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Putting things in order
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Identifying and characterizing dependence
among a set of variables (also called features,
covariates, and factors) is at the core of
statistics. Since the concept of “correlation”
was introduced by Sir Francis Galton (1) in
the late 1800s, many measures of associa-
tions have been proposed to capture the
notion of nonindependence between two
variables, x and y. The work of Wang et al.
(2) is the latest installment to this long
history of developments, with their mea-
sure motivated by identifying gene pairs
with correlated expression patterns from
high-throughput microarray data.
Consider yeast expression data analyzed in

the paper by Wang et al. (2). With 6,000
genes, there are around 18,000,000 gene pairs,
and it is a daunting task to sort through these
many pairs to identify those having genuine
dependencies. In a perfect world where all of

the dependent relationships are linear and
there are no data anomalies, we can use Pear-
son correlation efficient (3) coupled with sta-
tistical significance assessment to rank order all
of the gene pairs. In fact, Pearson correlation
efficient is still the most commonly used
method to infer dependent relationships in
microarray data analysis.
Despite its popularity, it is well known that

Pearson correlation has limitations in the
presence of nonlinear relationships (e.g., Fig.
1A) and outliers. When only a few pairs are of
interest, individual scatterplots may be visually
inspected to reduce false-positive and false-
negative rates due to the inadequacies in the
Pearson correlationmeasure.However, amore
robust and powerful measure is needed when
millions of correlations are investigated be-
cause even a very small proportion of false
positives or negatives will translate into

thousands of incorrect inferences. In fact,
many alternative measures have been used in
analyzing correlations among genes. Spear-
man rank correlation (4) uses ranks instead
of raw observations and is robust against out-
liers, but may still fail in the face of non-
monotocinity. There are many other measures
available (e.g., refs. 5–7), with a recent surge of
interest (e.g., refs. 8–10) that has been in part
driven by the very rich and complex data that
have become available in recent years and the
need to have robust and powerful methods to
mine these data and to identify true associa-
tions without extensive human interventions.
We note that two recently introduced mea-

sures have drawn considerable attention in
the literature: distance correlation (dcor) (8)
and maximal information coefficient (MIC)
(9). Let (xi, yi) denote the ith observed pair
for x and y. For dcor, it first calculates the
pairwise distances among all pairs of x,
dx(i, j) = jxi – xjj and those among all pairs
of y, dy(i, j)= jyi – yjj. Then dcor is calculated
as the correlation between the two sets of
doubly centered distances derived from the
pairwise distances. It was shown in (8) that
dcor is 0 only if x and y are independent,
a desired statistical property. MIC (9) was
developed based on the mutual information
idea where the uncertainty of y (defined
through entropy) conditional on x is evaluated.
The 2D space for (x, y) is first partitioned into r
rows and c columns. TheMIC algorithm then
finds the r× c grid that has the highest induced
mutual information for x and y. It looks
through many (r, c) combinations to identify
the one with the largest normalized score.
Therefore,MICmay be interpreted as the var-
iance/uncertainty of y explainedby x. Thepros
and cons of these two relatively newmeasures
and their comparisons with existing ones have
been ofmuch debate lately through theoretical
investigations (e.g., equitability), simulation
studies, and empirical data analyses (11–15).
The approach developed in ref. 2 departs

from the existing methods with the reason-
ing that the rank (order) patterns across
a subset of observations may offer very useful
information on nonindependence. For a given
set of observations (xi, yi), i= 1,. . .,n, instead of
casting the problem as measuring uncertainty
about y given x, Wang et al. (2) look for
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Fig. 1. (A–D) Four relationship patterns to illustrate the information source forW2 statistic discussed in Wang et al. (2).
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consistency of rank orders across a subset of
observations. For example, if two variables are
perfectly correlated via amonotone functional
relationship, for any subset of observations,
the orders among the yi can be totally inferred
from the orders among the xi, whether the
association is positive or negative. It is easy
to see that if we allow for either positive or
negative association, looking at a pair of
observations will not be informative. Now
consider three observations: (x1, y1), (x2, y2),
and (x3, y3). If there is perfect monotone
(either increasing or decreasing) relationship
between x and y, we would be able to infer
the orders of (y1, y2, y3) completely from those
of (x1, x2, x3), either with the same orders or
reverse orders. However, when x and y are
independent, the orders are only aligned be-
tween x and y with a probability of 2/3! = 1/3.
When the data are collected from time course
data, only consecutive triplets will be consid-
ered, the test is called W1. When no natural
ordering of the observations exists, Wang
et al. (2) propose to consider all possible
combinations. With a total of n observations,
we will have n(n − 1)(n − 2)/6 possible com-
binations, and the corresponding test is called
W2. The test proposed by Wang et al. is to
evaluate the total number of successes, where
a success is defined as either perfect matching
or reverse matching, across all three observa-
tion combinations. In the case of perfect
monotone dependence, the success probabil-
ity is 1 (the alternative hypothesis); and the
success probability is 1/3, when there is no
dependence between the two variables (null
hypothesis). Therefore, when there is no tem-
poral relationship among the observations,
we will have the testing problem involving
n(n − 1)(n − 2)/6 Bernoulli trials, where the
null hypothesis has success probability of 1/3,
and any statistical evidence against the null
would indicate some level of dependence be-
tween x and y. The mathematical challenge
for statistical inference is that the outcomes
from these n(n − 1)(n − 2)/6 combinations
are not independent as they are all derived
from a set of n observations. Wang et al. (2)
provide elegant results that incorporate de-
pendencies in statistical inference, both for
the null hypothesis of independence, and un-
der two specific alternative hypotheses, lead-
ing to insights on the power of their methods.
The measures in ref. 2 are designed to cap-

