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� Background and Aims If large genomes are truly saturated with unnecessary ‘junk’ DNA, it would seem natural
that there would be costs associated with accumulation and replication of this excess DNA. Here we examine the
available evidence to support this hypothesis, which we term the ‘large genome constraint’. We examine the large
genome constraint at three scales: evolution, ecology, and the plant phenotype.
� Scope In evolution, we tested the hypothesis that plant lineages with large genomes are diversifying more slowly.
We found that genera with large genomes are less likely to be highly specious – suggesting a large genome constraint
on speciation. In ecology, we found that species with large genomes are under-represented in extreme environ-
ments – again suggesting a large genome constraint for the distribution and abundance of species. Ultimately, if
these ecological and evolutionary constraints are real, the genome size effect must be expressed in the phenotype and
confer selective disadvantages. Therefore, in phenotype, we review data on the physiological correlates of genome
size, and present new analyses involving maximum photosynthetic rate and specific leaf area. Most notably, we found
that species with large genomes have reduced maximum photosynthetic rates – again suggesting a large genome
constraint on plant performance. Finally, we discuss whether these phenotypic correlations may help explain why
species with large genomes are trimmed from the evolutionary tree and have restricted ecological distributions.
� Conclusion Our review tentatively supports the large genome constraint hypothesis.
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INTRODUCTION

It is well known that there is significant variation in nuclear
DNA content, or genome size (GS), within plants (greater
than 1000-fold variation, Fig. 1), and eukaryotes in general
(greater than 200 000-fold variation). Genome size varies
considerably even in very closely related species. However,
the evolutionary or ecological significance of this extreme
variation is still largely unknown (but see Grime and
Mowforth, 1982; Bennett, 1987). Much of this extreme
genome size variation in plants is due to non-genic, repet-
itive DNA, much of which is generated by transposable
elements. Given that the number of genes varies much
less than GS, it appears that large genomes do not need
to be large for any informational reasons. If large genomes
are truly saturated with unnecessary ‘junk’ DNA, it would
seem natural that there would be costs associated with accu-
mulation and replication of this excess DNA. Here we
examine the available evidence to support this hypothesis,
which we term the ‘large genome constraint’.

One extreme of thinking on this issue is to reject the
existence of true ‘junk’ DNA (Bennett, 1971; Cavalier-
Smith, 1985, 2005). Indeed, a large number of correlations
between DNA amount and cellular and physiological char-
acters of clear functional importance is reason to believe
that GS variation carries with it functional consequences
(see the section on phenotype below). ‘Junk’ DNA may
in fact be playing an important role, albeit non-coding in
nature, but nevertheless just as important at the pheno-
typic level.

The other extreme is to suggest that the cost of carrying
‘junk’ DNA is so minimal, even in extreme cases, that
there is no noticeable selective consequence. In this case
the organism may compensate for GS effects on phenotype
until the effects become deleterious. The evidence for this
way of thinking comes from the ‘selfish’ nature of most
of the ‘junk’ DNA (Doolittle and Sapienza, 1980; Orgel
and Crick, 1980), making it more likely that its accumu-
lation has little to do with the organism’s fitness. Also, it
appears that many organisms can undergo sharp increases in
genome size without consequence (polyploidy formation
in plants, for example). Here we present evidence to the
contrary.

Within plants the distribution of genome sizes is signific-
antly skewed, with decreasing numbers of species for every
doubling of genome size (Fig. 1). One way to explain this
skew is to suggest that increases in genome size are rare and
that only a few lineages have experienced them. But we
know that transposable elements are ubiquitous in plants
and polyploidy is exceedingly common (Wendel, 2000).
Both of these processes operate rapidly on evolutionary
time scales. Certainly it appears that there has been enough
time and ample means for all plant genomes to become
large. But they are not, which in itself may provide the
best argument that unchecked genomic enlargement carries
maladaptive consequences.

It is also possible that genome shrinkage is a powerful and
common process and can counteract the many mechanisms
for genome growth (Petrov, 2002). There is evidence for
genome size shrinkage and we know of mechanisms cap-
able of causing such reduction (Petrov et al., 1996; Kirik
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et al., 2000; Orel et al., 2003; Bennetzen et al., 2005). But,
unless one invokes selection favouring genome size reduc-
tion, it is not clear why, over time, more species would end
up having small genomes. So, maybe there is selection
acting against organisms with large genomes after all?
However, in the case of plant species with large genomes,
perhaps such selection was weak and could not stem sharp
genome size increases perpetuated by fast and powerful
forces of DNA addition.

In this paper we discuss the hypothesis that lineages
with large genomes do pay costs. First, we may be able
to detect that cost by examining the evolution of species
with large genomes. Vinogradov (2003) found that species
with large genomes are less likely to generate progenitor
species, either through decreased speciation rates or
increased rates of extinction. We re-examine this result
using quantile regression analyses to show that the negative
trend between the number of species in a genus and the
average genome size of a genus is driven by a more
significant negative relationship for genera with the largest
genome sizes. We also test the relationship at higher
taxonomic levels using Magallon and Sanderson’s (2001)
molecular clock and fossil record corrected estimates of
diversification rates for several angiosperm lineages. Com-
bined with Vinogradov’s (2003) observations, these results
may at least partly explain the skewed distribution of plant
genome sizes.

We further explore possible ecological constraints on
the distribution and abundance of species with large gen-
omes. We find that species with large genomes are restricted
to less stressful environments with longer growing seasons.
Once again, careful statistical analyses are necessary to
pick up trends at the edges or boundaries of these complex
bi-variate distributions. These ecological constraints,

combined with strong positive correlations with seed mass,
may lead to species with large genomes having smaller
effective population sizes, which in turn may lead to the
higher probabilities of extinction in general and ‘mutational
meltdown’ scenarios (Lynch et al., 1993) in particular.

