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� Background and Aims The cancer-protective properties of vegetable consumption are most likely mediated
through ‘bioactive compounds’ that induce a variety of physiologic functions including acting as direct or indirect
antioxidants, regulating enzymes and controlling apoptosis and the cell cycle. The ‘functional food’ industry has
produced and marketed foods enriched with bioactive compounds, but there are no universally accepted criteria for
judging efficacy of the compounds or enriched foods.
� Scope Carotenoids, glucosinolates, polyphenols and selenocompounds are families of bioactive compounds
common to vegetables. Although numerous studies have investigated the agricultural and human health implications
of enriching foods with one or more of these compounds, inadequate chemical identification of compounds, lack of
relevant endpoints and inconsistencies in mechanistic hypotheses and experimental methodologies leave many
critical gaps in our understanding of the benefits of such compounds. This review proposes a decision-making
process for determining whether there is reasonable evidence of efficacy for the both the compound and the enriched
food. These criteria have been used to judge the evidence of efficacy for cancer prevention by carotenoids,
polyphenols, glucosinolates and selenocompounds.
� Conclusions The evidence of efficacy is weak for carotenoids and polyphenols; the evidence is stronger for
glucosinolates and lycopene, but production of enriched foods still is premature. Additionally there is unacceptable
variability in the amount and chemical form of these compounds in plants. The evidence of efficacy for seleno-
compounds is strong, but the clinical study that is potentially the most convincing is still in progress; also the
variability in amount and chemical form of Se in plants is a problem. These gaps in understanding bioactive
compounds and their health benefits should not serve to reduce research interest but should, instead, encourage plant
and nutritional scientists to work together to develop strategies for improvement of health through food.

Key words: Human health, cancer, vegetable, carotenoids, glucosinolates, polyphenol, selenium, bioactive compound,
functional food.

INTRODUCTION

Recognition of diet as a primary causative factor for cancer
risk has directed much research attention toward the
chemoprotective (i.e. reduction of cancer risk by specific
chemical compounds) role of certain compounds in foods.
Technological progress in manipulating plant metabolism
and metabolites, combined with the explosive growth of the
‘functional food’ industry (for the purposes of this review,
functional foods are defined as suggested by the Interna-
tional Life Sciences Institute, i.e. ‘foods that, by virtue of
physiologically-active components, provide a health benefit
beyond basic nutrition’) (International Life Sciences
Institute, 1999) has led to many attempts to enhance the
concentrations of these health-promoting compounds in
specific foods (while animal-based foods also may contain
health-promoting compounds, this review will be limited to
phytonutrients in plant-based foods). To protect the health

of the consumer, as well as to ensure the viability of the
functional food industry, there must be stringent criteria to
judge whether a compound actually provides a health
benefit. Likewise, if the market strategy for a food is
based on a specific health-promoting compound, stringent
criteria must be set to determine the safety and efficacy of
the food product. The following review proposes such cri-
teria, and uses the criteria to assess data regarding the can-
cer-preventive benefits of plant sources of carotenoids,
glucosinolates, polyphenols and selenocompounds.

A comprehensive report by the American Institute for
Cancer Research and the World Cancer Research Fund
(World Cancer Research Fund and American Institute for
Cancer Research, 1997) emphasized the importance of a
plant-based diet for cancer prevention. Although mechan-
istic research in this area is often confusing and contradict-
ory, a general theory is emerging that ‘bioactive components’
in plants induce metabolic effects such as functioning as
antioxidants and switching on genes that eliminate carcino-
gens. Bioactive components are generally defined as com-
pounds in foods that deliver a health benefit beyond basic
nutrition (International Life Sciences Institute, 1999). Clas-
sical genetic, as well as transgenic, approaches are being
used to increase the content of specific bioactive compon-
ents of plants, but the ability to manipulate plant metabolism
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often is far ahead of our understanding of whether or how
such bioactive components work. There is an increasing
awareness that multiple genetic and environmental
factors affect production and accumulation of bioactive
compounds, but these factors are seldom taken into consid-
eration when a ‘functional food’ is marketed.

The assumption underlying ‘functional foods’ is that the
bioactive components (in the food) are efficacious for
the improvement of health; the available evidence should
be rigorously scrutinized to ascertain this. Rigorous and
unbiased evaluation of the scientific evidence requires a
defined set of criteria that may be applied for the evalua-
tion process. For the purpose of allowing health claims on
food products, the Food and Drug Administration (FDA)
has developed an extensive set of such criteria that are
used to decide whether there is ‘significant scientific agree-
ment’ or ‘emerging evidence’ regarding biological function-
ality of food components (US Food and Drug Administration
Center for Food Safety and Applied Nutrition, 1999).
Unqualified FDA health claims are allowed for only a very
few compounds for which there is overwhelming evidence of
efficacy. However, there are many other compounds that will
not meet FDA criteria but may potentially provide an import-
ant health benefit to the consumer and be financially benefi-
cial to the food industry as well. The FDA model cannot be
directly applied to such compounds and a new set of criteria
need to be developed; the following proposes such criteria.

A proposed decision process for determining efficacy of
a compound and of a functional food is given in Fig. 1.
Similar to the FDA model, several criteria must be met to
allow initial review of pertinent data. Primarily, the com-
pound of interest must be chemically identifiable, and the
proposed health benefit must have discrete and measurable
endpoints. Reports of unidentified ‘factors’ or loosely
defined categories of substances do not lend themselves to
controlled experimentation and/or characterization. For
example, there are numerous reports of an ‘insulin potenti-
ating’ or ‘glucose tolerance’ factors; however, no definitive
compound has been identified and possible candidates range
from chromium (Amoikon et al., 1995) to inositol derivat-
ives (Larner, 2002). With the current increase in diabetes,
such a factor could be greatly beneficial to health, but con-
trolled experimentation is not possible until compounds are
isolated and positively identified, and such reports should
be treated as preliminary evidence to be monitored for
further development. Likewise, the health endpoints must
be discrete and measurable and related to a specific disease/
physiologic condition. Claims such as ‘improved antioxidant
status’ are not directly related to a specific condition and,
consequently, are not meaningful measures of health.

The relevant data concerning a compound that meets
entry criteria must be further reviewed to determine whether
the compound is bioactive as measured by the ability to alter
a specific metabolic/disease endpoint. Initial indications
of efficacy often are from epidemiologic or observational
studies that are useful for detecting moderate to large effects
(Hennekens and Buring, 1994). However, epidemiologic
data suffer from many potential biases including ill-defined
choice and categorization of exposure variables, inadequate
attention to confounding variables, inadequate sample size

(Pocock et al., 2004), inadequate means of dietary assess-
ment instruments (Dennis et al., 2004), recall bias (espe-
cially by diseased individuals in case-control studies)
and inter-correlations with other dietary components
(Freudenheim, 1999). The reader should be familiar with
common sources of error and/or bias when using epidemio-
logic data to determine potential efficacy of a compound.
Also, all epidemiology is not equally strong; case-control
studies compare the dietary habits of subjects with cancer
with parallel healthy controls, and dietary information may
be recalled retrospectively following development of can-
cer. Alternatively cohort studies follow a cohort of subjects
until they develop cancer, and prospective cohort studies
compare the dietary habits of cancer patients assessed
before development of cancer with the habits of subjects
who did not develop cancer; more weight is generally given
to prospective cohort studies than to retrospective case-
control studies (Stephenson and Babiker, 2000).

Epidemiologic evidence is more convincing when it is
supported by properly designed and executed animal and
cell culture studies that are done within the context of a
plausible and consistent mechanistic hypothesis. The FDA
approval process will not consider animal and in vitro data
alone, categorizing it instead as emerging evidence (US
Food and Drug Administration Center for Food Safety and
Applied Nutrition, 1999). The strongest evidence of efficacy
is from well-designed and controlled direct intervention
studies, with the ‘gold standard’ being the randomized,
placebo-controlled trial (Stephenson and Babiker, 2000).
Certainly strong data from such trials would be persuasive
evidence of efficacy and be a solid basis for manipulation
of plant compounds and/or development of a functional food
[an important consideration in all human studies and, to an
extent, also in animal trials is whether the compound is
studied in the context of the food because studies with an
isolated compound (Marwick, 1996) may give very different
results from studies of the compound within a food matrix].
However, it may not be practical to conduct clinical trials on
all candidate bioactive compounds, nor may it be financially
wise to wait until a compound is proven efficacious before
beginning work on a product. Consequently, a measure of
discretion is advised and, as shown in Fig. 1, strong, con-
sistent epidemiologic evidence supported by equally strong
and consistent animal/in vitro data may sufficient evidence
to develop a candidate food without the backing of clinical
trial data. The investigator is strongly cautioned, however,
that what seems to be consistent and supportive data are
often proven wrong (or interpreted wrongly) by clinical tri-
als; the example of b-carotene, presented later in this review
is illustrative of this (Marwick, 1996).

