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� Background and AimsUnder high photon flux, excitation energy may be in excess in aluminum (Al)-treated leaves,
which use a smaller fraction of the absorbed light in electron transport due to decreased CO2 assimilation compared
with normal leaves. The objectives of this study were to test the hypothesis that the antioxidant systems are
up-regulated in Al-treated citrus leaves and correlate with protection from photoxidative damage, and to test
whether xanthophyll cycle-dependent thermal energy dissipation is involved in dissipating excess excitation energy.
� Methods ‘Cleopatra’ tangerine seedlings were fertilized and irrigated daily for 8 weeks with quarter-strength
Hoagland’s nutrient solution containing Al at a concentration of 0 or 2 mM from Al2(SO4)3.18H2O. Thereafter, leaf
absorptance, chlorophyll (Chl) fluorescence, Al, pigments, antioxidant enzymes and metabolites were measured on
fully expanded leaves.
� Key Results Compared with control leaves, energy was in excess in Al-treated leaves, which had smaller thermal
energy dissipation, indicated by non-photochemical quenching (NPQ). In contrast, conversion of violaxanthin (V) to
antheraxanthin (A) and zeaxanthin (Z) at midday increased in both treatments, but especially in Al-treated leaves,
although A + Z accounted for less 40 % of the total xanthophyll cycle pool in them. Activities of superoxide
dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate
reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and concentrations of ascorbate (AsA), dehydro-
ascorbate (DASA), reduced glutathione (GSH) and oxidized glutathione (GSSG) were higher in Al-treated than in
control leaves.
� Conclusions These results corroborate the hypothesis that, compared with control leaves, antioxidant systems are
up-regulated in Al-treated citrus leaves and protect from photoxidative damage, whereas thermal energy dissipation
was decreased. Thus, antioxidant systems are more important than thermal energy dissipation in dissipating excess
excitation energy in Al-treated citrus leaves.

Key words: Aluminum, antioxidant systems, Citrus reshni, ‘Cleopatra’ tangerine, non-photochemical quenching, thermal
energy dissipation, xanthophyll cycle.

INTRODUCTION

Aluminum (Al) in mildly acidic or neutral soils occurs
primarily as insoluble deposits and is essentially biologic-
ally inactive. However, in many acid soils Al toxicity is a
major factor limiting crop productivity; it is particularly
important throughout the tropics and subtropics.

Since CO2 assimilation decreases in leaves supplied with
Al (Pereira et al., 2000; Chen et al., 2005), only a fraction of
the absorbed light energy is used in electron transport. As a
result, there is more excess excitation energy in leaves with
large Al content than in normal leaves, particularly under
high photon flux (PF). Excess absorbed light can be dissip-
ated as heat through xanthophyll cycle-dependent thermal
energy dissipation in the antenna pigment complexes of
PSII (Demmig-Adams and Adams, 1996; Niyogi et al.,
1998). However, Lu et al. (2003) reported that although
excess excitation energy increased in the salt-acclimated
halophyte Artimisia anethifolia, there was no change in
thermal energy dissipation, indicated by non-photochemical
quenching (NPQ). It was suggested that the Mehler reaction
and/or photorespiration could be enhanced to dissipate
excess excitation energy. The NPQ is highly correlated with
the concentration of antheraxanthin (A) + zeaxanthin (Z)

(Demmig-Adams and Adams, 1996; Chen and Cheng,
2003; Cheng, 2003). However, some studies have shown
no correlation between NPQ and A + Z concentration
(Förster et al., 2001; Cousins et al., 2002). Although the
effects of many environmental stresses (water, temperature,
nutrients, salt) on xanthophyll cycle-dependent thermal
energy dissipation have been examined in some detail
(Adams et al., 1994; Cousins et al., 2002; Chen and
Cheng, 2003; Cheng, 2003; Lu et al., 2003), little is
known about the response of xanthophyll cycle-dependent
thermal energy dissipation of leaves to Al.