Ultimately, if these ecological and evolutionary con-
straints are real, the genome size effect must be expressed
in the phenotype and confer selective disadvantages. There-
fore, we review the available data on the physiological
correlates with genome size variation, present new analyses
involving maximum photosynthetic rate and specific leaf
area, and discuss whether these relationships help explain
why species with large genomes are trimmed from the evolu-
tionary tree and have restricted ecological distributions.

The paper is divided into three sections discussing
genome size effects on (1) evolution, (2) the distribution
and abundance of species (ecology), and (3) phenotype.
While we present some new analyses, this paper is intended
primarily to define concepts and to review the large body of
research in these areas. Fitting with this purpose we com-
bine our methods, results and discussion into one section
for each of the three topics.

EVOLUTION

Recently Vinogradov (2003) reported a negative correlation
between the number of species in a genus and the average
GS of that genus, suggesting a genome size constraint on
evolvability. Vinogradov (2003) also consulted a conserva-
tion database and found that species listed as rare or endan-
gered tended to have larger genomes (rarity status was
determined both locally and world-wide by the United
Nations Environment Program World Conservation and

1C DNA content (pg)

N
um

be
r 

of
 s

pe
ci

es

0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400

450

500

F I G . 1. Histogram of 3493 angiosperm genome sizes from the Plant DNA C-values database (www.rbgkew.org.uk/cval). Note that this histogram is cut off at
1C DNA content of 30 pg but the full histogram continues out to 127�4 pg.
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Monitoring Center, UNEP-WCMC). Both of these lines of
evidence suggest that large genomes are maladaptive at the
species level, and reduce the abundance of species with
large genomes.

To further probe this interesting relationship, we
re-tabulated the data on the genus-level diversity and the
genus-average genome size. We used the Plant DNA
C-values database compiled at the Royal Botanical Gardens
at Kew by Bennett et al. (2001; www.rbgkew.org.uk/cval)
to acquire the average GS for 761 genera. We related these
values to the number of species in each genus using the
database compiled by Mabberley (1999). While genus is a
somewhat arbitrary grouping, it is currently the best system
available for this type of anaylsis. Some genera have been
studied more than others, perhaps leading to specious gen-
era as a result of investigative effort. In addition, taxonomic
‘splitters’ and ‘lumpers’ abound. However, by studying 761
genera we expect that errors introduced by these effects are
random.

Similar to Vinogradov (2003), we found a very weak
negative Spearman’s rank correlation (r = �0�065, one-
tailed P = 0�036). However, for our data, the relationship
is only significant with a one-tailed test. A randomization
test also showed the presence of a weak negative correla-
tion of similarly marginal statistical significance (3�2 % of
randomized samples generated as strong, or stronger negat-
ive correlation as the data). It is noteworthy that the
correlation coefficient in Vinogradov (2003), although
also negative and weak (r = �0�11; P < 0�001), was
nevertheless stronger than ours. Perhaps the source for
this discrepancy involves our use of Mabberly (1999)
to tabulate the number of species in a genus while
Vinogradov used the International Plant Names Index.
These differences notwithstanding, either analysis shows
at best a weak relationship between genus-level diversity
and GS (Fig. 2A).

We wanted to further explore these data to address the
model of a large genome constraint on evolvability more
specifically. The correlation statistics employed above test
for the existence of a relationship through the means (or
centre) of the data distribution. We have a more specific
model. Our hypothesis suggests that there should be little
signal for species with small GS. In those cases, many other
determinants of diversification rates may come into play.
More specifically, we would like to test whether species
with large or very large genomes are less likely to attain
high diversification rates and whether they are more likely
to exhibit higher extinction rates.

To test this more specific model, we employed quantile
regression analyses. Each quantile regression estimate
involves every point in a bi-variate data distribution, but
the points above the regression line are weighted by the
quantile (for instance 0�65 for the 65th quantile) while the
points falling below the regression line are weighted by
one minus the quantile (corresponding to 0�35 for the same
65th quantile). The 65th quantile regression also implies
that 65 % of the observations fall below the regression line
while 35 % of the observations fall above the line. The
50th quantile regression estimate is the same as the tradi-
tional least-squares regression estimate with the condition

that equal numbers of points fall above and below the line
(here both groups are equally weighted by 0�5). Because of
the quantile-dependent partitioning of data points above
and below the regression line, quantile regression is a
non-parametric technique. Results for log-transformed or
untransformed data give identical results. Koenker and
Bassett (1978), Cade and Richards (1996), Cade et al.
(1999), Cade and Guo (2000), Koenker and Hallock
(2001), Knight and Ackerly (2002) and Cade and Noon
(2003) provide detailed discussion of quantile regression
methods.

Our quantile regression results (Fig. 2) show that the
weak negative trend for standard correlation coefficients
must be due to the increasingly negative trend in the larger
quantiles. Quantile regression estimates between the 5th
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F I G . 2. (A) Scatter plot of the log of the average genome size (1C gigabase
pairs) of a genus versus the log of the number of species in that genus. (B)
Quantile regression analysis of (A) showing a decreasing regression
slope with increasing quantiles. The lines in (A) correspond to the 5th
quantile (thin solid line), the 50th quantile (thin dashed line) and the
95th quantile (thick dashed line). The lines in (B) correspond to the least
squares estimate for the linear relationship between x and y in (A) (dashed
line) and the confidence interval of that estimate (double-dashed line). The
grey bar surrounding the quantile dependent regression slope estimate is the

standard error of the estimate.
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and 70th quantile are not significantly different from zero.
However, quantile regression estimates between the 70th
and 95th quantile are negative and significantly different
from zero. The negative relationships in these quantiles
(corresponding to the species with larger GS) must drive
the statistical significance of Spearman rank correlations.
These results provide support for the model of large genome
constraint. Not only does it show that much of the signal is
in the low diversity of large GS genera, but also that large
genomes can reduce diversity quite substantially.