If a plant/food that is enhanced in a bioactive compound is
developed, then as depicted in Fig. 1, further criteria need to
be examined to ascertain that the compound has bioactivity
when consumed through the food. A further degree of dis-
cretion is advised as it is neither necessary nor financially
possible to conduct clinical trials with all food products.
Instead, it is proposed that sufficient information be available
to (a) prove the compound is in the food in the amount and
form claimed and (b) that the compound is bioavailable. It is
further proposed (c) that the food/plant should be tested to
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determine whether enhancement of one compound causes
negative interactions with other compounds. These criteria
are similar to those of the US Federal Trade Commission
(FTC) rules to ensure fairness in advertising (Federal Trade
Commission, 2004), which state that product marketing must
be based on truthful, non-deceptive, accurate and complete
(i.e. must not leave out contradictory or negative) informa-
tion that is available before a product is marketed.

THE CANCER PROCESS

Cancer is a family of diseases of multifactorial origin and
progression; the process of cancer and how diet impacts that

process is complex and the reader is directed to several
excellent reviews of the subject (Szarka et al., 1994; World
Cancer Research Fund and American Institute for Cancer
Research, 1997; Kelloff et al., 2000; Willett, 2000). The
following is intended as an abbreviated overview of the
subject and is not exhaustive.

Cancer is generally divided into the stages of initiation,
promotion and progression. Because cancer is the unrestric-
ted division and proliferation of cells, initiation must be a
genetic or epigenetic event, i.e. something must cause a
misreading of the genetic code, or normal control of gene
expression must be lost; both events ultimately result in
abnormal cell division. Diet may contribute chemicals
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reduction of cancer risk.
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that initiate the cancer process (Cejas et al., 2004; Wertz
et al., 2004), but this is considered a minor effect. Of far
greater importance, diet may be a source of bioactive com-
pounds (Doll and Peto, 1981) that suppress cancer by mech-
anisms such as regulation of the cell cycle, induction of
apoptosis in compromised cells, and/or regulation of detoxi-
fication enzyme systems. Ironically, up-regulation of Phase I
enzymes in the first stage of detoxification may result in the
activation of compounds that are initially un-reactive and
non-carcinogenic.

Promotion occurs after the initial cellular insult, when a
chemical signal or event stimulates the expansion of the
insulted cell into a clone of cancer cells. Multiple dietary
compounds may exert their effects in this stage by regulating
processes such as the cell cycle/apoptosis, angiogene-
sis (inhibition) and the immune system. Progression is the
terminal stage of cancer when the clonal group of cells
expands into an uncontrolled tumour or multiple tumours;
important physiologic events that may be regulated at this
stage include angiogenesis and the immune response.

Diet and cancer

Cancer was the second leading cause of death in the US
in 2001, accounting for 22�9 % of all deaths (Anderson and
Smith, 2003). A landmark review by Doll and Peto in 1981
(Doll and Peto, 1981) summarized the available evidence
for causes of cancer and suggested that diet is the primary
causative factor in 35 % of all cancer deaths. Although diet
may be a source of carcinogens, the authors concluded the
most important role was as a source of cancer-inhibiting
bioactive compounds, and diets that do not provide enough
bioactive compounds may increase the risk of specific
cancers.

Fruit and vegetable consumption and cancer risk

Meta-analyses of epidemiologic studies have generally
concluded that vegetable and fruit consumption is inversely
associated with cancer incidence and mortality; however,
the data are not unequivocal. Although case-control studies
have suggested that fruit and vegetable consumption reduce
the risk of breast cancer, a recent summary of all cohort
studies concluded there was no protective benefit (van Gils
et al., 2005). Riboli and Norat (2003) reviewed 29 case-
control and 17 cohort studies that examined the association
between vegetable/fruit consumption and the risk of mor-
tality from oesophageal, laryngeal, stomach, colo-rectal,
breast, lung and bladder cancers. They concluded that
case-control studies provided evidence that vegetable con-
sumption decreased oesophageal, breast, lung, stomach and
colorectal cancers, whereas cohort studies did not give
convincing evidence for associations with any of the can-
cers. Steinmetz and Potter (1991) reviewed 13 ecologic,
nine cohort and 115 case-control studies examining the
same relationships. They concluded there is consistent,
but not universal, evidence for an inverse association
between fruit and vegetable consumption and epithelial,
but not hormone-related, cancer. They also concluded

that there is some evidence that raw foods are more effica-
cious than cooked. Trock et al. (1990) concluded that case-
control and observational studies provide evidence for a
protective effect of vegetable consumption on colon cancer,
but Steinmaus et al. (2000) concluded that there was only a
minor effect of vegetable intake on bladder cancer (although
the relationship between fruit intake and bladder cancer
risk was quite strong).

Consumption of cruciferous vegetables may be more
protective than consumption of vegetables in general.
Verhoeven et al. (1996) reviewed the evidence for Brassica
consumption and cancer risk, and reported that 67 % of all
studies showed an inverse association between consump-
tion of total Brassica vegetable intake and risk of cancer
at various sites; cohort studies found the greatest inverse
associations between the consumption of broccoli and risk
of several cancers including lung and stomach. Cohen et al.
(2000) provided evidence that cruciferous vegetable
intake was strongly (and inversely) associated with prostate
cancer risk.

CAROTENOIDS AND CANCER

Carotenoid chemistry and biochemistry is well defined and
is reviewed elsewhere (Fraser and Bramley, 2004). Caroten-
oids include compounds as diverse as a- and b-carotene,
lycopene, lutein and xanthophylls, and carotenoids are
found in almost all coloured vegetables (Fig. 2).

b-Carotene

Much research has been conducted on the relationship
between b-carotene and cancer. Because b-carotene has a
defined chemical structure, and because cancer has meas-
urable endpoints, b-carotene is a candidate compound for
determining efficacy for cancer prevention. b-Carotene is
the primary carotenoid found in many vegetables, and the
cancer-inhibitory functions of b-carotene are likely to be
distinct from its nutritionally essential role as a precursor
to vitamin A (Nagao, 2004). Prior to 1995, substantial epi-
demiologic evidence was seen as supportive of the hypo-
thesis that b-carotene was the primary bioactive component
in fruit that reduced cancer risk (Wald, 1987; Willett, 1990;
Lippman et al., 1993; Hennekens, 1994), and specifically
reduced lung-cancer risk (Willett, 1990). Moreover, limited
studies from animals (Schwartz and Shklar, 1988; Lambert
et al., 1990; Steinel and Baker, 1990; Appel et al., 1991;
Moreno et al., 1991; Sherenesheva and Fin’ko, 1992; Chen
et al., 1993) and cultured cell models (Hazuka et al., 1990;
Nyandieka et al., 1990; Schwartz et al., 1990; Bertram et al.,
1991; Zhang et al., 1991; Das et al., 1992; Moon et al.,
1992; Cooney et al., 1993) supported this hypothesis
(although very few studies were conducted in models
of lung cancer) (Castonguay et al., 1991). A mechanistic
hypothesis was developed that explained b-carotene’s
function as an in vivo antioxidant that protected against
oxidation-induced cellular damage (Di Mascio et al., 1990;
Dorgan and Schatzkin, 1991; Malone, 1991; Borek, 1993).
All of this evidence seemed to provide the consistent
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results needed to conduct a randomized and blinded clinical
trial that supplemented Finnish male smokers (n = 29 133,
50–69 years of age) with a-tocopherol (50 mg d�1), b-car-
otene (20 mg d�1) or a placebo (the ATBC study) (The
Alpha-Tocopherol BCCPSG, 1994). Unexpectedly b-carot-
ene supplementation increased lung cancer incidence (474
vs. 402 cases for supplemented and un-supplemented sub-
jects, respectively), resulting in an incidence of 56�3 and
46�5 cases per 100 000 people. (It should be noted that the
increase was relatively small and only detectable because of
the large sample size). The results of a second intervention
trial (the CARET study) conducted in the United States
were very similar to the results of the ATBC trial
(Omenn et al., 1996). The relationship between b-carotene
and cancer was further obscured by a finding in the ATBC
trial that there was a significant inverse relationship between
dietary intake of b-carotene and lung cancer at baseline (The
Alpha-Tocopherol BCC PSG, 1994).