An alternative route for energy dissipation and consump-
tion of photosynthetic electrons is directly in the water–
water (Asada) cycle or indirectly in photorespiration
(Asada, 1999). Many enzymes such as superoxide dis-
mutase (SOD), ascorbate peroxidase (APX), glutathione
reductase (GR), monodehydroascorbate reductase (MDAR)
and dehydroascorbate reductase (DHARR), and antioxid-
ant metabolites such as ascorbate (AsA), and reduced gluta-
thione (GSH), all involved in the water–water cycle, as well
as catalase (CAT) involved in scavenging the bulk H2O2

generated by photorespiration may be enhanced in Al-
treated leaves, serving to protect them from photo-oxidative
damage under high light. In a study, Kuo and Kao (2003)
investigated the effects of Al on activities of SOD, CAT,* For correspondence. E-mail lisongchen2002@hotmail.com
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GR and APX in detached rice (Oryza sativa ‘Taichung
Native 1’) leaves. Aluminum decreased SOD activity,
but increased CAT and GR activities. APX activity was
increased only after prolonged treatment. However, activ-
ities of MDAR and DHAR and the concentrations of AsA
and GSH were not determined.

Potentially, Al might alter the synthesis and breakdown
of particular components and so affect the mechanisms of
energy dissipation in citrus leaves. Citrus belongs to ever-
green subtropical fruit trees and is known to be sensitive to
Al. Low pH and high Al concentration are the factors con-
tributing to poor citrus growth and shortened lifespan of
trees (Lin and Myhre, 1990). Although the effects of Al
on mineral nutrient (Lin and Myhre, 1991b) and CO2 assim-
ilation (Pereira et al., 2000; Chen et al., 2005) of citrus have
been investigated by a few researchers, very little is known
about the effects of Al on the photoprotectives system of
citrus leaves. Therefore it is a useful plant to analyse the
responses of different mechanisms of energy dissipation in
photosynthetic metabolism to Al.

The aims of this study were to test the hypothesis that the
antioxidant systems are up-regulated and function to protect
from photo-oxidative damage, and to establish whether
xanthophyll cycle-dependent thermal energy dissipation
is involved in dissipating the increased excess excitation
energy in Al-treated citrus leaves.

MATERIALS AND METHODS

Plant culture and Al treatments

Seeds of ‘Cleopatra’ tangerine (Citrus reshni Hort.
ex Tanaka), an Al-resistant rootstock used in citrus cultiva-
tion (Lin and Myhre, 1991a), were germinated in plastic
trays containing MetroMix 360 (The Scotts Co., Marysville,
OH, USA), and irrigated when necessary with quarter-
strength Hoagland’s nutrient solution. Four weeks after
germination, uniform seedlings with a single stem were
selected, transplanted into 1�7 L plastic pots containing
MetroMix 360, and grown in a greenhouse under a natural
photoperiod. Each pot contained one seedling, and was
supplied twice weekly with 150 mL of quarter-strength
Hoagland’s nutrient solution. Five weeks after transplant-
ing, each seedling was supplied daily until dripping with
quarter-strength Hoagland’s nutrient solution at an Al con-
centration of 0 or 2 mM from Al2(SO4)3.18H2O. The pH of
both control and treatment solutions was adjusted to 4�1
using 0�1 M HCl or 0�1 M NaOH. There were 30 trees per
Al treatment in a completely randomized design. Seventeen
weeks after germination, leaf absorptance, chlorophyll
(Chl) fluorescence, activities of antioxidant enzymes, and
contents of Al, pigments and antioxidant metabolites were
measured.

Measurements of leaf absorptance, Chl fluorescence and
CO2 assimilation

Leaf reflectance and transmittance were measured with a
LI-1800 spectroradimeter and 1800-12S integrating sphere
(Li-Cor Inc., Lincoln, Nebraska, USA) (Chen and Cheng,

2003). There were five replicates per treatment (one leaf per
replicate, one leaf per plant).

Chlorophyll fluorescence was measured with a pulse-
modulated fluorometer FMS2 (Hansatech Instruments
Ltd., Norfolk, UK) both at midday under full sun [photon
flux (PF) of 10206 34 mmol m�2 s�1; henceforth ‘full sun’
refers to this value] and before dawn (Chen and Cheng,
2003). Non-photochemical quenching (NPQ) was calcu-
lated according to Bilger and Björkman (1990) and max-
imum PSII efficiency of dark-adapted leaves (Fv/Fm) was
calculated as in van Kooten and Snel (1990). Photochemical
quenching coefficient qP, efficiency of excitation transfer to
open PSII centres (Fv

0/Fm
0), and PSII quantum efficiency

were calculated as in Genty et al. (1989). The rate of
electron transport was estimated from (Fm

0 � Fs)/Fm
0 ·

0�5 · leaf absorptance · PF, with PSI photochemistry
assumed to equal PSII (Genty et al., 1990). The rate of
excess energy production was estimated according to
Kato et al. (2003). There were eight replicates per treatment
(one leaf per replicate, one leaf per plant).