Despite the apparent success in the quantile regression
statistics for pin-pointing the cause of the negative relation-
ship, there are several potential sources of error. What we
are really after is the genome size of the ancestral species
that either did or did not diversify. Whether or not the
average genome size of extant species captures this ances-
tral value is not clear. The average genome size of a genus
often does not take into consideration every species in the
genus and some genera are under-represented compared to
other genera, both for sampling reasons (i.e. in some cases,
such as Atriplex, only 10 out of 300 species have been
measured) or for taxonomic reasons. For example, three
of the four Milium species have been estimated, but with
a maximum possible sample size of four there is little con-
fidence in the ancestral genome state. But removing these
lineages from the analyses would bias results towards high-
diversity clades. In addition, different genera may have been
diversifying for very different amounts of time. Ideally one
could perform an independent contrast test with a complete
molecular-clock-corrected genus-level phylogeny. This
type of phylogeny is one of the last gaps in the Angiosperm
Phylogeny Working Group’s (APG) endeavour to produce a
comprehensive phylogeny for angiosperms (The Angio-
sperm Phylogeny Group, 2003). Historically, individual
investigators have focused on molecular phylogenies within
genera. Recently, family-level phylogenies have received
considerable interest (The Angiosperm Phylogeny Group,
2003). The placement of genera is still uncertain. In the
future, independent contrast tests for the relationship
between genome size and the number of species in a
genus may ascertain whether the relationship is truly robust.

We can, however, use a family-level phylogeny where
the diversification rates have been estimated using a molecu-
lar clock and the fossil record (Magallon and Sanderson,
2001). The Magallon and Sanderson (2001) study provided
estimates of diversification rates for several major angio-
sperm groups. They identified ten lineages that were
diversifying significantly faster, 13 lineages that were
diversifying significantly slower, and 17 lineages classified
as having the expected diversity based on their age. We
tabulated the GS for these groups and found no significant
GS effect for diversification rate (Spearman’s rank corre-
lation, r = 0�10, P > 0�05, Fig. 3). The lineages that were
identified as species-rich did have lower GS compared to
both the species-poor clades and the clades diversifying at
the expected or average rate. However, these results were
also not statistically significant. It is possible that the GS
effect is too weak to be picked up in such a small dataset
(40 lineages). In addition, family-level means may saturate
any signal for potential causative effect on diversification

rates. Molecular-clock and fossil-record-corrected phylo-
genies at the genus level should help disentangle some of
these ambiguities.

Self-incompatibility may be one of the factors favouring
persistence and diversification of lineages because of fitness
advantages to out-crossing (Richards, 1997). In most cases
polyploidy breaks down self-incompatibility due to the
genetic interaction of diploid pollen grains with the haploid
egg (Richards, 1997). Polyploids can buffer the effects of
inbreeding better than diploid species because of their
increased heterozygosity (Husband and Schemske, 1997;
Lande and Schemske, 1985). However, in changing environ-
ments self-compatible species may be at a disadvantage. It
is estimated that between 47 and 70 % of flowering plants
are the descendants of polyploid ancestors (Masterson,
1994). Therefore, if genome size increases are brought
about by polyploidy (with associated re-diploidization),
perhaps one of the large genome constraints involves the
breakdown of self-incompatibility.

Given the analyses presented above, at best we can sug-
gest that there is a tentative GS effect for the generation of
plant species diversity that is worthy of further investiga-
tion. Lineages with small or average GS may diversify at
both fast and slow rates. However, when the analysis is
restricted to lineages with the largest GS (the quantile
regression analysis) the constraint on diversification rate
becomes more pronounced.

ECOLOGY

In an attempt to provide an ecological significance to the
pronounced variation in plant genome size (GS), early
investigators used altitude and latitude as proxies for abiotic
selection pressures putatively acting on GS. A summary
of GS/altitude studies reveals that nine found positive
correlations, eight found negative correlations, and six
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were inconclusive or not statistically significant (see Table 1
for references). On first impression it would seem that there
is no general relationship between altitude of origin and GS.
However, it may be that the trend is not linear, and mean
regression statistics across the whole range of environments
may not fully capture the relationship. Rayburn (1990)
found both positive and negative correlations for 23 popu-
lations of Zea mays when comparing their altitude of origin
in Mexico. Rayburn’s observations suggest that species with
large genomes occur at intermediate elevations and species
with small genomes tend to occur at both low (sea-level)
and high (2440 m) elevations. Perhaps results for altitude

have been inconclusive because the real trend is not linear
but rather hump-shaped or unimodal.

Results for GS and latitude of origin mirror those for
altitude. Five studies found positive, seven found negative,
and five found non-significant correlations (see Table 1 for
references). Levin and Funderburg (1979) did a discrete
test between tropical and temperate species and found that
temperate species had nearly double the GS of tropical
plants, while Bennett et al. (1982) and Bennett (1987)
suggest that angiosperm species with large GS are progres-
sively excluded from northern latitudes—again suggesting
a unimodal or hump-shaped distribution for GS across

T A B L E 1. Previous studies on the relationship between genome size with altitude (Alt.) and latitude (Lat.)

