here that the topology and branch lengths of Ψ, as well as
the matrix Γ, are to be inferred from the data; details are given
below and in SI Appendix.

Likelihood Formulation Based on Sequence Data. Consider m in-
dependent loci along with a set S= fS1; . . . ; Smg of sequence
alignments, where Si corresponds to locus i. The number of
sequences in each Si equals the total number of individuals from
which a sequence is available for locus i, and this number can
vary from one locus to another. Under the independence as-
sumption, the likelihood of an evolutionary history Ψ and in-
heritance probabilities Γ is given by

LðΨ;ΓjSÞ=
Ym
i=1

Z
g

PðSijgÞpðgjΨ;ΓÞdg; [1]

where PðSijgÞ is the probability of the (sequence) data, given
a particular gene genealogy g, and pðgjΨ;ΓÞ is the distribution
(density) of gene genealogies (topologies and branch lengths),
given the model parameters. The integral in the equation is
taken over all possible values of g, where g represents a gene
genealogy (topology and branch lengths). It is important to
note here that for computing the probability PðSijgÞ, the
genealogy’s branch lengths are in units of the expected num-
ber of nucleotide substitutions per site, whereas for computing
pðgjΨ;ΓÞ, the genealogy’s branch lengths need to be converted
to coalescent units. Given the population mutation rate
θ= 4Neu, where Ne is the effective population size and u is
the per-site mutation rate, the conversion from units of the
expected number of nucleotide substitutions per site to coa-
lescent units can be done by multiplying every gene tree
branch length by 2=θ.

Likelihood Formulation Based on Estimated Genealogies. Although
the likelihood formulation given by Eq. 1 uses all of the in-
formation in the data, inference of the species phylogeny from
estimated genealogies can significantly speed up the inference.
In this case, the likelihood formulation becomes

LðΨ;ΓjGÞ=
Ym
i=1

pðGijΨ;ΓÞ; [2]

where Gi is the genealogy estimated for locus i and
G= fG1; . . . ;Gmg. Here, pðGijΨ;ΓÞ is the probability mass func-
tion (pmf) or probability density function (pdf), depending on
whether the Gi s are given by their topologies alone or by topol-
ogies and branch lengths, respectively. Indeed, for the case when
the topology of Ψ is a tree, the Species Tree Estimating using
Maximum Likelihood (STEM) method (19) and the Species
Tree Inference with Likelihood for Lineage Sorting (STELLS)
method (20) use this formulation for inference of Ψ, where the
former makes use of the gene genealogies’ topologies and branch
lengths and the latter makes use of only the genealogies’
topologies.
Inference of high-quality species phylogenies based on Eq. 2

requires accurate estimates of the individual gene genealogies.
Because the methods are aimed at data from closely related
species and potentially multiple individuals from populations,
the signal in the sequence data might be too low for estimating
accurate gene genealogies. Although inference from sequences
(Eq. 1) accounts naturally for this issue, it is important to ac-
count for it explicitly when conducting inference from estimates
of gene genealogies. Assume that for each locus i, the un-
certainty in estimation is accounted for by having a collection of
gene genealogies Gi = fGi1; . . . ;Gipg; for example, these gene

A B C
Fig. 1. Phylogenetic networks. Here, the MRCA of A and B split from its
MRCA with C, and some time after A and B split, hybridization occurred be-
tween B and C. Four independent loci, ▲, ●, ■, and ♦, are illustrated, for
which a single individual is sampled from each of A and C and six individuals
are sampled from B. Two gene trees are depicted for the ▲ and ♦ loci, and
both trees agree in terms of their shapes. However, the disagreement of the
species splitting pattern with the gene tree in red is due to ILS, whereas the
disagreement with the gene tree in blue is due to hybridization. Furthermore,
the ▲ locus exhibits no evidence of hybridization in B, the ♦ locus has lost all
signal of vertical inheritance from the MRCA of B with A, and the other two
loci exhibit varying degrees of hybridization signal in the population. Locus-
specific inheritance probabilities are needed to capture such scenarios.
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genealogies could be the trees inferred for locus i based on
p bootstrap replicates. In this case, we have

