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An ongoing debate in ecology concerns the impacts of ecological
drift and selection on community assembly. Here, we show that
there is a transition in diverse ecological communities between a
selection-dominated regime (the niche phase) and a drift-domi-
nated regime (the neutral phase). Simulations and analytic argu-
ments show that the niche phase is favored in communities with
large population sizes and relatively constant environments,
whereas the neutral phase is favored in communities with small
population sizes and fluctuating environments. Our results dem-
onstrate how apparently neutral populations may arise even in
communities inhabited by species with varying traits.

neutral theory | disordered systems | phase transitions | niche theory

The success of the neutral theory of biodiversity and biogeogra-
phy (1, 2) at explaining patterns in biodiversity has resulted in

a vigorous debate on the processes underlying the assembly, dy-
namics, and structure of ecological communities (1, 3–12). Starting
with the pioneering work of MacArthur (13–15), ecologists have
emphasized the roles of interspecific competition and environ-
mental interactions in community assembly and dynamics. These
niche-based models emphasize ecological selection as the driving
force of community assembly, whereas neutral models of bio-
diversity assume a functional equivalence between species and
emphasize the role of ecological drift (i.e., stochasticity) in com-
munity dynamics (1, 2, 16, 17). The success of both types of models
at explaining ecological data highlights the crucial need for un-
derstanding the impacts of ecological drift and selection in com-
munity ecology (18).

Hypothesis
We begin with a hypothesis that a diverse ecological community
with many species can be either neutral or nonneutral, depend-
ing on the state of its environment. We call the regime in which
a community is well described using neutral models the “neutral
phase” and the regime in which the community behaviors are
inconsistent with neutrality the “niche phase.” The dynamics in
the neutral phase are dominated by stochasticity whereas the
dynamics in the niche phase are dominated by selection. Our
goal in this paper is to demonstrate that these two phases nat-
urally emerge from simple probabilistic models of ecological dy-
namics and that a community may transition from one phase to
the other as its environment is altered (Fig. 1).
Historically, ecological neutrality is based on the assumption

of functional equivalence, which states that trophically similar
species are essentially identical in terms of their vital charac-
teristics, such as birth and death rates (19). Ecological neutrality,
however, is generally not a measurable feature of a community.
Therefore, we adopt a pragmatic definition of neutrality: We say
that a community is “statistically neutral” if its multivariate dis-
tribution of species abundances cannot be distinguished from a
distribution constructed under the assumption of ecological neu-
trality. In other words, the multivariate species abundance dis-
tributions of statistically neutral communities are indistinguishable
from those of communities of functionally identical species. Note
that ecological neutrality implies statistical neutrality, but statisti-
cal neutrality does not necessarily imply ecological neutrality. We

can now restate our hypothesis more precisely: As the character-
istics of an ecosystem change (e.g., carrying capacity, immigration
rate), there will be a transition between a neutral phase where the
ecosystem behaves as if it is effectively neutral and a niche phase
where the multivariate species abundance distribution is in-
consistent with statistical neutrality.

Background on Phase Transitions in Disordered Systems
Our hypothesis that ecological systems are likely to exhibit mul-
tiple phases is based on an analogy with disordered systems in
physics. For this reason, we briefly provide some background on
phase transitions in disordered systems. A phase transition refers
to an abrupt change in the qualitative behavior of a system as one
of its characteristics, or a characteristic of its environment, is al-
tered (20). The most well-known example may be the behavior of
water, which can be found as a solid, liquid, or gas depending on
temperature and pressure. Disordered systems often display a
more complicated type of phase transition, labeled the freezing
transition, where the system configuration gets “frozen” into a
particular state.
One illustrative example of a disordered physical system is a

protein (21). A protein can be thought of as a disordered system
in which the different amino acids along the protein chain in-
teract heterogeneously. The diversity of interactions in a protein
distinguishes natural proteins from homopolymers and is what
allows some proteins to fold to a stable native structure, while
causing others (like prions or amyloids) to misfold. In ecology,
this is analogous to the observation that the diversity of inter-
actions between the species in a community distinguishes niche-
like communities from neutral communities. To continue our
analogy, at high temperatures, a typical polypeptide sequence
will be in an unfolded phase where it samples different config-
urations randomly. If the temperature is lowered below a critical
value, the polypeptide will freeze into a single structure (the
folded state). This phase transition occurs when the stochasticity
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impacting the dynamics (i.e., the temperature) is smaller than
the energetic differences in the interactions of the amino acids
along the chain. If we take this analogy seriously, we should
expect to find a critical amount of stochasticity, compared with
the diversity of species traits, that separates neutral and niche
communities.