Variable Correlation Level Description Authors

Alt. + Pop. 15 Dasypyrum villosum in Italy Caceres et al., 1998
Alt. + Sp. 4 Crambe and 3 Sonchus in Macronesia Suda et al., 2003
Alt. + Pop. 12 Zea mays southwestern USA Rayburn and Auger, 1990
Alt. + Sp. Crepis praemorsa Godelle et al., 1993
Alt. + Sp. Hypocheris Cerbah et al., 1999
Alt. + Sp. Secale species Bennett, 1976a; Smith et al., 1976
Alt. + Pop. Teosinte Laurie and Bennett, 1985
Alt. + Sp. 11 Salix (mountain species with greatest

DNA content)
Thibault, 1998

Alt. � Sp. 8 Argyranthemum in Macronesia Suda et al., 2003
Alt. � Pop. 20 Arachis duranensis in

Argentina/Bolivia
Temsch and Greilhuber, 2001

Alt. � Pop. 8 Dactylis glomerata in Spain Creber et al., 1994
Alt. � Pop. 17 Dactylis glomerata in France

and Italy
Reeves et al., 1998

Alt. � Pop. 12 Zea mays in New Mexico Rayburn, 1990
Alt. � Pop. Corn (knob number) Mangelsdorf and Cameron, 1942;

Longley and Kato, 1965; Wellhausen
et al., 1952; Bennett, 1976b

Alt. � Pop. 24 Berberis in Patagonia Bottini et al., 2000
Alt. � Pop. 15 Zea mays Poggio et al., 1998
Alt. � Pop. 11 Arachis duranensis Singh et al., 1996
Alt. ^ Pop. 23 Zea mays Southwestern USA. Rayburn, 1990
Alt. ns Sp 4 Silene and 5 Micromeria in Macronesia Suda et al., 2003
Alt. ns Pop. 10 Sesleria albicans European Lysak et al., 2000
Alt. ns Sp. 21 Artemisia Torrel and Valles, 2001
Alt. ns Sp. 51 neotropical Lonchocarpus trees Palomino and Sousa, 2000
Alt. ns Pop. 5 Dactylis glomerata in Slovenian Alps Vilhar et al., 2002
Alt. ns Sp. 7 Echeandia Palomino, 1993
Lat. + Pop. Several Picea sitchensis Miksche, 1967, 1971
Lat. + Sp. Tropical vs. temperate grasses Avdulov, 1931
Lat. + Sp. 329 tropical vs. 527 temperate plants Levin and Funderburg, 1979
Lat. + Sp. 17 Poaceae and 15 Fabaceae crops Bennett, 1976a
Lat. + Pop. 24 Berberis in Patagonia Bottini et al., 2000
Lat. � Sp. 20 Arachis duranensis

in Argentina/Bolivia
Temsch and Greilhuber, 2001

Lat. � Pop. Several Festuca arundinacea Ceccarelli et al., 1992
Lat. � Pop. North American cultivars of Zea mays Rayburn et al., 1985
Lat. � Sp. 162 British plants Grime and Mowforth, 1982
Lat. � Sp. 23 Arctic plants Bennett et al., 1982
Lat. � Pop. 22 North American Zea mays Rayburn et al., 1985
Lat. � Pop. 11 North American Zea mays Laurie and Bennett, 1985
Lat. ns Sp. 18 pines Joyner et al., 2001
Lat. ns Pop. 6 Allium cepa cultivars Bennett et al., 2000
Lat. ns Pop. Several Picea glauca Teoh and Rees, 1976
Lat. ns Pop. 10 Dactylis glomerata Creber et al., 1994
Lat. ns Sp. 11 Tropical vs. temperate Pines Hall et al., 2000
Lat. ns Sp. 19 Helianthus Sims and Price, 1985

Correlations are either +, �, not significant (ns), or non-linear (^). Studies were classified into different levels: those dealing with different populations
of the same species (Pop.) or multiple species (Sp.).
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latitudinal gradients, similar to Rayburn’s observations for
altitude.

Confusion about the relationship between GS and alti-
tude or latitude may arise because factors such as tem-
perature and precipitation, which may more accurately
represent selection pressures acting on GS, do not vary
linearly with altitude or latitude. In addition, most studies
did not consider a full range of elevations or latitudes—
from sea-level to mountain tops and from the tropics to the
arctic. Finally, even using the correct underlying variables
over the whole range of values, we may still find that the
relationship is truly non-linear. Results from Rayburn
(1990), Levin and Funderburg (1979) and Bennett et al.
(1982; Bennett, 1987) suggest that the true relationship
between GS and altitude or latitude may more accurately
be represented by a unimodal distribution where species
with low DNA content may exist at any elevation or lati-
tude but species with the largest DNA contents may be
excluded from the extremes.

Knight and Ackerly (2002) confirmed this prediction
using GS trends across environmental gradients of tempera-
ture and precipitation in the California flora. They used
a geographic information system to calculate mean July
maximum temperature and annual precipitation inside the
geographic range of 401 species in the California flora and
compared these values to tabulated measurements of GS for
these species (taken from the Plant DNA C-values data-
base). Their findings show that species with large genomes
tend to be excluded from extreme environments with shorter
growing seasons (high or low July maximum temperatures,
or reduced annual precipitation). Similar to the results
presented in the evolution section, these results were not
obvious with mean regression statistics. The trends only
became apparent when quantile regression analyses were
applied. In this case, a quadratic quantile regression was
used to model the predicted unimodal trend. With increasing
quantiles, the quadratic coefficient became more negative,
implying increased concavity of the inverted parabolic
function. We re-analysed the relationships presented by
Knight and Ackerly (2002) with 20 additional species
(421 in total). These analyses were not significantly differ-
ent from the original interpretation (Fig. 4), and again sup-
port the hypothesis that species with large genomes are
progressively excluded from habitats with extreme July
maximum temperatures and decreased annual precipitation.
Qualitatively, results were similar when performed with
basic genome size (2C values divided by ploidy level)
and 1C DNA contents.

Other investigators have used mean temperatures inside
species’ geographic ranges as a correlate with GS (see
Table 2 for complete references). Suda et al. (2003)
found both positive and negative relationships in the Macro-
nesian flora with mean annual temperature. Turpeinen et al.
(1999) found a positive correlation between GS and mean
January temperatures in populations of wild barley in Israel,
and Wakamiya et al. (1993) found a negative correlation in
pines for the highest spring mean monthly air temperature
(Table 2). Combining geographic information system (GIS)
analyses with species-specific plant functional traits, such as
genome size, should continue to be a fruitful endeavour

for the analysis of putative abiotic selection pressures
operating on GS.