pðGijΨ;ΓÞ=
 X

g∈Gi

pðgjΨ;ΓÞ
!,

jGij; [3]

where, once again, p is given by the pmf or pdf, depending on
whether the individual genealogy estimates are given by their
topologies alone or by their topologies and branch lengths, re-
spectively. The likelihood model is now given by Eq. 2, with p
from Eq. 3 being used instead of the pmf or pdf for individual
binary genealogies. We demonstrate the performance of this
formulation in Results.

Maximum Likelihood Inference. Under maximum likelihood (ML),
the inference problem amounts to computing the pair ðΨp;ΓpÞ
that maximizes the likelihood function based on sequence data
using Eq. 1 or based on estimated gene genealogies using Eq. 2.
Inference based on Eq. 1 requires computing the integral over all
possible gene genealogies. Bryant et al. (21) provided an efficient
algorithm for computing this integral when each independent
locus is given by a biallelic marker. To enable ML inference
based on Eq. 1, the algorithm of Bryant et al. (21) needs to be
extended along three axes: allowing for sites with more than two
states, allowing for the species history to have reticulations, and
allowing for each marker to consist of more than a single site.
Although extensions along all three axes are technically achiev-
able, inference of even three-taxon networks with a single re-
ticulation from a few sites is computationally prohibitive
(Discussion). We therefore focus on inference based on Eq. 2 in
this work. Using this formulation, the pmf pðGijΨ;ΓÞ, when Gi is
the gene genealogy’s topology alone, is computable using the
algorithms of Yu et al. (16, 17). In Results, we derive the pdf
of gene genealogies (with branch lengths), given a phylogene-
tic network.
Given all of these tools, the inference problem is still very hard

computationally, because the optimal Ψ and Γ need to be com-
puted. It is standard in the case of species tree inference to use
heuristics that walk the tree space in search of optimal solution
candidates. It makes sense, therefore, to devise techniques for
walking the phylogenetic network space in search of optimal
phylogenetic networks while optimizing branch lengths and the Γ
matrix. However, extra caution must be taken when searching
the network space. In the case of trees, all rooted, binary trees on
a given number of taxa are essentially different models with the
same number of parameters. In the case of networks, on the
other hand, an arbitrarily large number of reticulation nodes can
be added during the search, resulting in more complex models
that, by definition, could fit the data at least as well as simpler
models. Because the goal is to estimate the true amount of re-
ticulation, rather than only fitting the data, we address this
challenge in two ways. First, we devise a search heuristic that
searches the phylogenetic network space in layers. Second, we
explore the use of cross-validation as a method to ameliorate
overfitting the data, which adds to the array of other methods
(e.g., information criteria) that have already been used (12, 16).
Finally, to assess the fit of the inferred phylogenetic network to
the data, we devise a parametric bootstrap approach that allows
us to quantify branch support for the phylogenetic network. We
give details for all of these methods below and in SI Appendix.

Results
Probability Density of a Gene Tree.Given a phylogenetic network Ψ
and a gene genealogy Gj for locus j (topology and branch lengths
in both cases), we denote by HΨðGjÞ the set of all coalescent
histories of Gj within the branches of Ψ. Then, the distribution
(density) of gene trees is given by

p
�
Gj
��Ψ;Γ�= X

h∈HΨðGjÞ
pðhjΨ;ΓÞ; [4]

where Γ is the inheritance probabilities matrix, as described above.
For an edge b= ðx; yÞ∈EðΨÞ, we define TbðhÞ to be the vector of
times (in increasing order) of coalescence events that occur on
branch b under the coalescent history h and the time of node y (a
formal definition is provided in SI Appendix). We denote by TbðhÞ½i�
the ith element of the vector. Furthermore, we denote by ubðhÞ the
number of gene lineages entering edge b and by vbðhÞ the number
of gene lineages leaving edge b under h. Then, we have