Theoretical Models for Studying Community Assembly
To test our hypothesis regarding the niche-to-neutral transition,
we analyzed two models of ecological dynamics: (i) a generalized
Lotka–Volterra (LV) system including immigration and sto-
chasticity and (ii) a binary model for the presence/absence (PA)
of the species in a community. Each of these models has
advantages and disadvantages. The LV model is a widely used
and interpretable model of many ecological phenomena. How-
ever, in general, it is intractable to perform analytic calculations
using the LV model and one must rely on numerical simulations.
In contrast to the LV system, the PA model is amenable to ana-
lytical arguments but this comes at the expense of ignoring species
abundances. Both models assume well-mixed populations, al-
though relaxing this assumption is an important avenue of future
research. These two models correspond to extreme cases of func-
tional responses (22, 23). The functional response in the PA model
is essentially a step function in which species interact only when
their abundances are above a threshold. By contrast, the LV model
corresponds to linear functional responses. We expect that real
communities lie somewhere in between these models.

Parameterizing Ecosystem Characteristics
To construct ecological phase diagrams, it is necessary to pa-
rameterize ecosystem characteristics. Because we are interested
in stochastic community assembly, we must introduce parameters
that reflect the impact of stochasticity as well as parameters that
capture variation in species traits. Due to the similarity of the
two models, we use the same symbols for analogous parameters
with an added tilde for parameters in the PA model (e.g., K
denotes carrying capacity in the LV model and ~K denotes car-
rying capacity in the PA model).
There are two potential sources of stochasticity in the ecolog-

ical dynamics: “demographic stochasticity” resulting from random
births and deaths in small populations and “environmental sto-
chasticity” caused by random variations in the environmental
conditions. Although there is no doubt that the origin of the
stochasticity is important for making quantitative ecological

predictions (24), extensive numerical simulations suggest that the
qualitative phase diagrams are insensitive to these details (SI
Appendix). For this reason, we parameterize the amount of sto-
chasticity by a single parameter, the noise strength ω ð~ωÞ.
We must also introduce parameters describing species traits. In

principle, each species in the community has a unique immigra-
tion rate, a unique carrying capacity, and some set of parameters
that describes how it interacts with other species. In the main text,
we restrict ourselves to the case where all species have the same
immigration rate, λ ð~λÞ, and the same carrying capacity K ð~KÞ (see
SI Appendix for relaxation of these assumptions). We assume that
the regional species pool is large so that there is a separation of
timescales between the dynamics of the local community and
those of the regional species pool. As a result our model does not
explicitly include speciation, even though speciation is ultimately
required to maintain diversity over longer timescales relevant to
the species pool. Following May’s seminal work (25), we ran-
domly draw symmetric interaction coefficients from a probability
distribution and focus on describing the average behavior of
ecosystems. Specifically, the interaction matrix C ð~CÞ—with ele-
ment cij ð~cijÞ characterizing the strength of interaction between
species i and j—is drawn from a Gamma distribution with mean
μ/S ð~μ=SÞ and variance or “interaction diversity”, σ2/S ð~σ2=SÞ,
where S is the number of species (see SI Appendix for results with
other distributions).

Stochastic Lotka–Volterra Dynamics
The first model that we analyze is a system of stochastic LV
equations including immigration. Niche-based models of com-
munity assembly frequently use LV equations as a simplified
description of ecological dynamics within a well-mixed com-
munity (13, 26–28). Here, we study a system of LV equations
incorporating immigration and multiplicative noise (i.e., sto-
chasticity). The rate of change in the abundance (xi) of species
i = 1, . . . , S is

dxi
dt

= λ+ xi
�
K − xi

�
−

X
j≠i

cijxixj +
ffiffiffiffiffiffiffi
ωxi

p
ηiðtÞ: [1]