Assessment of evidence of efficacy for b-carotene. When
the evidence for chemoprevention by b-carotene is con-
sidered in the context of the proposed decision criteria
(Fig. 1), multiple problems are encountered. b-Carotene
is chemically identifiable, and there are clear endpoints for
epidemiologic studies. However, although epidemiology

found a strong relationship between b-carotene intake
and cancer reduction, the evidence primarily was for
b-carotene as a component of fruit and vegetable intake
and not as b-carotene per se. There were supporting data
from animal and in vitro studies, but data from these studies
may be questioned for being insufficient in total number and
for relatively few using models of lung cancer. The data also
may be faulted for having a relatively weak mechanistic
hypothesis. Figure 1 would suggest that such data were
insufficient to proceed to intervention trials, and req-
uired further experimentation in animal and cell culture
models, as well as the development of a more physi-
ology-based hypothesis. The greatest problem, however,
may be that data from b-carotene intake from foods was
used to justify trials with purified b-carotene (this is the
opposite situation for most functional foods; many
times the pure compound is proven to be effective, and
from that it is extrapolated that the compound in the
food is effective).

Therefore, the criteria proposed in Fig. 1 would suggest
further experimentation is needed to more completely
define the physiologic role of b-carotene before beginn-
ing development of b-carotene-enhanced food products.
A review in the Journal of Nutrition summarized problems
with studies of the health benefits of carotenoids and

Retinol

Alpha-carotene 

Beta-carotene 

Xanthophyll 

Lycopene

Lutein

carrots
squash
pumpkin 

mango 
apricot 
cantaloupe 

green vegetables
broccoli 
zucchini (courgette)

tomatoes
watermelon

ubiquitous yellow pigment 

vitamin A 

HO

HO

OH

O

O

OH

OH

F I G . 2. Structures of common carotenoids and the foods in which they are abundant.

Finley — Cancer Reduction and Plant Foods 1079



concluded: ‘Authoritative scientific evaluations by leading
thinkers have not been able to ascribe a disease prevention
function to carotenoids because of the absence of defini-
tive evidence. These leaders recommend that future rese-
arch . . . deal with the complexities of diet, genetics and
environment . . . ’ (Cooper, 2004).

Lycopene

The chemistry and biochemistry of lycopene, a caroten-
oid that is the subject of much ongoing research, is well
characterized (Minorsky, 2002; Muller et al., 2003). Epi-
demiologic studies of the relationship between lycopene and
cancer (particularly prostate cancer) are suggestive
of a protective effect, but are not consistent. The Health
Professionals Follow-up Study followed a cohort of 47 894
men and did extensive assessment of dietary intakes. Over
the course of the study 812 new cases of prostate cancer
were diagnosed; only lycopene intake, and not intakes of
b-carotene, alpha-carotene, lutein and beta-cryptoxanthin,
was significantly related to lower cancer risk (Giovannucci
et al., 1995). Subsequent studies have not been consistent,
with some finding significant associations, others finding
marginal associations, and many finding no association
(for complete reviews, see Barber and Barber, 2002;
Giovannucci, 2002; Everson and McQueen, 2004; Tapiero
et al., 2004). However, these epidemiologic data are com-
plicated by studies reporting correlations of cancer risk with
multiple variables including lycopene concentrations in the
blood, lycopene intakes, tomato intake or intake of tomato
products. Overall conclusions are also made difficult by
studies using different numbers of subjects and subjects
with widely varying baseline lycopene intakes and/or
plasma levels. Epidemiologic evidence has resulted in sev-
eral intervention studies that have used lycopene; however,
results of these studies should be viewed with caution as
many have utilized purified lycopene administered to
patients with diagnosed prostatic cancer and, thus, are not
directly applicable to the study of dietary lycopene and
cancer prevention (Kucuk et al., 2001, 2002; Ansari and
Gupta, 2004).

Chemoprevention of cancer by lycopene has also been
studied in animal and cell-culture models, and lycopene
has been demonstrated to have multiple cellular effects
including functioning as an antioxidant (Di Mascio et al.,
1989; Bohm et al., 1995), inhibition of cell cycle progres-
sion and inhibition of signalling pathways (Karas et al.,
2000). Additionally, lycopene has been demonstrated to
accumulate in human prostate tissue (Kaplan et al., 1990;
Stahl et al., 1992). However, in a review Cohen (2002)
concluded that there are relatively few reports of cancer
chemoprevention by lycopene in animals, and while most
were positive, there were also negative reports. A recent
report in the Journal of the National Cancer Institute
(Boileau et al., 2003) may provide insight into the apparent
discrepancies between studies. Prostate cancer was
chemically induced in male rats fed control diets or diets
containing lycopene or tomato powder; cancer was not
significantly different between controls and lycopene-fed
animals, but animals fed tomato powder had a significantly

lower death rate. The authors concluded that lycopene alone
does not inhibit prostate cancer, but rather bioactivity is
a function of the complex mix of multiple phytonutrients
present in tomatoes.

Thus a review of the available literature shows the data
for the efficacy of prostate cancer reduction by lycopene to
be equivocal. Despite these limitations of the data, lycopene
is already being incorporated into and used to promote some
foods, especially tomato-based products. Therefore further
criteria should be used to evaluate the chemoprotective
effectiveness of lycopene from tomato-based foods.

The primary obstacle to producing lycopene-enhanced
plant foods is the variability in the amount and chemical
form that accumulates. Studies with tomatoes have
demonstrated multiple genetic and environmental factors
that may affect lycopene metabolism at virtually every
step of tomato production and processing (Fig. 3). Species
of tomatoes are not absolutely distinct (for a complete
review, see Davies and Hobson, 1981), but despite this
inter-relatedness, red varieties of tomatoes may contain as
much as 30-fold more lycopene than yellow varieties
(Hart and Scott, 1995). In addition, lighter coloured vari-
eties of tomatoes may accumulate the 7,9,70,90-tetra-cis-
lycopene isomer, whereas deep red varieties accumulate
almost all trans-lycopene (Giuliano et al., 2002). The
lycopene biosynthetic pathway changes as the fruit ripens
and mRNA for proteins that convert lycopene to other
carotenoids disappear (Ronen et al., 1999), therefore
fruit picked at a more ripe stage have more lycopene
than unripe fruit (Liu and Luh, 1977). Additionally,
vine-ripened fruit contains higher concentrations of
lycopene than fruit picked green and ripened in storage,
and tomatoes produced in a greenhouse have lower
lycopene concentrations than tomatoes produced outside
in the summer (Gould, 2004).

Processing has the greatest effect on lycopene bio-
availability. Human serum lycopene concentrations are
greater when heat-processed tomatoes are consumed, as
compared with unprocessed tomatoes (Giovannucci et al.,
1995). This is in part because cooking and grinding disrupts
lycopene complexes and breaks down cell walls (Hussein
and el Tohamy, 1990). Additionally; unprocessed tomatoes
contain primarily the trans isomer of lycopene, but heat
processing converts a substantial amount to the cis isomer
which may be better absorbed (Schierle et al., 1996). Bio-
availability is especially enhanced when tomatoes are pro-
cessed in the presence of 1 % corn oil, perhaps because more
is incorporated into micelles and absorption is increased
(Stahl and Sies, 1992). Because of all of these influences,
stability of the lycopene content of a specific tomato-based
food would depend on rigorous control of the entire pro-
duction and processing system.