pðhjΨ;ΓÞ=
Y

b∈EðΨÞ

" YjTbðhÞj−1

i=1

e
−
�

ubðhÞ−i+1
2

�
ðTbðhÞi+ 1−TbðhÞiÞ

#

× e
−
�
vbðhÞ
2

��
τΨðbÞ−TbðhÞjTbðhÞj

�
×Γ½b; j�ubðhÞ; [5]

where τΨðbÞ for edge b= ðx; yÞ is the time of node x in the phy-
logenetic network Ψ. A full derivation of the formula and a more
efficient algorithm for computing it along the lines of Yu et al.
(17), which avoid explicit summations over the possible coales-
cent histories, are given in SI Appendix.

Searching the Space of Phylogenetic Networks. Letting ΩðnÞ denote
the space of all phylogenetic networks on n taxa, we denote by
Ωðn; kÞ the subspace of ΩðnÞ that contains all phylogenetic net-
works (rDAGs) with n leaves and k reticulation nodes. In par-
ticular, Ωðn; 0Þ is the subspace that contains all phylogenetic
trees. To search the phylogenetic network space in a layered
fashion, we define two operations that allow for searching within
Ωðn; kÞ for a given k: one operation that allows the search to
ascend a layer from Ωðn; kÞ to Ωðn; k+ 1Þ and one operation that
allows the search to descend a layer from Ωðn; kÞ to Ωðn; k− 1Þ.
For searching within a layer, the operations either relocate the
destination of a reticulation edge or relocate the source of an
edge (reticulation or not). For ascending a layer, the operation
consists of adding a reticulation edge between two existing edges
in the network, and for descending a layer, the operation removes
a reticulation edge (more details are provided in SI Appendix). It
is worth mentioning that although the space of all phylogenetic
tree topologies on n taxa is finite, the space of all phylogenetic
network topologies on n taxa is, in theory, infinite, because
ΩðnÞ=∪k≥0Ωðn; kÞ and k are unbounded. For example, consider
the case of only two taxa. There is a unique, rooted tree in this
case. However, because multiple hybridization events could
happen between the same two sister taxa at different times, any
number of horizontal edges can be added between these two taxa.
Nevertheless, whether such repetitive hybridization scenarios are
identifiable from typical genomic datasets is a different question.
A heuristic for estimating the optimal branch lengths for a fixed

species tree topology, given gene tree topologies, that is based on
repeated application of Brent’s method (22) was introduced by Wu
(20). We use a similar heuristic for estimating the phylogenetic
network branch lengths and inheritance probabilities (full details
are given in SI Appendix). Coupling topological transformations
and parameter estimation heuristics with the likelihood formula-
tion above enables searching the space in a hill-climbing manner to
infer an ML phylogenetic network. Given the existence of local
optima within each layer, multiple, independent runs can be made.

Controlling for Model Complexity. Because networks in Ωðn; k+ 1Þ
provide more complex models than networks in Ωðn; kÞ, the
approaches described above must handle the model selection
problem. Information criteria have already been used in the
context of phylogenetic networks (12, 16), and we use them here
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(instead of searching based on the likelihood score, the search
proceeds based on the values of these criteria, which incorporate
the likelihood scores). Another approach that we propose here,
for the first time to our knowledge, is the use of K-fold cross-
validation, whereby the input set of gene trees is partitioned into
K subsets of equal sizes, the parameters of the model are inferred
from K − 1 subsets, and the model’s fit of the remaining subset is
computed. This fit is computed by comparing the frequencies of
the gene trees in the validation subset with the distribution of the
gene trees produced by the inferred network. If the fit of the best
network Ψ″ found in Ωðn; k+ 1Þ is not much better (we use
a cutoff of 3% improvement, chosen based on empirical obser-
vations) than the fit of the best network Ψ′ found in Ωðn; kÞ, we
declare k to be the correct estimate of the number of reticulation
nodes and Ψ′ to be the optimal phylogenetic network. It is im-
portant to note here that this cross-validation idea works only for
fully resolved gene tree topologies, because in the case of gene
trees with branch lengths, the frequencies of the gene trees in the
validation subset are not informative.
Finally, to assess the support of the phylogenetic networks