Leaf CO2 assimilation was measured with a CIRAS-1
portable photosynthesis system (PP systems, Herts, UK)
at ambient CO2 concentration (360 mmol mol�1) in natural
PF of 10206 34 mmol m�2 s�1 from 1100 h to 1200 h on a
clear day. During measuring, leaf temperature and ambient
vapour pressure were 28 6 0�1 �C and 1�48 6 0�01 kPa,
respectively. There were eight replicates per treatment (one
leaf per replicate, one leaf per plant).

Analysis of leaf pigments

Immediately before Chl fluorescence measurements, one
disc (1 cm2) was punched from the leaf used for fluores-
cence and gas exchange measurements and frozen in liquid
N2, then stored at �80 �C until analysis. Pigments were
measured by HPLC (Cheng, 2003). There were seven rep-
licates per treatment (one leaf per replicate, one leaf per
plant).

Assay of leaf superoxide anion generation

Superoxide anion generation was determined by reduc-
tion of nitroblue tetrazolium (NBT; Doke, 1983). Five fresh
leaf discs (total of 5 cm2) from a leaf taken under full sun
at midday were immersed immediately in 3 mL of a mixture
containing 10mMNa2HPO4–KH2PO4 (pH7�8), 0�05% (w/v)
NBT and 10 mM NaN3 for 1 h. Then the mixture was
incubated for 15 min at 85 �C and cooled rapidly. Absorb-
ance at 580 nm was recorded and the reduction of NBT was
expressed as increased OD580 m�2 s�1. There were five
replicates per treatment (one leaf per replicate, one leaf
per plant).

Assay of leaf H2O2 production

H2O2 production was measured according to Orendi et al.
(2001). Six leaf discs (total of 6 cm2) from a leaf taken under
full sun at midday were immediately incubated in 2 mL of
50 mM phosphate buffer (pH 7�0), 0�05 % (w/v) guaiacol
(440 mL L�1) and horseradish peroxidase (2�5 U mL�1)
for 2 h at room temperature in the dark. Absorbance was
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measured immediately at 470 nm. There were five replicates
per treatment (one leaf per replicate, one leaf per plant).

Leaf lipid peroxidation

Three leaf discs (total of 3 cm2) from a leaf were taken
at midday under full sun, frozen in liquid N2, and stored at
�80 �C until assay. Lipid peroxidation was determined
by measuring the malondialdehyde (MDA) concentration
(Hodges et al., 1999). There were five replicates per treat-
ment (one leaf per replicate, one leaf per plant).

Extraction and assay of leaf antioxidant enzymes

Leaf discs (1 cm2 in size) from a leaf were taken at
midday under full sun, frozen in liquid N2, and stored at
�80 �C until being assayed. There were four replicates per
treatment (one leaf per replicate, one leaf per plant). SOD
(EC 1.15.1.1), APX (EC 1.11.1.1.11), MDAR (EC 1.6.5.4),
DHAR (EC 1.8.5.1), GR (EC 1.6.4.2) and CAT (EC
1.11.1.16) were extracted according to Chen and Cheng
(2003). SOD activity was assayed according to McCord
and Fridovich (1969). APX, CAT, MDAR, DHAR and
GR activities were measured according to Chen and
Cheng (2003).