Assessment of evidence of efficacy for lycopene-enriched
plant foods. Based of criteria from Fig. 1, the absence of
clear and consistent evidence from human studies, and the
absence of clear, consistent mechanistic studies done
within the context of an over-arching hypothesis suggests
that, at present, lycopene is not a compound for which
enhanced foods should be considered. Certainly there is
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evidence supportive of reduction of cancer (primarily
prostate) risk by lycopene, but there also is much equivocal
evidence and a substantial amount of negative evidence.
Further, the supportive evidence is complicated by incon-
sistencies between experimental models, conditions and
methodologies as well as failure to agree on a primary
mechanism of action. An important question to be
answered is whether lycopene per se is bioactive for can-
cer reduction or, as suggested by some researchers, the
combination of multiple phytochemicals in tomatoes is
the actual bioactive component. Failure to provide a defin-
itive answer to this question poses a risk similar to that for
b-carotene supplementation studies, i.e. the isolated com-
pound is at best ineffective and, under the worst circum-
stances, perhaps even harmful. Evidence of cancer
chemoprevention by lycopene would be greatly enhanced
by well-designed, controlled intervention studies that use
food-based sources of lycopene and examine reduction of
cancer risk (not improvement of an existing cancer con-
dition). The criteria presented in Fig. 1 would suggest that
further experimentation is needed before candidate
lycopene-enhanced foods can be developed.

The question of efficacy aside, the decision process pro-
posed in Fig. 1 also can be used to judge the potential
benefits of lycopene-enhanced foods. Consistency in the
amount and chemical form of a bioactive compound in a
food product are primary criteria to be evaluated, and prod-
uct inconsistency is the greatest problem with lycopene-
containing plant foods. Not only is the content of lycopene
in plants affected by virtually every step of the production
process, lycopene content and bioavailability are also
greatly affected by processing conditions. It will be essential
to demonstrate product standardization and quality control
for any plant-based product. According to the proposed
decision process, this will require further product develop-
ment and experimentation.

CRUCIFEROUS VEGETABLES AND
GLUCOSINOLATES

Consumption of cruciferous vegetables is more strongly
associated with cancer protection than vegetable consump-
tion in general. The plant family Cruciferae (also called the
mustard family or Brassicaceae) includes broccoli, parsnip,
Brussels sprouts, Chinese cabbage, radish, horseradish,
wasabi, white mustard, watercress and cauliflower. Cruci-
fers contain many bioactive components including flavon-
oids such as quercetin (Williamson et al., 1996), minerals
such as selenium (Se) (Finley et al., 2000) and vitamins such
as vitamin C (Proteggente et al., 2002). Among the most-
studied bioactive compounds in crucifers associated with
cancer protection are glucosinolates (GS) (Fenwick et al.,
1983). More than 120 GS have been characterized; although
their function in the plant is unclear, their potent odour
and taste suggests a role in herbivore and microbial defense
(Fenwick et al., 1983).

Glucosinolates are chemically defined compounds; all
characterized GS share a similar basic structure consisting
of a b-D-thioglucose group, a sulfonated oxime group and
a side chain derived from methionine, phenylalanine,
tryptophane or branched-chain amino acids (Fig. 4). The
sulfate group of a GS molecule is strongly acidic and plants
accumulate GS by sequestering them as potassium salts in
plant vacuoles (Keck and Finley, 2004). Glucosinolates are
not bioactive in the animal that consumes them until they
have been enzymatically hydrolysed to an associated iso-
thiocyanate (Rouzaud et al., 2003) by the endogenous
myrosinase enzyme that is released by disruption of the
plant cell through harvesting, processing, or mastication.
The hydrolysis products of common GS are shown in
Fig. 4; glucoraphanin is converted to sulforaphane (Sf)
and Sf nitrile, sinigrin to allyl isothiocyanate, gluconasturtin
to phenethyl isothiocyanate and glucobrassicin to indole-
3-carbinol (Keck and Finley, 2004).
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F I G . 3. Lycopene biosynthesis and factors that affect its accumulation and bioavailability; for complete review see Bramley (2002).
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In vitro and in vivo studies have reported that isothiocy-
anates affect many steps of cancer development including
modulation of phase I and II detoxification enzymes (Rabot
et al., 1993; Bogaards et al., 1994; Jiao et al., 1996; Talalay
and Fahey, 2001), functioning as a direct antioxidant (Zhu
et al., 2000; Zhu and Loft, 2001, 2003) or as an indirect
antioxidant by phase II enzyme induction (Hayes and
McLellan, 1999; Talalay and Fahey, 2001; McWalter
et al., 2004), modulating cell signalling (Xu and Thornalley,

2001), induction of apoptosis (Yu et al., 1998; Chiao et al.,
2002; Yang et al., 2002), control of the cell cycle (Yu et al.,
1998; Zhang et al., 2003b; Wang et al., 2004) and reduction
of helicobacter infections (Fahey et al., 2002). The most
characterized GS compounds are Sf, phenethyl isothiocy-
anate, allyl isothiocyanate and indole-3-carbinol (Hecht,
1999), but many other isothiocyanates that are present in
lower quantities also may contribute to the anti-carcinogenic
properties of crucifers.
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Apoptosis and modulation of phase I and phase II detoxi-
fication pathways have been the most studied mechanisms
by which GS/isothiocyanates inhibit carcinogenesis. There
are numerous reports of GS/isothiocyanate activation of
cellular control and apoptosis-inducing genes, including
the caspases (Rose et al., 2003; Pham et al., 2004),
p53 (Fimognari et al., 2004a, b), cyclin-dependent kinases
(Srivastava et al., 2003; Fimognari et al., 2004b; Singh et al.,
2004; Xiao et al., 2004), bax (Fimognari et al., 2004b) and
nuclear factor signalling pathways (Jeong et al., 2004;
Srivastava and Singh, 2004). Others have also proposed
that apoptosis may be mediated by disruption of tubulin
polymerization (Jackson and Singletary, 2004), or increased
oxidative stress caused by superoxide radical bursts (Rose
et al., 2003) or decreased intracellular antioxidant concen-
trations (Pham et al., 2004).

Other researchers have concentrated on GS/isothiocy-
anate-mediated changes in detoxification enzyme systems;
such changes are hypothesized to reduce cancer risk by
decreasing activation of pro-carcinogens and/or increasing
excretion of carcinogens (Talalay and Fahey, 2001). Addi-
tionally, some have suggested that activation of these
enzymes also provides in vivo catalytic antioxidant protec-
tion and decreases oxidative stress (Talalay and Fahey,
2001). Recent research on regulation of antioxidant genes
has suggested that a promoter sequence found in multiple
phase II enzymes (Bonnesen et al., 2001) called the
antioxidant response element (ARE) (for a review, see
Finley, 2003b) may respond to various dietary constituents
and simultaneously activate multiple enzyme systems.
Sulforaphane is the dietary constituent that is the most
powerful inducer of the ARE (Morimitsu et al., 2002).

There are reports of interventional studies with GS in
humans, although they are limited in number and scope,
and most have examined GS bioavailability and excretion
(Shapiro et al., 1998; Conaway et al., 2000; Ye et al., 2002).
A few have examined functional changes: Bogaards et al.
(1994) and Verhagen et al. (1997) reported two studies
that showed decreased markers of oxidative damage with
consumption of Brussels sprouts. Cashman et al. (1999)
reported that flavin monooxygenase-3 activity was
reduced by dietary consumption of Brussels sprouts, and
Bogaards et al. (1994) and Nijhoff et al. (1995) reported
increased GST activity with consumption of Brussels
sprouts.

Some have concluded that the evidence for health bene-
fits by GS is strong enough to warrant product development,
and broccoli sprouts with a uniformly high concentration of
Sf are a patented, commercially available product (Brassica
Protection Products LLC, 1999; Fahey et al., 1997).
However, the GS content of most crucifers consumed for
food is highly variable, and the effect of this variability on
estimating the protective benefits of crucifer consumption
was elegantly demonstrated by Dekker and Verkerk (2003).
A modelling procedure was utilized to introduce estimated
variation in the glucosinolate content of crucifers reported
in cancer studies, and the effect of GS intake on relative
risk of cancer was recalculated. If glucosinolate intake
was assumed to be a constant function of crucifer intake,
then increasing crucifer consumption cuts the relative risk

of cancer by as much as half. However, cultivation, pro-
cessing and domestic cooking all affect glucosinolate con-
tent; when variability from these factors was introduced into
the model, GS consumption did not significantly reduce
cancer risk.