ture local dependencies, with the statistic W1

specific to model time course expression data,
whereasW2 does not favor local dependencies
as all of the combinations are considered. The
authors describe an algorithm that countsW1

with a running time ofO(kn log k) and counts
W2 with a running time ofO(kn log n), where
a subset of k from a total of n observations
are considered. The great computational effi-
ciency achieved by this algorithm makes it
very attractive. The simulation results dem-

onstrate that for time course data where the
correlation patterns are local, the proposed
W1 and W2 have much better performance
than the competing methods. In the other
cases, the W2 measure still enjoys good per-
formance and is ranked as one of the best
methods considered. Here we focus on W2

to see from where it draws information on
nonindependence. There are four relation-
ship patterns shown in Fig. 1. Fig. 1A is the
piecewise monotone case which is rigorously
studied by Wang et al. (2). In this case, the
association information ismostly drawn from
each of the three segments, and with limited
information offered from observations across
the segments. Fig. 1B does not have local
association patterns, and the dependency in-
formation is drawn from points across seg-
ments. SoW2 is effective even in the absence
of local associations. Fig. 1C is the case where
both local and global associations are present,
and the statistic W2 is capable of incorporat-
ing both types of information. Of the most
interest is the checkerboard pattern shown
in Fig. 1D. With some elementary analysis,
it can be shown that if the observations are
randomly drawn from the five blocks in the
checkerboard, the success probability for
three observations is 137/375 versus 125/375
when there is no association. So W2 is able
to extract some dependency information even
in this scenario, although the power is limited
with a small sample size.
As discussed by Wang et al. (2), their pro-

posed measures can be extended to increase
power against other, less simple alternatives.
For example, different weights can be assigned
to the n(n − 1)( n − 2)/6 combinations when
three observations are analyzed, as some trip-
lets likely carry more information than others.
The time course set-up is at the extreme of
this scheme, where only consecutive observa-
tions are considered. The interactions can also
take on various forms to accommodate simi-
lar ranks as suggested by the authors.
Although the idea of looking for local as-

sociation signals in genomics data is not new,

e.g., biclustering methods to identify rows and
columns in a microarray data that show con-
sistent patterns (16), the objective is different
here in that the goal is to identify gene pairs
showing signals for nonindependency. When
millions of pairs are considered, it is natural to
use the statistics to order pairs, where the
measures may have some interpretations. De-
spites its lack of robustness and low power
against nonlinear alternatives, one good
property of the Pearson correlation is that r2

can be interpreted as the proportion of vari-
ance for one variable explained by the other
variable. Spearman correlation, distance cor-
relation, and mutual information are also in-
terpretable to some extent. It seems to be
nontrivial to translate the statistics proposed
in ref. 2 to an easily interpretable measure. It
would also be desirable to develop somemeth-
ods to locate the specific dependency in the
data, after the null hypothesis is rejected. For
example, the concept of local correlation has
been advocated to characterize varying corre-
lations in the data (17). Moreover, the pro-
posed approach may also be extended to con-
sider the inference of conditional independence.
As for any measure, there are certain lim-

itations, and interpretations should be made
with caution. For example, when a statistically
significant result is found, it may be due to the
nonindependence between the two variables,
or it could be due to some artifacts. It is well
known that data normalization is a key step in
microarray analysis, and spurious associations
may be found if data are not properly nor-
malized. Different association measures may
be more or less robust to potentially system-
atic biases, and their relative merits need to be
carefully studied in this context. Now with
a new and computationally efficient approach
to capturing nonindependent gene pairs from
microarray data, and more generally, nonin-
dependency of pairs of random variables in
any data, more will be learned through the
collection and analysis of big data by putting
things in order.
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