we infer, we propose using parametric bootstrapping. Having
inferred a network Ψ from the data G, we use Ψ to generate ℓ
datasets, from which we infer ℓ phylogenetic networks Ψ1; . . . ;Ψℓ.
We then estimate the support of each branch b in Ψ as the
number of networks (out of the ℓ) that have an equivalent
branch. We say that two edges in two phylogenetic networks are
equivalent if (i) either or both are reticulation edges or both are
not and (ii) both define the same clusters (the cluster defined by
a branch is the set of all taxa under that branch in the network).

Performance on Simulated Data.We implemented all of the methods
described above in the publicly available, open-source software
package PhyloNet (23) and studied the performance of the methods
on several simulated datasets. In the simulation study whose results
are reported in Fig. 2, we used phylogenetic network Ψ1 as the
model network, and for various numbers of loci, we evolved gene
trees under the coalescent within the branches of the network and
then simulated sequence evolution on these gene trees with varying
sequence lengths. We then estimated for each sequence alignment
100 gene trees using ML with bootstrapping. Finally, we inferred
networks using our ML method from (i) true gene tree topologies,
(ii) estimated gene tree topologies, (iii) true gene tree topologies
and branch lengths, and (iv) estimated gene tree topologies and
branch lengths. The results of (i) and (ii) are shown in Fig. 2B,
whereas the results of (iii) and (iv) are shown in Fig. 2C. For each
setting of the number of loci and sequence length, we generated 30
datasets and conducted inferences on all of them.
Whereas the hybridization in the model network involves B

and the most recent common ancestor (MRCA) of C and D, the
length of the branch between the hybridization event and the
divergence of C and D from their MRCA can have a big effect
on distinguishing between the true hybridization scenarios and

the two given by Ψ2 and Ψ3 in Fig. 2A. Therefore, for every
dataset, we recorded whether the method inferred one of the
three networks shown in Fig. 2A, as opposed to any other net-
work with a single reticulation.
Several trends can be observed in Fig. 2A. First, using the true

gene tree topologies with branch lengths results in more accurate
inferences than using gene tree topologies alone. This finding is
not surprising, because the former type of data contains more
information than the latter. In particular, when using 80 or 160
loci, the inferred network from the true gene trees with branch
lengths is always the true network. On the other hand, when
using only the gene tree topologies for 160 loci, in five of the 30
cases, the inference returned one of the two alternative networks
Ψ1 and Ψ2. Second, the accuracy of the inferences improved
as the number of loci increases and as the sequence length
increases, although the increase in the number of loci had much
more of a positive effect on the inference accuracy. Third, a very
surprising result is that when using gene tree topologies alone,
using the true gene trees almost never resulted in better accuracy
than when using estimated gene tree topologies for a given
number of loci. This result attests to the fact that when ac-
counting carefully for uncertainty in the gene tree estimates, the
method can obtain very good results. Even when using gene tree
topologies and branch lengths, the gain in accuracy when using
the true gene trees is very small compared with using the gene
tree estimates with uncertainty taken into account. Fourth, the
combination of a low value of inheritance probability (0.1 in this
simulation) and a relatively short time between hybridization and
subsequent speciation results in uncertainty in identifying the
donor and recipient of the hybridization event. For example,
when using gene tree topologies alone for 160 loci, the inferred
network is always one of the three networks Ψ1, Ψ2, and Ψ3, even
thought it is mostly Ψ1. We found that increasing the branch
lengths or the inheritance probabilities would result in higher
accuracies. Furthermore, in our simulations, we found that in-
creasing the number of individuals sampled per taxon would result
in improved accuracy, albeit rather slightly (SI Appendix). How-
ever, we expect that sampling more individuals would result in
more significant improvements on larger or more complex data-
sets. In terms of the inferred inheritance probabilities, the true
gene trees resulted in very accurate estimates, whereas estimated
gene trees with branch lengths resulted, in general, in more ac-
curate estimates of the probabilities. Finally, we found that cross-
validation generally does better than information criteria at de-
termining the number of hybridization events (including on the
biological dataset, as discussed below). More extensive simulation
results under scenarios that are easier for inference than the ones
we discussed here are contained in SI Appendix.