Other temperature variables have been used as correlates
with GS, including (1) the timing of spring growth, (2)
germination temperatures, and (3) frost tolerance. Grime
and Mowforth (1982) and Grime et al. (1985) measured
the timing of spring growth for several species in the UK
flora. Species that delayed growth until the warmer spring
and summer months tended to have smaller GS. Those that
grew early in the spring had larger GS (here recorded as a
negative correlation with temperature, Table 2.). Campbell
et al. (1999) found the same correlation for populations of
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white clover. However, Bretagnolle and Thompson (1996)
found the opposite relationship for sympatric Dactylis
glomerata populations. MacGillivray and Grime (1995)
measured frost tolerance and found that species that sur-
vived colder temperatures tended to have larger GS (also
recorded as a negative correlation with temperature in
Table 2). Thompson (1990) and Grime et al. (1997) meas-
ured optimal germination temperatures for several species
in the UK flora and found that species that germinated at
lower temperatures tended to have larger GS (also recorded
as a negative correlation with temperature in Table 2).

Grime and Mowforth (1982) suggested that early spring
growth is facilitated by large GS and the associated larger
cell sizes (see section on phenotype). Their model suggests
that growth at low temperatures is facilitated by cell expan-
sion driven by turgor pressure and not cell division. The
theory is supported by observations that cell size is posit-
ively correlated with GS (Rees et al., 1966; Bennett et al.,
1983; Anderson et al., 1985) and the fact that cell division is
inhibited at lower temperatures (Haber and Luippold, 1960).

Considering the proposed importance of cell size, turgor
pressure and cell expansion for predicting responses of large
GS species to low temperatures, it is not surprising that
several studies have also found positive correlations
between GS and estimates of water availability or mean
annual precipitation within species ranges (see Table 3).
Knight and Ackerly (2002) reported positive correlations
between GS and annual precipitation for 401 species in the
California flora. The relationship was steeper and more
significant as GS increased (see quantile regression analyses
presented above). Price et al. (1981), and Castro-Jimenez
et al. (1989) also found positive relationships. Bottini et al.
(2000) report a negative correlation, but water availability
differed between sites independently of the annual average
rainfall. Populations that occurred at sites with high water
availability tended to have larger GS (no statistics were
presented to support this claim). Other investigators have
found negative or inconclusive results. For example,
Wakamiya et al. (1993) found a negative correlation
between annual precipitation and GS for 18 North American
pines. Suda et al. (2003) also found a negative correlation
for several species in the Micronesian flora. Sims and Price
(1985) found no significant relationship between GS and
estimates of mean annual precipitation within the ranges of
16 Helianthus species. Taken together, one might conclude
that there is no interaction between annual precipitation or
water availability with genome size. However, the sample
sizes were small for many of these analyses. In addition, the
combined effects of water stress and high temperature stress
may amplify putative environmental effects on nuclear
DNA content (annual precipitation and July maximum
temperature are strongly correlated at the high temperature
extreme).

Studying six pine species, Wakamiya et al. (1996) found
that species with higher turgor-loss points (i.e. greater water
stress sensitivity) had larger GS. These species would be

T A B L E 2. Previous studies on the relationship between
genome size and temperature

Correlation Level Description Authors

+a Sp. 8 Argyranthemum, 4 Silene
and 5 Micromeria in
Micronesia

Suda et al., 2003

+b Pop. 10 Hordeum spontaneum
in Israel

Turpeinen et al.,
1999

+a Pop. Several Festuca arundinacea Ceccarelli et al.,
1992

+d Pop. 45 Dactylis glomerata Bretagnolle and
Thompson, 1996

–c Pop. Herbaceous plants in UK MacGillivray and
Grime, 1995

–a Sp. 4 Crambe and 3 Sonchus
in Micronesia

Suda et al., 2003

–e Sp. 18 North American pines Wakamiya et al.,
1993

–f Pop. 7 white clover Campbell et al.,
1999

–j Pop. 8 maize populations McMurphy and
Rayburn, 1991

–g Sp. 131 British angiosperms Thompson, 1990
–f Sp. 30 Grasses and forbs in UK Grime et al., 1985
–f Sp. 24 UK geophytes and

grasses
Grime and Mowforth,
1982

–g Sp. 43 UK angiosperms Grime et al., 1997
^h Sp. 401 California Angiosperms Knight and Ackerly,

2002
nsi Pop. 6 Hordeum spontaneum

in Israel
Kalendar et al., 2000

Correlations are either +,�, not significant (ns), or non-linear (^). Studies
were classified into different levels: those dealing with different populations
of the same species (Pop.) or multiple species (Sp.). Footnotes a–j describe
the temperature variable used.

a Mean annual temperatures. b mean January temperature; c lowest
temperature survived (frost tolerance) – higher values equals less frost
tolerance; d ability for winter growth; e highest mean monthly spring air
temperature; f timing of spring growth; g minimum germination tempera-
ture; h July maximum temperature; i north-to-south facing transects
(individuals on south-facing slope had slightly larger genome);
j cold tolerance and frost tolerance.

T A B L E 3. Previous studies on the relationship between
genome size and precipitation

Correlation Level Description Authors

+ Sp. 5 Microseris bigelovii
and 5 M. laciniata

Castro-Jimenez
et al., 1989

+ Sp. 4 Crambe and 3 Sonchus
in Micronesia

Suda et al., 2003

+a Pop. 24 Microseris douglasii Price et al., 1981
+ Sp. 401 California angiosperms Knight and Ackerly,

2002
� Sp. 8 Argyranthemum, 4 Silene

and 5 Micromeria in
Micronesia

Suda et al., 2003

–b Sp. 18 North American Pinus Wakamiya et al., 1993
–c Pop. 24 Berberis in Patagonia Bottini et al., 2000
ns Sp. 19 Helianthus Sims and Price, 1985

Correlations are either +, �, not significant (ns). Studies were classified
into different levels: those dealing with different populations of the same
species (Pop.) or multiple species (Sp.).

a Temporal variation within a single population; b lowest mean monthly
precipitation; c annual rainfall, but there was a positive correlation with
water availability (no statistical analyses shown).
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less able to survive drought and therefore excluded from
areas with decreased water availability. Further studies on
turgor-loss point, cell size and DNA content, with measures
of water availability, should be performed to further char-
acterize the effects of DNA content on the distribution and
abundance of species with large genomes across gradients
of precipitation.