Epidemiologic studies often consider crucifers as a
group, but the chemical form and total amount of GS differ
more than 10-fold within and between crucifer species.
Glucobrassicin and glucoraphanin are generally found
in high concentrations in broccoli (0�1–2�8 and 0�8–
21�7 mmol g�1 d. wt, respectively) and constitute as
much as 95 % of the total amount of GS (Kushad et al.,
1999). Brussels sprouts, cabbage and cauliflower contain
little or no glucoraphanin, and crucifers other than broccoli
generally contain high concentrations of sinigrin. Gluco-
nasturtiin is abundant in Chinese cabbage, radishes and
watercress (Fenwick et al., 1983). Kushad et al. (1999)
reported that, although the average total GS content of
Brussels sprouts was twice that of broccoli, the average
glucoraphanin content (the parent compound of Sf) of
broccoli was 7-fold that of Brussels sprouts. The same
study also reported remarkable variation between different
varieties of the same species; e.g. the glucoraphanin content
of broccoli varied from 0�8 to 21�7 mmol g�1 d. wt, and total
GS content was not necessarily predictive of concentra-
tions. Moreover, environmental variables such as location
(Shelp et al., 1993) and harvest date (Kushad et al., 1999)
affect GS concentrations and profile as much as or more
than variety.

Assessment of evidence of efficacy for glucosinolates.
Glucosinolates are chemically defined and there is limited
supportive epidemiologic evidence for efficacy of cancer
reduction (at least for crucifer consumption); however, stud-
ies with b-carotene have certainly demonstrated the danger
of using epidemiologic data from foods to predict efficacy
of isolated chemical compounds. Basic animal and cell
culture studies have demonstrated plausible mechanisms
of action, but there is no agreement as to which mechanism
is of primary importance. Human interventional studies
with GS in humans have been conducted, but they are lim-
ited in number and scope. By criteria proposed in Fig. 1,
there are no overwhelming, clear and consistent data show-
ing a cancer-reductive benefit of glucosinolates.

According to criteria proposed in Fig. 1, the available
data would suggest that further experimentation, especially
randomized and controlled human intervention trials, is
needed before candidate glucosinolate-enhanced foods are
proposed. However, as with lycopene, this point is irrelev-
ant as such foods are already being produced and marketed,
and the decision process should then be used to determine
whether such enhanced foods are effective for the hypothes-
ized health benefits. The first of the criteria (Fig. 1) for
evaluating a food is that the bioactive compound must be
found in consistent amounts and chemical forms in the
food product. Also similar to lycopene, extensive evidence
shows GS content and chemical forms vary dramatically
under common agricultural production conditions, and at
this point it may be very difficult to provide a consistent
product. Consequently, further product development,
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experimentation and, perhaps, even development of new
methodology is required.

POLYPHENOLS: THE MOST ABUNDANT
DIETARY ANTIOXIDANTS?

Polyphenols are an enormous general class of chemicals
with over 8000 described compounds (Ross and Kasum,
2002); general structures of the main classes are shown
in Fig. 5. Although the hydrophobic phenolic group is
common to all, glycosylation by sugars such as glucose,
rhamnose, galactose and arabinose makes them water sol-
uble (Yang et al., 2001b). The chemistry and nutritional
properties of phenolic compounds have been extensively
reviewed (Yang et al., 2001b; Robbins, 2003; Manach
et al., 2004). Although ten different general classes of
phenols are recognized, the majority of plant polyphenols
are simple phenols and flavonoids (Kris-Etherton et al.,
2002).

Epidemiologic evidence for the reduction of cancer risk
by dietary sources of polyphenols is emerging but not con-
vincing. Unbiased studies are difficult because of the vast
number of potential compounds and because the phenolic
content of most foods is not well established. The best
evidence comes from studies of polyphenols in tea drinkers
which was reviewed by Yang et al. (2001a). Four of seven
case control studies reported a significant inverse relation-
ship and two reported a numerical, but statistically insigni-
ficant relationship between green tea consumption and
cancer risk (Yang et al., 2001a), whereas a cohort study
did not find a protective effect (Tsubono et al., 2001). Stud-
ies of black tea consumption are equivocal; a cohort study in
the Netherlands did not find any benefit (Goldbohm et al.,
1996), whereas a cohort study in the US found a protective
effect on colon cancer (Su and Arab, 2002). Epidemiologic
studies of consumption of other flavonoid-rich foods and
cancer include a report of a significant inverse relationship
between apple consumption and lung cancer in Finnish men
(Knekt et al., 1997), and a protective effect of onions,
grapefruit and apples, primary sources of quercitin, on
lung cancer (Le Marchand et al., 2000). There are multiple
reports of isoflavones and lignans protecting against breast
cancer (Messina et al., 1994; Wu, 1999), but such effects
are probably a result of phytoestrogenic activity (Kurzer
and Xu, 1997) and are distinct from the chemoprotective
mechanisms of other polyphenols.

Epidemiologic evidence is accompanied by a large vol-
ume of basic in vitro and animal studies (approx. 1000
articles dealing with polyphenols in plant foods published
since 2000 according to PubMed database) (National
Library of Medicine, 2004). The primary problems with
these studies, however, are that the endpoints measured
may not be physiologically relevant and/or they lack a con-
sistent and plausible mechanistic hypothesis.

The problem with the endpoints utilized in studies of
polyphenols is that most reports have focused on the
in vitro ‘antioxidant activity’ of polyphenols or phenolic-
rich foods, i.e. the ability of a food extract to reduce a test
compound, but the tests used may not generate data that
have any relationship to in vivo amelioration of oxidative

stress. Many studies reported in the plant-science literature
have come to conclusions such as in vitro antioxidant activ-
ity is well correlated to phenolic content in Vaccinium
berries (wild blueberry-like berries) (Taruscio et al., 2004),
processed tomatoes (Gahler et al., 2003), nectarines,
peaches and plums (Gil et al., 2002), grapefruit juice
(Gorinstein et al., 2004), apple extracts (Chinnici et al.,
2004) and yucca extracts (Piacente et al., 2004). In fact,
a search of the PubMed database for original research art-
icles published from the year 2000 to the present found more
than 700 reports of the antioxidant potential of phenolics in
plants (excluding the reports of antioxidants associated with
oils or oilseeds). Most used only in vitro assessments, and
less than 100 reports used an animal model.

A close scrutiny of the antioxidant tests used shows many
may have little or no relevance to human health. Common
tests include the Trolox equivalence (TEAC) assay (Bohm
et al., 2002), the diphenyl-1-picrylhydrazyly (DPPH)
assay (Polasek et al., 2004) and the 2,20anziobis-3-ethyl-
benzothiazoline-6-sulphonic acid (ABTS) assay. All of
these tests measure the ability of a test substance or extract
to scavenge a spontaneously formed radical cation chromo-
phore (Rice-Evans and Miller, 1997) (Bonina et al., 2000).
At least 200 studies published since 2000 used one of these
methods to relate the antioxidant ability of a plant extract to
its polyphenol content, and the popularity of these tests is
most likely their simplicity, not their in vivo significance
(Antolovich et al., 2002). Because these tests measure scav-
enging capacity of a radical formed spontaneously, they do
not use an oxidant initiator, but an oxidant initiator is con-
sidered an essential part of a valid test (Rice-Evans and
Miller, 1997; Antolovich et al., 2002).

Other assays in common use are the ferric-reducing anti-
oxidant power (FRAP) (Pulido et al., 2000) and the oxygen
radicalabsorbancecapacity(ORAC)assays.TheORACassay
follows the disappearance of oxidized b-phycoerythrin
(DeLange and Glazer, 1989) or fluorescein (30,60-dihydrox-
yspiro[isobenzofuran-1[3H],90[9H]-xanthen]-3-one), while
the FRAP assay measures reduction of Fe3+ tripyridyltria-
zine complex to Fe2+ tripyridyltriazine; 43 PubMed-listed
studies used these assays. Antolovitch et al. (2002) faults
the FRAP assay because it measures total antioxidant con-
centrations and not antioxidant activity. Results of the
ORAC assay are significantly correlated with HPLC data
for some phenolic acids, whereas the correlations were
meaningless for others, especially flavonoid glycosides
(Antolovich et al., 2002).