Analysis of a Multilocus House Mouse Dataset. We also used our
method to analyze a multilocus dataset of house mouse
(M. musculus) genomes, obtained from the studies of Staubach
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Fig. 2. Accuracy of the method on simulated data.
(A) Data were generated down the phylogenetic
network Ψ1 (all internal branches, except for the
horizontal edge, have lengths of 1 coalescent unit,
and the inheritance probability is 0.1 for all loci).
Results based on gene tree topology estimates (B)
and gene tree topology and branch length esti-
mates (C) are shown. For every number of loci, the
rightmost bar corresponds to inference from the
true gene genealogies and the other three bars,
from left to right, correspond to gene genealogies
estimated (using 100 bootstrap replicates and Eq. 3) from sequences of lengths of 250, 500, and 1,000, respectively. The dark blue, cyan, and yellow regions
correspond to the number of times each of the networks Ψ1, Ψ2, and Ψ3, respectively, in A was inferred. The maroon region corresponds to the number of
times any other network with a single reticulation was inferred. Here, one individual was sampled per taxon for each of the loci.
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et al. (7), Didion et al. (24), and Yang et al. (25) (more details
are provided in SI Appendix). Staubach et al. (7) found sub-
stantial genome-wide evidence of subspecific introgression in all
four populations, amounting to 3% of the genome in the two
M. m. domesticus populations (one from France and the other from
Germany), 4% in an M. m. musculus population from Kazakhstan,
and 18% in an M. m. musculus population from the Czech Re-
public. However, it is important to note that the HAPMIX method
(26), which was used by Staubach et al. (7), does not explicitly
account for ILS.
Our study included all of the samples in the study of Staubach

et al. (7). Furthermore, our study included additional samples
from an M. m. musculus population from China (25) that were
not used in the study of Staubach et al. (7). In this analysis, we
used estimated gene tree topologies alone. The reason for doing
so is that the genomic sequences are obtained from very closely
related individuals (these individuals are five individuals from
the same species), and very little variation exists in the data to
estimate branch lengths with any accuracy. Furthermore, this low
variation does not allow for proper bootstrap analysis of gene
trees for the individual loci. The powerful signal in this dataset
comes from the very large number of loci. In our analysis, we
found a significant improvement in a phylogenetic network with
a single reticulation over no reticulations and a significant im-
provement in a phylogenetic network with two reticulations over
a single reticulation. However, when we continued the search for
the optimal network with three reticulations, we found that the
improvement gained by considering a third reticulation event was
insignificant based on the information criteria, and that there was
no improvement at all based on cross-validation. We thus called
the optimal phylogenetic network with two reticulations as our
hypothesis for the evolutionary history of this set of genomes.
This evolutionary history is shown in Fig. 3 (more details of the
results and analyses are provided in SI Appendix). The phyloge-
netic network is not ultrametric, and it is worth emphasizing that
the branch lengths are given in coalescent units. Thus, the lack of
ultrametricity could be due to different population sizes or, to
a lesser degree, different generation times.
Our analysis of house mouse genomes produces an evolu-

tionary history that differs from that reported by Staubach et al.
(7) not only in terms of the number of populations involved but
also by accounting for the evolutionary history of the populations
involved. We consider the percentages of the genome with
introgressed origin reported by Staubach et al. (7) to be over-
estimates, because introgression involving an ancestral pop-
ulation that later split into more than one extant population
would be multiply reported for each extant population in the
case of the study by Staubach et al. (7). On the other hand, the
same percentages would be underestimated in the case where
admixed populations were used in place of the nonadmixed
reference populations required by HAPMIX, as Staubach et al.
(7) did by using putatively introgressed mouse samples to con-
struct the reference populations. Notably, our methodology does
not require the use of nonadmixed reference populations.
We hypothesize that the more recent introgression event in