Extraction and analysis of leaf antioxidant metabolites

Leaf discs were taken from the same leaf used for anti-
oxidant enzyme measurements under full sun at midday,
frozen in liquid N2, and stored at �80 �C until assay. There
were four replicates per treatment (one leaf per replicate,
one leaf per plant). Two leaf discs (total of 2 cm2) were
ground in 1 mL of ice-cold 7 % (w/v) 5-sulfosalicylic acid.
GSH and GSSG were determined according to Griffith
(1980). AsA and DAsA were measured according to
Logan et al. (1998). Briefly, one leaf disc (1 cm2) was
ground in 1 mL of ice-cold 6 % (v/v) HClO4, the extract
was centrifuged at 10 000 g for 10 min at 2 �C and imme-
diately used for measurements. 30 mL of 1�5 M Na2CO3 was
added to 100 mL of the supernatant to raise the pH to
approx. 1–2. AsA was assayed at 265 nm in 200 mM sodium
acetate buffer (pH 5�6), before and after 15 min incubation
with 1�5 units AsA oxidase (EC 1.10.3.3). For total ascor-
bate, 30 mL of 1�82 M Na2CO3 was added to 100 mL of
extract to raise the pH to approx. 6–7 and incubated for
30 min at room temperature with an equal volume (130 mL)
of 20 mM GSH in 100 mM Tricine-KOH (pH 8�5). Total
ascorbate was assayed as above. DAsA was calculated as
the difference between total ascorbate and AsA.

Assay of leaf Al

Leaf Al was assayed by ICP emission spectrometry (Lin
and Myhre, 1991b). There were five replicates per treatment
(two leaves per replicate, two leaves per plant).

Statistical analysis

Experiments were performed with 4–8 replicates (one
plant per replicate). Results represented the mean 6 s.e.
for n = 4–8. Unpaired t-tests were applied for comparison
between two means.

RESULTS

Leaf Al and absorptance

Leaf Al concentration in Al-treated and control leaves was
23�4 and 31�1 mg g�1 DW, respectively. Both Al-treated
leaves and control leaves showed very similar absorption
spectra in the PAR (photosynthetically active radiation,
approx. 400–700 nm) region except for a slight decrease
in the Al-treated leaves compared with control leaves (mean
leaf absorptance: 91�8 vs. 92�8 %).

CO2 assimilation, Chl fluorescence variables, electron
transport and excess energy

CO2 assimilation (Fig. 1A), non-photochemical quench-
ing (NPQ; Fig. 1B), photochemical quenching coefficient
(qP; Fig. 1C), PSII quantum efficiency (Fig. 1D), and pre-
dawn maximum PSII quantum efficiency (Fv/Fm) (0�80 vs.
0�83 respectively) were decreased by Al, whereas Al-treated
and control leaves were not significantly different in the
efficiency of excitation transfer (Fv

0/Fm
0 ) (0�66 vs. 0�62

respectively).
Since Al-treated leaves used a smaller fraction of the

absorbed light in electron transport compared with control
leaves (Fig. 1E), they had more excess excitation energy
(Fig. 1F).

Leaf pigments

Chlorophyll concentration at both midday and pre-dawn
was lower in Al-treated than in control leaves (Fig. 2A),
whereas Chl a/b ratio at midday and before dawn was higher
(Fig. 2B).

A+Z expressed on a xanthophyll cycle pool basis
(Fig. 2C) or a Chl basis (Fig. 2D) before dawn and at midday
was higher in Al-treated than in control leaves, but no sig-
nificant differencewasobserved in [violaxanthin (V)+A+Z]
expressed on an area or a Chl basis on either occasion
(Fig. 2E, F). At midday, A + Z expressed on a xanthophyll
cycle pool basis accounted for less 40 % of the total
xanthophyll cycle pool even in Al-treated leaves
(Fig. 2C), with the balance in V.

NBT reducing activity, H2O2 production and lipid
peroxidation

Aluminum increased NBT reducing activity in leaves
compared with controls (0�84 vs. 0�59 OD580 m�1 s�1),
an indication of superoxide generation, and H2O2 produc-
tion (3�34 vs. 1�96 nmol m�1 s�1). However, no significant
difference was found in MDA concentrations (an indicator
of oxidative lipid metabolism) between Al-treated and con-
trol leaves (8�34 compared to 8�13 mmol m�2).