The first term (λ) is the rate that species i immigrates into the
local community from an infinitely large regional species pool.
The second term (xi(K − xi)) limits the population of species i to
its carrying capacity (K) in the absence of immigration and
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Fig. 1. A schematic illustrating the intuition underlying our hypothesis for a phase transition between the neutral and niche regimes in ecology. (A) The
important ingredients of our model are a large pool of diverse species, implying a diversity of species interactions, subject to stochastic population dynamics.
(B) Stochastic ecological drift will dominate the dynamics of communities with small population sizes and/or fluctuating environments. (C) By contrast,
stabilizing selective forces will cause a community with a large population size and a constant environment to freeze into a unique, optimal configuration. (D)
We predict that there is a transition between a drift-dominated (neutral) phase and a selection-dominated (niche) phase. That is, the community behaves
exactly neutral when the inverse stochasticity is less than a critical threshold, and the deviation from neutrality rises quickly once the inverse stochasticity is
larger than the critical threshold. The red line represents an order parameter based on the distance from neutrality, the dashed blue line represents an order
parameter based on the niche phase, and the dashed black line denotes the critical stochasticity.
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species interactions. The third term ðPj≠icijxixjÞ describes the
effects that other species in the community have on species i
according to their interaction coefficients (cij). All of these de-
terministic terms (i.e., λ, K, and cij) collectively represent the
effects of ecological selection on the abundance of species
i. Ecological drift is incorporated into our model through the
last term

� ffiffiffiffiffiffiffi
ωxi

p
ηiðtÞ

�
, which represents stochasticity using a Gauss-

ian “white noise” ηi(t), with mean 〈ηi(t)〉 = 0, variance 〈ηi(t)ηj(t′)〉 =
δijδ(t − t′), and strength

ffiffiffiffiffiffiffi
xiω

p
.

Dynamics of Presence/Absence Model
In the PA model, a species i is described by a binary variable si
with si = 1 if species i is present in a community and si = 0 if it is
absent. The stochastic dynamics of species PA are defined by two
rates: the rate at which a species immigrates into a community
(i.e., the rate that si = 0 becomes si = 1) and the rate at which a
species becomes extinct once it is in the community (i.e., the rate
that si = 1 becomes si = 0). Thus, a species immigrates into a
community and lives there for some time before it dies out, only
to reimmigrate back into the community later, and so on. We
assume that the rate of immigration is simply ~λ, and we model
the rate of extinction as exp

�
−~Kð1−P

j~cijsjÞ=~ω
�
. Therefore, in

the absence of any interactions a species goes extinct at a rate
that is exponentially slow in its carrying capacity expð−~K=~ωÞ, and
competitive species interactions effectively decrease carrying
capacity through ~K

�
1−

P
j~cijsj

�
(13). The master equation describ-

ing the dynamics of~s with these rates is discussed in detail in SI
Appendix. After an initial transient period, the community reaches
a steady state where the immigration and extinction processes are
balanced. Due to the simplicity of this model, we can derive an
analytic expression for the steady-state probability distribution:

PPA
�
~s
�
=
exp

�P
i

�
~K
�
~ω+ ln ~λ

�
si −

�
~K
�
2~ω
�P

ði;jÞ~cijsisj
�

Z
�
~λ; ~K; ~C; ~ω

� : [2]

Here, Zð~λ; ~K ; ~C; ~ωÞ is a normalizing constant such that the total
probability sums to one.

Measuring the Neutrality of a Community
To test our hypothesis that communities can exhibit a niche-to-
neutral transition, it is necessary to define “order parameters”
that distinguish the niche and neutral phases. By convention, an
order parameter is chosen so that it is zero in one phase and
greater than zero in the other. Recall that the dynamics in the
neutral phase are dominated by stochasticity and multivariate
species abundance distributions in this phase are indistinguish-
able from those obtained from a neutral model with functionally
equivalent species. By contrast, the niche phase is dominated by
interactions and multivariate species abundance distributions are
peaked around the equilibrium value they would have in the
absence of stochasticity.
Using these intuitions we can define order parameters for both

the LV model and the PA model. In the LV model, we define an
order parameter that measures the distance (i.e., Kullback–
Leibler divergence) between the multivariate species abundance
distribution resulting from LV dynamics and the multivariate
species abundance distribution resulting from purely neutral
dynamics (see below). This order parameter is zero in the neutral
phase and nonzero in the niche phase. For the PA model, it is
convenient to consider a different order parameter, the Shannon
entropy, of the steady-state PA probability distribution. The
Shannon entropy is zero in the niche phase and nonzero in the
neutral phase. We now discuss both of these order parameters in
more detail.