PHENOTYPE

Although the causal nature of the large genome constraint
outlined in the previous sections is uncertain, it may
arise from correlated effects beginning at the cellular
level. Here we discuss several well-established cellular
correlations with GS: the strong positive correlation with
seed size, GS correlations with life history parameters
(annual vs. perennial growth habit, relative growth rate
and generation time), and new analyses dealing with
GS effects on maximum photosynthetic rate and specific
leaf area.

Cellular correlations

Early investigators found several fascinating cellular and
developmental correlations with GS (see Bennett, 1973,
1987, and Cavalier-Smith, 1985, for reviews). First, nuclear
DNA content is positively and quite directly correlated with
chromosome size, nuclear size and cell size (Rees et al.,
1966; Baetecke, 1967; Edwards and Endrizzi, 1975; Bennett
et al., 1983; Lawrence, 1985). Second, nuclear DNA con-
tent is positively and strongly correlated with the duration
of cell division (Bennett, 1971, 1977; Evans et al., 1972;
Van’t Hof, 1975). The causal nature of these correlations
may arise from simple first principles. More DNA may
require a larger container and require more time for replica-
tion. Gregory (2002) suggests that these phenomena may be
manifest by GS interaction with cell cycle regulation via an
unknown mechanism. It seems plausible that a species with
a small genome might have a larger cell size or longer cell
cycle, but that is rarely the case. These simple predictions
may manifest at higher phenotypic levels, first and perhaps
most directly, with seed mass.

Seed mass

Seed mass (also called seed size, the oven dry mass of
the average seed) is thought to be a significant factor affect-
ing seedling survival (Willson, 1983; Westoby et al.,
1992). The positive correlation between seed size and GS
has been shown repeatedly, both between populations of
the same species (Caceres et al., 1998; Chung et al.,
1998) and across large numbers of species (see Table 4,
and Fig. 5). The consistency of these results is remarkable
in comparison to the results for altitude, latitude and tem-
perature (see Tables 1 and 2). Mowforth (1985) showed that
the relationship between seed size and GS was a filled
triangle rather than simply a linear positive trend. As
seed mass increases there is a larger range of observed
GS, but species with the largest GS always have large seeds.

We reanalysed Knight and Ackerly’s (2002) seed mass/
GS data using a semi-log plot. Displayed this way, their data
take on the triangular appearance shown by Mowforth
(1985, Fig. 5). We also performed a quantile regression
analysis of these data. This demonstrated a threshold or
limit for the relationship between GS and seed size. With
increasing quantiles the slope of the linear regression
became steeper. The quantile regression analysis supports
the idea that there is a GS-dependent constraint on attainable
seed masses. There was a shallow positive slope for
the lowest quantiles, with significantly steeper slope esti-
mates for the largest quantiles. As GS increases, cell sizes
increase, which may naturally force seed sizes to become
larger. There may be some mechanisms for counteracting
this tendency, but these mechanisms may evolve more
slowly than the accumulation of DNA.

Species that produce small seeds can increase reproduct-
ive output because small seeds are produced in greater
numbers (Cornelissen et al., 2003), which may also lead
to greater dispersal ability. However, the positive fitness
consequences of having large seeds have also been exam-
ined. It is thought that large-seeded species tend to produce
larger seedlings (Leishman et al., 2000) with greater
reserves for growth, enabling seedlings to survive under
shaded canopies (Grime and Jeffery, 1965; Leishman
and Westoby, 1994a; Saverimuttu and Westoby, 1996),
in dry soil (Leishman and Westoby, 1994b) and in low-
nutrient environments (Milberg et al., 1998). Large-seeded
species may also compete better for resources (Black, 1958;
Gross and Werner, 1982; Reader, 1993) and better with-
stand herbivory and pathogen attack (Armstrong and
Westoby, 1993; Harms and Dalling, 1997). Large-seeded
species, and thus large genome species, may increase their
probability of regeneration in their current environment at
the expense of dispersal into new environments.

If the small-genome plants can evolve larger seeds but
rarely do, it would suggest that having a larger number of

T A B L E 4. Previous studies on the relationship between
genome size and seed mass

Correlation Level Description Authors

+ Pop. 15 Dasypyrum villosum Caceres et al., 1998
+ Pop. 12 Soybean strains Chung et al., 1998
+ Sp. 131 British angiosperms Thompson, 1990
+ Sp. 43 British plants Grime et al., 1997
+ Sp. 22 Crepis Jones and Brown,

1976
+ Sp. 12 Allium and 6 Vicia Bennett, 1972
+ Sp. 18 North American pines Wakamiya et al.,

1993
+ Sp. 19 Mediterranean annuals Maranon and Grubb,

1993
+ Sp. 148 species in California

flora
Knight and Ackerly,
2002

+ Sp. Several Poaceae and
Fabaceae

Mowforth, 1985

Ns Sp. 16 grassland species, UK Leishman, 1999

Correlations are either positive (+) or not significant (ns). Studies were
classified into different levels: those dealing with different populations of the
same species (Pop.) or multiple species (Sp.).
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smaller seeds is the superior strategy. The large-genome
plants may often be unable to counteract the increase of
seed size due to the increase in GS and have to evolve a suite
of traits that ameliorate such negative consequences. In
any case, the greater dispersal ability brought about by
the increased seed number may contribute to the reduced
rates of extinction of small-genome species (see the
evolution section) and may also contribute to the increased
dispersal into extreme habitats and thus increase the
probability of allopatric speciation events.