Although the above studies, no doubt, contribute to our
understanding of the potential beneficial role of phenolics in
plants, problems with the assays themselves, as well as
the relevance of the tests, mean that applying the results
to the human diet must be done with caution. Only a very
small percentage of the studies have simultaneously made in
vitro measurements and correlated them with in vivo
changes, thus the functional significance of the reported
tests is often not clearly established. Furthermore, methodo-
logical concerns make their results of limited use, especially
when only one test is reported. Additionally, these studies
do not take into account bioavailability or delivery to a
specific tissue site (so important in cancer prevention)
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into consideration, nor is there consensus on how much of
an antioxidant is beneficial. Aruoma (2003), in a review of
antioxidant methods, stated ‘ . . . it is clear that not a single
method can give a comprehensive prediction of antioxidant
efficiency’ and suggested that ‘the question of bioavailab-
ility and fate of metabolites of antioxidant components must
be addressed’, and concluded that ‘we have to agree (to)
governance on in vitro antioxidant methods based on an
understanding of the mechanisms involved’.

The second major problem with polyphenolic research
is that while much of the research focus has been on the
antioxidant activity of polyphenols, amelioration of oxid-
ative stress may not even be the mechanism by which poly-
phenols inhibit cancer. A review by Yang et al. (2001b)
stated ‘The effects of dietary polyphenols are of great
current interest due to their antioxidative and possible anti-
carcinogenic activities. A popular belief is that dietary poly-
phenols are anticarcinogens because they are antioxidants,
but direct evidence for this supposition is lacking’. Other
proposed mechanisms by which polyphenols may inhibit
cancer include modulation of molecular events in cancer
initiation, promotion and progression.

Some of the best studies of chemoprotection by poly-
phenols have used green tea and its predominant poly-
phenol, epigallocatechin gallate (EGCG). However, results
of many of these studies are more applicable to mechanisms
related to heart disease and stroke rather than cancer. For
example, EGCG was reported to attenuate hypoxia-induced
oxidative stress (Wei et al., 2004), protect against neuronal
oxidative damage (Nagai et al., 2002; Etus et al., 2003; Lee
et al., 2003), inhibit LDL–cholesterol oxidation (Vinson
et al., 2002), and ameliorate oxidation-induced hepatotox-
icity in mice (Chen et al., 2004) by decreasing nitrous
oxide-generated mediators of oxidative stress. More applic-
able to carcinogenesis, green tea and/or components of
green tea inhibited the formation of O6-methylguanine
and 8-hydroxydeoxyguanosine (8-OH-dGuo) DNA lesions
and chemically induced lung tumourogenesis in mice
(Xu et al., 1992), inhibited DNA methyl-transferase and
reactivated methylation-silenced genes important in the
cancer process (Fang et al., 2003), and scavenged hydrogen
peroxide and decreased UV-induced 8-OH-dGuo DNA
adducts in calf thymus (Wei et al., 1999), while black
tea decreased DNA adducts in liver microsomes (Krishnan
and Maru, 2004).

Other investigators have suggested that cancer reduction
by polyphenolic-rich foods may be mediated by an indirect
antioxidant function. Frei and Higdon (2003) reviewed stud-
ies regarding the antioxidant activity of green tea and
suggested that polyphenols may function indirectly as anti-
oxidants by (a) inhibiting redox-sensitive transcription fac-
tors such as nuclear factor-kappaB and activator protein-1,
(b) inhibiting ‘pro-oxidant’ enzymes such as inducible nitric
oxide synthase, lipoxygenases, cyclooxygenases and xanth-
ine oxidase or (c) inducing phase II and antioxidant
enzymes such as glutathione S-transferases and superoxide
dismutases. Such indirect antioxidant activity almost
certainly would not be detected by in vitro tests such as
those described above. Other proposed chemopreventive
mechanisms of polyphenolic compounds, particularly

EGCG, include induction of apoptosis in smooth muscle
cells (Hofmann and Sonenshein, 2003), mouse leukaemia
cells (Gao et al., 2002), oral carcinoma cells (Hsu et al.,
2003a), and human leukaemia cells (Smith and Dou, 2001;
Shiono et al., 2002). Induction of apoptosis has become
important enough to suggest that in vitro apoptotic activity
may be used as a screening tool for potential anticancer
phenolic phytochemicals (Hsu et al., 2003b). Cell cycle
arrest is induced by green tea polyphenol (Jia et al.,
2002) and curcumin (Hanif et al., 1997). Curcumin also
may modulate arachidonic acid metabolism (Rao et al.,
1995), some pro-oxidant polyphenols (e.g. resveratrol)
may be cytotoxic (Hadi et al., 2000), some polyphenols
may block initiating attacks on DNA (Newmark, 1984),
and some may regulate cell signal pathways (Yeh et al.,
2003).

Assessment of evidence of efficacy for polyphenols. The
evidence for the health benefits of polyphenols is intriguing,
but they are clearly compounds for which the evidence is
emerging at best. Based on Fig. 1, most polyphenols do
not meet the criteria for even an initial assessment of
chemopreventive efficacy. Although there have been
major research advancements in the identification and char-
acterization of specific polyphenols (Robbins, 2003), many
remain unidentified. Also the polyphenolic content of most
plant foods is uncharacterized, thus making epidemiologic
studies very difficult. The other initial assessment criterion
proposed in Fig. 1 is there must be measurable endpoints for
the intended health benefit. This may be the biggest concern
with the data at present as many of the reported analytical
methods have focused on in vitro antioxidant capability and
such studies are not directly applicable to the endpoint of
human cancer prevention. Consequently Fig. 1 criteria
would suggest that further analytical method development
and experimentation are required before polyphenol-
enriched candidate foods are proposed.

SELENOCOMPOUNDS AND SELENIUM-
ENHANCED FOODS: A MODEL OF PROVEN

EFFICACY FOR CANCER REDUCTION?

Selenium (Se) is a nutritionally essential element and Se
deficiency results in disease conditions in humans and
domestic livestock (Levander, 1987). Most of the recent
interest in Se nutrition, however, is not directed towards
restoring adequacy in deficient individuals. Rather, it is
directed toward over-supplementation in amounts of 3–6-
fold beyond the Recommended Dietary Allowance (RDA;
55 mg d�1) (National Academy of Science, 2001), because
there is evidence that such intakes are protective against
cancer (Combs et al., 2001).

Isolated selenocompounds are chemically characterized
and much research has been directed towards determining
the various forms in food. Epidemiologic data are
supportive of an association between Se intakes and cancer
risk, and these data are supported by animal and cell culture
studies conducted within the framework of a mechanistic
hypothesis. Finally, there have been multiple clinical inter-
vention trials with Se, and trials directed toward confirming
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previous results are now under way. There is also interest
in Se-enhanced foods because studies have shown that
Se can be reliably and repeatedly enhanced in selected
foods. Bioavailability studies have been conducted in anim-
als and humans, and other studies have begun to character-
ize interactions between Se and other food constituents.

Chemical forms of Se

Selenium is covalently bound into multiple compounds
in plants, and the amount and chemical forms of these
compounds are determined by the environment and plant
genetics (Davis and Finley, 2003; Ellis and Salt, 2003); the
structures and metabolism of these compounds are reviewed
in detail elsewhere (Ganther and Lawrence, 1997). The phy-
siologic effect of Se consumption depends in part on the
chemical form of the element. Some forms of Se are pref-
erentially incorporated into selenoproteins (proteins that
require Se for catalytic activity), others are non-specifically
incorporated into proteins in general, whereas still others are
preferentially excreted; Fig. 6 is a simplified picture of this
metabolism. Predominate forms of Se found in nature
include salts such as sodium selenate and selenite and the
amino acid selenocysteine; these forms are readily used
by Se-deficient animals for production of selenoproteins.