Antioxidant enzymes and metabolites

Activities of SOD, APX, MDAR, DHAR, GR and CAT
(Fig. 3), and concentrations of AsA, DASA, GSH, and
GSSG were higher in Al-treated than in control leaves
(Fig. 4A–D), whereas the ratios of both AsA/DAsA and
GSH/GSSG were lower (Fig. 4E, F).
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DISCUSSION

The Al-treatment increased leaf Al content per unit
dry weight by 33 % compared with controls, resulting in
use of a smaller fraction of the absorbed light in electron

transport (Fig. 1E) since CO2 assimilation decreased to a
greater degree (40 %, Fig. 1A) than Chl content per unit area
(8 % at pre-dawn and 13 % at midday, Fig. 2A) or light
absorption (1 %). As a result, more excess excitation energy
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existed in Al-treated leaves (223�3 vs. 181�2 mmol m�2 s�1)
compared with control leaves under high PF at midday
(Fig. 1F). It has been suggested that excess light can
be dissipated as heat in the antenna pigment complexes

(Demmig-Adams and Adams, 1996; Niyogi et al., 1998).
However, in this study, thermal energy dissipation, meas-
ured as NPQ, was lower in Al-treated than in control leaves
(Fig. 1B). Similar results were observed in the halophyte
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Artimisia anethifoliawhen salt-acclimated (Lu et al., 2003).
This suggests that metabolic pathways rather than thermal
dissipation may dissipate the increased excess excitation
energy in Al-treated leaves.

Our results showed that under Al treatment, the changes
in NPQ (Fig. 1B) did not correspond to changes in A + Z
expressed on a xanthophyll cycle pool basis (Fig. 2C).
Similar results have been obtained in Chlamydomonas
reinhardtii (Förster et al., 2001) and in Sorghum bicolor
(Cousins et al., 2002). This suggests that under Al toxicity
NPQ development may be impaired and/or A + Z has func-
tions other than involvement in thermal energy dissipation.
The increase in the conversion of V to A and Z may help to
quench 1O2 as production of 1O2 increases in Al-treated
leaves under high light due to increased closure of
PSII (Fig. 1C), because both Z and A are better photopro-
tectors than V, with a higher efficiency for de-exciting
1O2 (Mathews-Roth et al., 1974).

Since thermal energy dissipation was lower in Al-treated
leaves (Fig. 1B), both the water–water cycle and photores-
piration in Al-treated leaves may be up-regulated to cope
with the increased excess excitation energy (Fig. 1F). As
expected, the activities of SOD, APX, MDAR, DHAR and
GR (Fig. 3A–E) and the concentrations of AsA, DAsA,
GSH and GSSG (Fig. 2A–D), all involved in the water–
water cycle, as well as the activity of CAT (Fig. 3F)
involved in scavenging the bulk H2O2 generated by
photorespiration, increased in Al-treated leaves. Closure
of PSII reaction centres results in formation of toxic activ-
ated oxygen species. The up-regulation of enzymatic (Fig. 3)
and non-enzymatic (Fig. 4A–D) antioxidants also agreed
with the increased requirement for scavenging reactive spe-
cies in Al-treated leaves due to increased closure of PSII
reaction centres (Fig. 1C).

AsA and GSH account for most of the total ascorbate
pool and glutathione pool, respectively, in leaves under
normal conditions (Polle, 1997). The ratios of AsA to
DAsA and of GSH to GSSG decrease under oxidative stress
(Law et al., 1983; Gossett et al., 1994). Although the
ratios of both AsA/DAsA and GSH/GSSG were lower in
Al-treated than in control leaves, AsA and GSH still accoun-
ted for more than 90 % of the total glutathione pool and
ascorbate pool in the Al-treated leaves (Fig. 4). Further-
more, Al-treated leaves also had a pre-dawn maximum
PSII efficiency (Fv/Fm) of approximately 0�80 and no
difference in MDA concentration compared with control-
leaves, although superoxide generation and H2O2

production increased in Al-treated leaves. This indicates
that up-regulation of the antioxidant system provided
considerable protection to Al-treated leaves against
photo-oxidative damage. Thus, the lower ratios of both
AsA/DAsA and GSH/GSSG in Al-treated compared with
control leaves do not necessarily imply that Al-treated
leaves are damaged by photo-oxidation under high light.
This is consistent with results observed in nitrogen-limited
grape (Vitis labrusca ‘Concord’) leaves (Chen and Cheng,
2003).

In conclusion, our findings support the hypothesis that
antioxidant systems are up-regulated and are more import-
ant than thermal energy dissipation by the xanthophyll cycle

in Al-treated citrus leaves and serve to protect them from
photo-oxidative damage.
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