Leaf anatomical traits

The rate of cell division and cell size could have signific-
ant effects on leaf morphology. Other investigators have

found both positive and negative correlations between GS
and leaf area, length or width (see Table 5). The relationship
of leaf area to leaf mass (specific leaf area, SLA) is a trait at
the nexus of a suite of co-varying traits related to the effi-
ciency of carbon gain and leaf longevity (Reich et al., 1997,
1998). Given the cellular correlations presented above and
the potential functional associations to be gleaned from a
relationship between GS and SLA, we examined this rela-
tionship using two functional trait databases (that of Grime
et al., 1997 and Reich et al., 1998). We obtained SLA
estimates for 67 species with known 2C DNA content.
We found a significant negative correlation between GS
and SLA (r = �0�42, P < 0�0001; Fig. 6). Species with
low SLA (typically smaller, thicker leaves) tended to
have larger GS.

The association between GS and SLA suggests that
several other plant traits may also be associated with GS
given their strong interdependence with SLA. These include
maximum photosynthetic rate, dark respiration rate, leaf
nitrogen content and leaf lifespan (Reich et al., 1997,
1998). Below we test for relationships with maximum
photosynthetic rate. The endeavour of joining results
from plant functional trait databases with estimates of
GS has considerable promise to shed new insight into
the phenotypic and physiological consequences of GS varia-
tion in plants.

Photosynthetic rate

Previous investigators have examined the effect of
within-species ploidy variation on photosynthetic rate.
Both positive (Randall et al., 1977; Joseph et al., 1981)
and negative (Garrett, 1978; Setter et al., 1978; Austin
et al., 1982; Wullschleger et al., 1996) correlations have
been reported. To our knowledge, no cross-species compar-
isons have been made. Here we test for GS-dependent
variation in maximum photosynthetic rate using data
from a published plant functional trait database (Reich
et al., 1998). We compiled estimates of mass-based
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T A B L E 5. Previous studies on the relationship between
genome size and leaf anatomical traits

Correlation Level Description Authors

+ Sp. 5 Microseris bigelovii and
5 M. laciniata (leaf area)

Castro-Jimenez
et al., 1989

+ Sp. 12 Soybean strains (leaf
length and width)

Chung et al., 1998

+ Sp. 18 North American Pinus
(needle fresh and dry mass)

Wakamiya et al.,
1993

� Pop. 15 Dasypyrum villosum
in Italy (leaf length)

Caceres et al., 1998

� Sp. 43 British plants (leaf width) Grime et al., 1997
� Pop. 30 Festuca arundinacea

(leaf length)
Ceccarelli et al.,
1993

Ns Sp. 43 British plants (leaf area) Grime et al., 1997

Correlations are either +,�, or not significant (ns). Studies were classified
into different levels: those dealing with different populations of the same
species (Pop.) or multiple species (Sp.).
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maximum photosynthetic rate for 24 species with known
GS. These analyses revealed a significant negative correla-
tion (Fig. 6). Species with large genomes tend to have lower
maximum photosynthetic rates.

These results parallel observations for mammals and
birds where metabolic rate is negatively correlated with GS
(Vinogradov, 1995, 1997; Gregory, 2002). These comple-
mentary results suggest similar scaling mechanisms for
metabolic efficiency that are somehow associated with GS.
While thecausativenatureof this relationship is stilluncertain
in both cases, the implications are far-reaching. The result
may help to explain the relationship between GS and min-
imum generation time. Species with small seeds also tend to
have greater mass-based photosynthetic rates because they
must acquire resources rapidly on emergence rather than
relying on seed stores. Species with small genomes are thus
able to complete their life cycle faster. The negative correla-
tion between SLA and GS may be a consequence of overlap-
ping adaptive strategies selecting for a well-described suite
of physiological traits fine-tuned to achieve rapid growth.

Growth rate and generation time

The relative growth rate and growth interval before repro-
duction are both significant factors predicting the life his-
tory and regeneration niche of a species. Species that grow
fast and reproduce in short intervals are more likely to be
weedy or invasive and are opportunists that occupy dis-
turbed sites. Several studies have found negative correla-
tions for GS and relative growth rate (RGR) and positive
correlations between GS and generation time (days to
flowering, seed-bearing age, flowering date; Table 6).
These correlations are equivalent since species that
grow faster also tend to reproduce earlier. However,
some studies have found the opposite relationships for
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T A B L E 6. Previous studies on the relationship between
genome size (GS) and generation time (Gen.) or relative

growth rate (RGR)

Variable Correlation Description Authors

Gen. + GS annuals <GS perennials
in 45 spieces of Vicia

Chooi, 1971

Gen. + GS annuals <GS obligate
perennials in 271 angiosperms

Bennett, 1972

Gen. + GS annuals <GS perennials
in 22 species of Crepis

Jones and Brown,
1976

Gen. + GS annuals <GS perennials
in 18 species of Helianthus

Sims and Price,
1985

Gen. + GS annuals <GS perennials
in 10 Arachis sp

Singh et al., 1996

Gen. + GS annuals <GS perennials
in 565 angiosperms (genus
level)