The amino acid selenomethionine (SeMet) may randomly
substitute for methionine and thus may accumulate in
general methionine-requiring proteins. Methylated amino
acids such as Se-methyl selenocysteine (SeMSC) are meta-
bolized primarily in the excretory pathway, and limited data
suggests that methyl selenol generated in this pathway is the
metabolite most responsible for preventing cancer (Ip and
Ganther, 1990).

The biosynthetic pathway for selenocompounds in plants
has been delineated (Ellis and Salt, 2003); Se follows the
sulfate assimilation pathway and ultimately incorporates
into SeCys and SeMet. A specific transferase may add
a methyl group to SeCys forming SeMSC (Neuhierl and
Bock, 2000), and transfection of that gene into a plant will
convert it into a plant that hyperaccumulates Se (Wang et al.,
1999) in methylated forms such as SeMSC (Pickering et al.,
2003). Broccoli will hyperaccumulate Se (Finley, 1998) in
methylated forms (Cai et al., 1995; Roberge et al., 2003).
Wheat will only accumulate modest amounts of Se (Olson
et al., 1970; Finley, 1999a), primarily as SeMet (Djujic
et al., 2000; Wolf and Goldschmidt, 2004). Other plants
that may accumulate Se include garlic (Ip et al., 1992; Ip
and Lisk, 1993, 1994a), ramps (Whanger et al., 2000),
various species of mushroom (Stijve, 1977; Spolar et al.,
1999; Werner and Beelman, 2002), various algae (Saiki
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et al., 1993), multiple Brassica species (Hamilton, 1975;
Nyberg, 1991; Keck and Finley, 2004) and Brazil nuts
(Chang et al., 1995).

Epidemiologic and investigative evidence for
cancer reduction

Clark et al. (1991) reported significant associations
between the concentration of Se in animal forages and
human lung, rectal, bladder, oesophageal, cervical, breast
and corpus uteri cancer mortality rates in 200 US counties.
More recent epidemiologic evidence is strongly supportive
of the hypothesis that Se is protective against prostate
cancer (Yoshizawa et al., 1998; Nomura et al., 2000).

The epidemiologic evidence for Se-mediated chemo-
prevention of cancer is supported by many studies in
animals and cells in culture that have developed distinct
hypotheses of the mechanism of action of Se; these studies
are extensively reviewed elsewhere (Combs et al., 2001;
Ganther, 2001; Kim and Milner, 2001; Davis and Finley,
2003). Combs (1999) has proposed a multistage hypo-
thesis for the biological action of Se in cancer prevention.
During Se deficiency, addition of small amounts of Se to the
diet increases the activity of selenoproteins, improves the
function of the immune system and may regulate Phase I
and Phase II detoxification enzymes. However, when Se is
consumed in amounts beyond the dietary requirement
(so-called ‘supranutritional intakes’) it probably exerts its
effects through completely different mechanisms such as
control of the cell cycle, apoptosis and angiogenesis.
Summarization of the literature (Davis and Finley, 2003)
suggests several primary anti-carcinogenic mechanisms of
Se that include irreversible apoptosis with DNA strand
breaks (Spallholz, 1994; Davis et al., 1998; Spallholz
et al., 2001), cell cycle arrest and/or apoptosis independent
of DNA strand breaks (Wilson et al., 1992; Lu et al., 1995),
changes in the mitogen-activated cell signalling pathway
(Ghose et al., 2001) and inhibition of angiogenesis (Lu
and Jiang, 2001).

Evidence from clinical intervention trials of
cancer suppression by Se

Selenium is one of a very few nutritional compounds used
in chemoprevention studies in which a successful interven-
tion has been replicated (Young and Lee, 1999). Selenium
supplementation has been reported to reduce hepatic cancer
(Yu et al., 1991, 1997) and Se in combination with
b-carotene and vitamin E reduced oesophageal cancer
(Blot et al., 1995) (these studies should be viewed with
caution as other health/dietary problems may have been
confounding variables). The most robust of the cancer trials,
first reported in 1996, found that 200 mg of Se d�1 (supplied
as Se-enhanced yeast) reduced overall cancer incidence and
mortality by as much as 50 %, and prostate cancer by >60 %
(Clark et al., 1996). Although subsequent analysis of
the data has changed some of the statistics, the data for
chemoprotection against prostate cancer remain strong
(Duffield-Lillico et al., 2002).

Confirming the results of Clark et al. (1996) is a high-
priority research objective. Multiple small trials are cur-
rently being conducted, but the largest and most important
trial is the selenium and vitamin E prostate cancer
(SELECT) trial (National Institute of Health, 2004). This
National Institute of Health-sponsored study has enrolled
32 400 male subjects 50 years or older in the United States,
Puerto Rico and Canada and is the largest prostate cancer
trial ever conducted. Subjects will be supplemented daily
with either 200 mg of Se, 400 mg of vitamin E, vitamin E
and Se, or a placebo, and is scheduled to last for 7 years. If
results of the ongoing Se trials are positive it is likely that a
strong world-wide demand for supplemental sources of Se
will develop, and Se-enriched foods could potentially fill
much of this demand (there is one potential problem with
this study, in that the original intervention study used
a natural product, Se-enriched yeast; the SELECT trial,
however, is using purified selenomethionine, and so there
is some question as to how results of this study can be
extrapolated to intakes of Se through food).

Efficacy of Se-containing foods for cancer prevention;
do foods contain consistent amounts and forms of Se?

Data collected in Finland has demonstrated that Se in
soil can be reliably transferred to plants and ultimately to
humans. Because of extremely low dietary Se intakes,
Finland adopted a national policy in the mid-1980s of
adding Se as sodium selenate to all agricultural fertilizers
(Varo et al., 1988; Mäkelä et al., 1993). By 1989 the sup-
plementation regimen had increased the human dietary
intake of Se by Finnish people from 20–30 mg d�1 (in
1986) to 80–90 mg d�1 (in 1989), with the primary food
source being wheat flour (Mäkelä et al., 1993). Within
2 years of beginning fertilization, markers of Se status in
Finnish people were similar to people in the US. Other
Se-enhanced foods that have been produced by Se fertil-
ization include soybeans (Yang et al., 2003), tomatoes,
strawberries, radishes and lettuce (Carvalho et al., 2003)
and potatoes (Poggi et al., 2000). Arthur (2003) reviewed
the evidence for increasing the content of Se in foods by
addition of selenized fertilizer to the soil, and concluded that
fertilization is safe and effective for increasing Se status in
humans and animals.

Other countries have supplemented Se to their popula-
tions (either intentionally or unintentionally) by importing
wheat grown on high-Se soils. For example, the blood Se
concentrations of New Zealanders with very low intakes of
Se increased 50 % following several years of importation of
Australian wheat (Watkinson, 1981). Selenium-enriched
wheat can be naturally produced when it is grown on
soils naturally high in Se. The average concentration of
Se in US wheat is approx. 0�3 mg Se kg�1, but wheat
produced in some areas of central South Dakota is consist-
ently between 5 and 15 mg Se kg�1 (Finley, 1999a; Lawler
et al., 2004; Soto-Navarro et al., 2004). Additional factors
that affect Se accumulation in plants include soil type
(Popijac and Prpic-Majic, 2002), potential ligands (Poggi
et al., 2000), moisture (Tennant and Wu, 2000), sulfur status
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(Baghour et al., 2002) and soil temperature (Baghour
et al., 2002).

Is Se from Se-enriched foods bioavailable for
the physiological functions of Se?

While it may not be necessary to replicate cancer trials
with candidate Se-enriched plant foods, it is important to
demonstrate that the Se is bioavailable. This has tradition-
ally been determined by measuring the relative efficacy
(usually by comparison to selenite or SeMet) of a seleno-
compound for improvement of Se status of Se-depleted
animals or humans; Se status is usually assessed by meas-
uring blood Se and glutathione peroxidase enzyme activity
(Levander, 1983). However, reduction of cancer risk may
not be associated with improvement of these variables; thus
studies need to specifically demonstrate the bioavailability
of Se for chemoprotection against cancer. High-Se garlic
has been reported to inhibit mammary cancer in rats and
mice (Ip et al., 1992; Ip and Lisk, 1994a, 1995; Ip et al.,
2000; Dong et al., 2001), Se-enriched soy reduced meta-
stasis of melanoma in mice (Li et al., 2004), Brazil nuts
protected against mammary cancer in rats (Ip and Lisk,
1994b) and Se-enriched ramps inhibited mammary tumours
in rats (Whanger et al., 2000). Selenium-enriched broccoli
reduced preneoplastic lesions in rat colon (Finley et al.,
2000; Finley, 2003a), spontaneous intestinal tumours in
the Multiple Intestinal Neoplasia (Min) mouse line (Finley,
2003a) and carcinogen-induced mammary tumours in mice
(Finley et al., 2001), and increased the activity of pro-
apoptotic genes in mice (Zeng et al., 2003). However,
the bioavailability of Se from broccoli, when determined
by improvement of Se status in rats, was much lower than
for selenite or SeMet (Finley, 1998; Finley et al., 2004);
studies in humans gave similar results (Finley, 1999b).