Fig. 3 is due to gene flow from secondary contact, where the
ranges of the two M. musculus subspecies overlapped, roughly at
the border between Germany and the Czech Republic. The
biological interpretation of the more ancient introgression event
is less clear. We conjecture that the event is related to gene flow
during and after subspecific divergence. Further study may
provide important clues to the mechanistic basis of the evolution
of subspecies in M. musculus and the process of speciation itself.
It is important to note that although we used a very large

number of loci, there was still uncertainty in the inferred origins
of the two hybridization events (as shown in Fig. 3), a similar
pattern to the one observed in the simulation results and dis-
cussed above. This uncertainty is a reflection of the weak signal

in these data, coupled with the low inheritance probability and
short branch length between the hybridization and the MRCA of
M. m. musculus from China and M. m. musculus from Kazakhstan
and M. m. domesticus from France and M. m. domesticus from
Germany, which is an issue that we discussed above in the con-
text of the simulated data. The samples used are very closely
related, resulting in genomes with a very small number of seg-
regating sites, and hence a weaker signal for inference. None-
theless, the uncertainty is localized in the sense that the potential
donors of the genetic material of each hybridization event re-
volve around a single ancestral node. Because all five populations
under analysis are closely related, most of the reconstructed gene
trees were not binary, due to identical sequences of multiple
alleles. Because bootstrapping is not useful in these scenarios
(every locus has a handful of sites, most of which are mono-
morphic), we used the nonbinary gene tree topologies for the loci
and considered the set of all resolutions as the set of gene tree
estimates to use in Eq. 3.

Discussion
We have devised methods that enable revisiting existing evolu-
tionary analyses and conducting new ones when both hybridiza-
tion and ILS are either suspected or observed. Programs
implementing all of these methods are publicly available in the
open-source software package PhyloNet (23). We illustrated the
power of our method in extensive simulations and demonstrated
its utility on a dataset of mouse genomes. In our model, we
abstract the notion of hybridization such that each reticulation
edge can be viewed as a “tunnel” through which genetic material
can flow repetitively and at different, yet close, times. In other
words, the interpretation of a reticulation edge is not that it is
a single event of mating between two individuals from two
populations or species; rather, it encompasses an ongoing gene
flow within a time interval that can be abstracted with one edge
and one inheritance probability. This abstraction is a major dif-
ference between our model and the more detailed population