Vinogradov, 2001

Gen. + GS annuals <GS perennials
in 24 species of Lathyrus

Nandini and
Murray, 1997

Gen. ns Annuals vs. perennials in
401 CA angiosperms

Knight and
Ackerly, 2002

Gen. + Length of vegetative period
in maize strains

Tito et al., 1991

Gen. + Helianthus annuus Natali et al., 1993
Gen. + Days to flowering in 30

populations of Festuca
arundinacea

Ceccarelli et al.,
1993

Gen. + Minimum seed-bearing age
in 18 North American pines

Wakamiya et al.,
1993

Gen. + Maize Rayburn, 1994
Gen. � Initial month flowering in

42 Allium species
Labani and
Elkington, 1987

Gen. � Tetraploids flowered earlier
than diploids, populations
of D. glomerata

Bretagnolle and
Thompson, 1996

Gen. � First month flowering in
28 Allium species

Baranyi and
Greilhuber, 1999

Gen. ns 162 British annuals and
perennials

Grime and
Mowforth, 1982

Gen. ns Pisum sativum Cavallini et al.,
1993

Gen. ns Seed germination to anthesis,
15 populations of Dasypyrum
villosum

Caceres et al.,
1998

RGR + Rate of leaf extension at low
temperatures for 24 UK species

Grime et al., 1985

RGR + Pisum sativum Cavallini et al.,
1993

RGR + Epicotyl length 2–3 d after
germination in 10 populations
of Vicia faba

Minelli et al.,
1996

RGR + Growth at low temperatures
for 7 population of Trifolium
repens

Campbell et al.,
1999

RGR + 16 grassland species in UK Leishman, 1999
RGR � 6 weeks growth for 44 tillers

of Poa annua
Mowforth and
Grime, 1989

RGR � 10 d after germ. in 30
populations of Festuca
arundinaceae

Ceccarelli et al.,
1993

RGR � 12 Southwestern Zea mays Biradar et al.,
1994

RGR � Relative growth rate for
30 pines

Grotkopp et al.,
1998

RGR ns Helianthus annuus Natali et al., 1993
RGR ns Growth 7–21 d following

germination for 43 species
in the UK

Grime et al., 1997

Correlations are either +, �, or not significant (ns).
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RGR and generation time (Table 6), making generalizations
difficult. Bennett et al. (1998) found that invasive species
tend to have smaller GS. Annual species also typically have
smaller GS (see Table 6 for references). Nonetheless,
decreased growth rate and increased generation time
may, in some cases, form the physiological link for the
observed constraints on the distribution of large genome
species across environmental gradients, as well as the evo-
lutionary constraints outlined above.

CONCLUSION AND FUTURE DIRECTIONS

Having reviewed the current data on the macroevolutionary,
conservation, ecological and functional significance of GS
variation, what can we say about the viability of the large
genome constraint hypothesis? We believe that we can
endorse it, but rather cautiously at present. A recurrent
theme is that strict correlation analyses often do not tell
the whole story. Sophisticated statistical techniques that
highlight larger genome sizes are needed to understand
more clearly constraints on evolution, species distribution
and phenotype. In this paper we have demonstrated the
utility of quantile regression methods for addressing
these complexities.

Macroevolutionary and conservation data show that
lineages with the largest genomes have slower than average
rates of diversification and disproportionately higher extinc-
tion risk (Vinogradov, 2003). However, these relationships
are non-linear. For example, lineages with small genomes
are not uniformly specious and are often as depurate as
lineages with very large average genome sizes. However,
lineages with large genomes are rarely highly specious. It
appears that diversity is constrained in some way in these
lineages.

A very similar relationship is evident when examining
trends across environmental gradients. Species with small
genomes tend to be found in widely varying habitats. How-
ever, lineages with very large genomes appear to be
excluded from the most extreme habitats. Again, it does
not appear that genome size is generating a consistent cau-
sative effect across the whole genome size range; rather
it appears that lineages with the largest genome sizes
are constrained from finding a way to survive in extreme
environments. We encourage further examination of
genome size distribution across abiotic gradients, perhaps
even including analyses across gradients of elevation and
latitude. However, these analyses should include descrip-
tions of mean environmental conditions and habitat types
spanning the range of elevations or latitudes considered. A
greater range of habitat types is more likely to reveal signi-
ficant trends—perhaps only after employing quantile
regression to examine the effects at the boundaries of
these bivariate distributions.

Ultimately the large genome constraints for evolution
and ecology must be due to phenotypic variation manifest
either directly or indirectly by changes in DNA content.
Associations between GS and maximum photosynthetic
rate, SLA, seed mass, relative growth rate or generation
time are just a few examples of ecologically relevant

phenotypic traits that may form a causative link for the
large genome constraints outlined above. Results for
photosynthetic rate and GS are particularly intriguing.
The possibility of arriving at universal scaling laws
originating from nucleotypic effects that predict the meta-
bolic efficiency of organisms is exciting. If confirmed,
these results may have far-reaching implications for the
ecology and evolution of species.

Phenotypic associations with GS also often exhibit non-
linear distributions. In general, large-genome species tend
to display restricted trait variation, while small-genome
species can attain a much wider array of trait states. For
example, large-genome species never have small seeds
while small-genome species display a much wider range
of seed sizes. Similarly, large-genome species have lower
photosynthetic rates while small-genome species have a
wider range of photosynthetic performance. Also, large-
genome species have reduced variation in SLA and tend
to have lower SLA in general, compared to small-genome
species which have a wider range of SLA.

It is likely that there is strong interdependence of
the large genome constraints found at the evolutionary,
ecological and functional levels. We can speculate that
restricted ecological tolerances may increase probabilities
of extinction by reducing population sizes. It may also
increase the potential of ‘mutational meltdown’ scenarios
to drive populations into extinction (Lynch et al., 1993). In
addition, the inability to colonize extreme environments
may decrease the chances of long-term isolation and
allopatric speciation of large-genome lineages. The latter
effect is also amplified by the tendency of large-genome
lineages to have large seeds and thus to have lower
dispersal abilities.

We emphasize that the endeavour of joining results from
plant functional trait databases with estimates of GS has
considerable promise to provide new insight into the pheno-
typic and physiological consequences of variation in
plant GS. Combining GIS analyses with these results will
also add clues in the search for putative abiotic selection
pressures operating on GS. The development of these
holistic databases will perhaps allow us to progress beyond
pairwise correlations to partial correlation and path ana-
lyses. Such analyses should help us finally arrive closer
to direct rather than correlated statistical effects. This is a
goal worth striving for.
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