While the only natural substance that has been demon-
strated to decrease cancer in humans is the Se-enriched
yeast that was used in the cancer trial of Clark et al.
(1996), there have been numerous Se bioavailability trials
in humans. Selenium-enriched wheat improved Se status in
US men (Longnecker et al., 1993), Dutch men (van der
Torre et al., 1991), New Zealanders (Watkinson, 1981),
Finnish medical students (Mäkelä et al., 1993), Norwegian
women (Bibow et al., 1993) and adults in Yugoslavia with
low Se intakes (Djujic et al., 2000). High-Se wheat has
been used as a component of cattle rations and short-
term (3–4 months) feeding increased the content of Se in
beef almost 10-fold above the US average (Hintze et al.,
2001; Soto-Navarro et al., 2004). Selenium from soy protein
isolate was reported to be more bioavailable to preschool
children than Se from milk (Solomons et al., 1986). Low
bioavailability has been reported for Se from mushrooms
(Mutanen, 1986).

Does Se enrichment of a plant cause any unintended
interaction?

Selenium and Se-enriched foods have been investigated
rigorously, but the enrichment of foods with Se has been done
without consideration of interactions with other nutritive

and/or non-nutritive components. However, reports of a
novel interaction between Se and glucosinolates in broccoli
provide an example of an unintended consequence of
manipulation of a single bioactive compound. Selenium-
enriched broccoli used in animal cancer trials (Davis
et al., 1999; Finley et al., 2000; Finley, 2003a) is from a
commercially available variety produced by fertilization
with Se during the period when the floret develops and
matures (Finley, 1998). Although no other growth
conditions were altered, Se fertilization potently inhibited
Sf production (by as much as 75 %, compared with unfer-
tilized controls) (Charron et al., 2001; Robbins et al., 2004),
and changed the profile and decreased the total amount of
polyphenols (Robbins et al., 2004).

Rats that consumed Se-enriched broccoli also had an
unexpected metabolic alteration brought about by the
interaction of Se and Sf. Thioredoxin reductase (TR) is a
selenoprotein (Mustacich and Powis, 2000); the production
of TR is highly regulated by Se availability at the transla-
tional level, and beyond a certain point, additional dietary
Se does not increase selenoprotein production (Burk and
Hill, 1993). However, broccoli and/or Sf induces TR protein
and activity beyond the maximum normally induced by Se
alone (Hintze et al., 2003a; Zhang et al., 2003a). The pro-
posed mechanism for this induction is that SF activates TR
transcription by activating an ARE on the TR promoter
(Hintze et al., 2003b). Thus feeding Se and Sf simultan-
eously causes a simultaneous increase in transcription and
translation, synergistically increasing TR activity beyond
the maximum induced by either compound alone (Hintze
et al., 2003b; Zhang et al., 2003a). The functional con-
sequences for cancer reduction are unclear as TR is a power-
ful antioxidant whereas reduced thioredoxin is a potent
activator of many growth genes; therefore upregulation
of thioredoxin reductase has the potential to induce as
well as inhibit cancer (Mustacich and Powis, 2000;
Powis et al., 2000).

Assessment of evidence of efficacy for selenium. Based
on proposed decision criteria (Fig. 1), in many ways the
strongest argument for cancer prevention can be made for
Se-enhanced foods. Many cellular and animal studies have
been conducted under the umbrella of a strong mechanistic
hypothesis (however, again diverse techniques, cell and
animal models and multiple hypotheses dilute these findings
somewhat). These data combined with epidemiologic evid-
ence have been the basis for multiple human clinical trials,
and all of the reported trials have found a chemoprotective
effect of Se. However, there are problems with the clinical
trials; several trials are not readily applicable to healthy
subjects eating balanced diets, and the strongest trial was
done in a specialized subset of subjects (subjects that had
a prior incidence of skin cancer) (Clark et al., 1996). More-
over, a trial that will hopefully produce definitive results is
currently underway and even interim results are not anti-
cipated for several years.

Thus the process proposed in Fig. 1 would suggest that
the data are probably strong enough to begin production of
candidate foods, but a marketable food product depends on
positive results from the current prostate cancer intervention
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trial. The production of Se-enriched foods is challenging,
however, as both the chemical form and total amount of
Se may be influenced by many variables. Additionally the
methods traditionally used to assess Se bioavailability may
have little relevance to cancer reduction. Finally, studies
with Se-enriched foods have demonstrated that enrichment
of one bioactive compound may cause a concomitant
decrease in other important compounds, indicating that it
may be very difficult to produce ‘super-fortified’ plants. The
proposed decision process (Fig. 1) would indicate that, in
addition to waiting on the results of the current cancer trial,
further product and method development and further experi-
mentation are warranted before Se-enriched plant foods
may truly be marketed for cancer-inhibiting properties.

SUMMARY

Evidence is increasing that the consumption of bioactive
compounds in vegetables reduces the risk of cancer. The
possibilities of designing foods that will help reduce the
risks of specific cancers have been a great impetus to
the ‘functional food’ industry. However, there are major
obstacles and if they are not overcome they could erode
consumer confidence and dampen enthusiasm for nutri-
tionally enhanced plant foods. Criteria have been proposed
(Fig. 1) to evaluate (a) the evidence for reduction of cancer
risk by the bioactive compound, and (b) the ability of food
containing a bioactive compound to reduce cancer risk
without compromising the function of other compounds in
the food.

Polyphenolic compounds are the source of intense
research interest but, aside from specific compounds such
as ECGC found in green tea, the emerging data are not pro-
viding sufficient evidence to warrant production of even
candidate polyphenol-enhanced plant foods. Glucosinolates
and lycopene are compounds with emerging, but as of the
present, inconsistent evidence of efficacy. Although the
proposed decision process would question production of
foods enhanced with these compounds at this stage,
foods are being produced and marketed. The evidence
for efficacy of lycopene and GS from foods therefore
needs to be evaluated and, at present, the variability between
products is a major obstacle that must be overcome. b-Car-
otene is an example of a compound that circumvented much
of the proposed decision process, and consequently the non-
nutritive functions of b-carotene are still questionable, and
enhancing b-carotene in plants (for non-nutritive benefits) is
not warranted at this point. There is strong initial evidence,
as well as evidence from clinical trials, for the chemopre-
ventive benefits of selenocompounds. However, the largest
and most comprehensive clinical trial is still in progress
and interim results are not anticipated for several years.
Additionally, there are methodological problems associated
with the production of Se-enhanced foods, and many
methods used to evaluate Se bioavailability may not be
applicable to its cancer-preventive function. Thus at this
point, production of Se-enriched candidate compounds
seem warranted, but marketing such foods should be post-
poned until results of the ongoing clinical trial are known.

Additionally, it remains to be demonstrated that foods can
be enriched with consistent amounts and chemical forms of
bioavailable Se.

Thus a review of the literature regarding carotenoids,
glucosinolates, polyphenols and selenocompounds finds
many gaps in our knowledge of how such compounds affect
the cancer process and how they can be enhanced in foods.
While such gaps should serve to slow down the rush to
develop and market such foods, the available evidence
indicates that they have the potential to help reduce the
risk of our primary health problems, especially heart disease
and cancer. Consequently the gaps in our current under-
standing of these compounds and plants that produce
them should not dampen enthusiasm for work in this
area, but instead should serve as an incentive for plant
and nutritional scientists to develop joint strategies for
improvement of health through food.
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