Germany
Poland

France

Ukraine

Czech Republic

Russia

Kazakhsatan

DF DG MZ MK MC

Russia

China

Fig. 3. Optimal phylogenetic network inferred on the house mouse
(M. musculus) dataset. A single individual was sampled from each of five
populations: M. m. domesticus from France (DF), M. m. domesticus from
Germany (DG), M. m. musculus from the Czech Republic (MZ), M. m. mus-
culus from Kazakhstan (MK), and M. m. musculus from China (MC). The
analysis found multiple, almost equally optimal, phylogenetic networks with
two reticulation events. These multiple networks all agreed on the recipient
populations but disagreed on the donor populations. One hybridization (the
top dashed horizontal arrow) involves the MRCA of DF and DG as a recipient
population, yet seems to have involved MK, MC, or their MRCA as the donor
population. The second hybridization (the bottom dashed horizontal arrow)
involves MZ as a recipient population, yet seems to have involved DF, DG, or
their MRCA as the donor population. Branch lengths in coalescent units (on
the tree branches) and inheritance probabilities (on the horizontal edges)
are shown (full details of the data and results are provided in SI Appendix).
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genetic models that account explicitly for rates of gene flow, such
as the isolation-with-migration model. A major direction for
future research is scaling up our methods to larger datasets.
Currently, it takes a few seconds to a few minutes to evaluate the
likelihood of a phylogenetic network with 10–20 taxa (17). This
running time can vary significantly even among networks with the
same numbers of taxa and reticulation events, because the shape
of the gene tree and the configuration of the reticulation nodes
in the network (their locations and interdependencies) are the
crucial factors (27). However, optimizing the branch lengths and
inheritance probabilities, coupled with the phylogenetic network
search, is the bottleneck for computation. Furthermore, as our
analyses, both on simulated and biological data, demonstrated, it
might often be the case that several evolutionary histories have
similar likelihoods. This observation calls for Bayesian approaches
to inference of phylogenetic networks, whereby a distribution of
networks, rather than a point estimate, is computed. In this case,
modern Markov chain Monte Carlo techniques can replace the
traditional hill-climbing technique we used here.
Although we discussed the model above with respect to a single

population mutation rate (θ), it is generalizable in a straightfor-
ward manner to allow for different rates across the branches of
the phylogenetic network if the branch-specific population size is
known. Furthermore, a rate ri can be specific for locus i to vary
the mutation rates across loci (all gene tree branch lengths for
locus i are multiplied by 1=ri). Similarly, the model can naturally
incorporate a single set of inheritance probabilities for the various
hybridization events and allow for rate parameters, one per locus,
to vary the inheritance probabilities across loci.
A major assumption underlying our models and methods is free

recombination between loci and no recombination within. This
assumption is common to the majority of methods and tools that
infer species phylogenies from multilocus data (even in the ab-
sence of hybridization). Relaxing this assumption requires in-
troducing spatial dependence in the data, similar to a method we
recently introduced (28). However, this extension only makes the
model more complex and significantly increases the computational
requirements of the inference methods. Currently, to use such
inference methods, it is assumed that independent loci are sam-
pled and that each locus is recombination-free. If a locus contains

recombination, it can be partitioned into recombination-free
regions, potentially at the expense of creating regions that are too
short for reliable estimation of gene trees, further emphasizing the
need to account carefully for uncertainty in gene tree estimates.
Although we focused on using gene trees, the ultimate goal is

to enable inference directly from sequences (Eq. 1), because
such an approach uses the full signal in the data and bypasses the
issue of uncertainty in gene tree estimates and the need to deal
with it carefully. As discussed above, the SNP (single nucleotide
polymorphism) and AFLP (amplified fragment length poly-
morphism) Package for Phylogenetic analysis (SNAPP) method
of Bryant et al. (21) enables such an inference from biallelic data
in the case of phylogenetic trees (when no hybridization is
allowed), even though the authors presented a Bayesian ap-
proach based on the likelihood function, rather than an ML
approach. Extending the algorithms of SNAPP to allow for an
ML inference based on Eq. 1 is doable, yet the application of
such an extension is computationally prohibitive even for the
smallest phylogenetic network (three taxa and a single re-
ticulation), as we have observed from preliminary work.
Finally, although we varied the number of individuals sampled

per species in our simulations, more thorough investigations
need be conducted of the data requirements (more taxa, more
loci, or more alleles) to tease apart introgression signals from
those signals arising from population effects. These inves-
tigations would inform the data collection and help focus the
efforts aimed at ameliorating the computational requirements.
For example, in the mouse dataset we considered here, the five
genomes are very closely related, giving a very weak signal for
estimating gene tree branch lengths with any reasonable accu-
racy. In this case, the large number of loci provided a powerful
signal for the network inference. The simulations, on the other
hand, show that with stronger signal within the individual
markers, fewer loci would be needed for accurate inferences.
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