Measuring Neutrality in LV Models. Early studies attempting to
quantify the neutrality of a community focused on the shape of the
marginal species abundance distribution, i.e., a histogram indicating
the number of species with 10 individuals in the community, the
number of species with 20 individuals in the community, and so on.
However, recent studies have shown that both and neutral and
nonneutral ecological models give rise to similar marginal species
distributions (12). For this reason, to measure neutrality in the LV
model we use the multivariate species abundance distribution. In
contrast to previous studies on marginal species abundance dis-
tributions in niche and neutral communities (e.g., ref. 12), using the
multivariate species abundance distribution allows us to study
the effects of different species interactions on correlations in
species abundances.
In particular, we quantify statistical neutrality in our LV

simulations by measuring the distance between the steady-
state distributions of species abundances obtained from the
LV model

�
PLVð~xÞ

�
and purely neutral dynamics

�
PNð~xÞ

�
. The

measure of distance that we use is called the Kullback–Leibler
divergence, KLðPLVkPNÞ=

R
d~xPLVð~xÞlnPLVð~xÞ=PNð~xÞ (29). One

interpretation of KL(PLVkPN) is defined as the amount of in-
formation about the true multivariate species abundance distri-
bution [i.e., PLVð~sÞ] that is lost by approximating the distribution
with one obtained from a neutral model [i.e., PNð~xÞ]. The KL di-
vergence ranges from zero to infinity, with KL(PLVkPN) = 0 imply-
ing that the simulated distribution is identical to the distribution
obtained under the assumption of neutrality. We study the average
of the KL divergence over many random realizations of the species
interactions, i.e., 〈KL(PLVkPN)〉. We expect 〈KL(PLVkPN)〉 ∼ 0 in
the neutral phase, whereas 〈KL(PLVkPN)〉 � 0 in the niche phase.
Similar results are obtained with distance measures other than the
KL divergence (SI Appendix).
In principle, it is possible to use an explicit formula for PNð~xÞ

from a specific neutral ecological model. However, many varia-
tions of neutral ecological models have been proposed and it is
unclear which neutral model to use to calculate our order pa-
rameter. To circumvent this problem, we exploit the observation
that the multivariate species abundance distributions of all neu-
tral models share several features. Because we have restricted
ourselves to considering LV systems where all species have the
same immigration rate, we also restrict ourselves to considering
neutral models where this assumption holds. The implications of
nonuniform immigration rates are discussed in SI Appendix. With
this caveat in mind, we observe that ecologically neutral models
are also statistical neutral. Namely, the time-averaged moments
of the abundance of species i are the same as the time-averaged
moments of the abundance of species j. Moreover, the correlation
in the abundances of species i and j is the same as the correlation
in the abundances of species k and l (SI Appendix). Simulations
shown in Fig. 2A demonstrate that this is the case, at least for
Hubbell’s neutral model (Materials and Methods), where the KL
divergence equals zero for all positive immigration rates. Finally,
we note that although ecological neutrality implies statistical
neutrality, statistical neutrality does not necessarily imply eco-
logical neutrality. Thus, our use of statistical neutrality is consis-
tent with the interpretation of ecological neutrality as a type of
null model that allows one to identify communities in which se-
lection is important.

Measuring Neutrality in the Presence/Absence Model. In the PA
model, we do not have access to species abundances. For this
reason, it is convenient to define a different order parameter that
measures the fluctuations in the binary vector of community
composition, ~s: the entropy, H½PPA�=−

P
~s PPAð~sÞlnPPAð~sÞ, of

the steady-state probability distribution PPAð~sÞ. In the absence of
stochasticity,~s will “freeze” into a unique configuration resulting
from ecological selection and H[PPA] = 0. In contrast, if the
dynamics are entirely random, then each species will randomly
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flip between being absent and present in the community and
H[PPA] = S ln 2. For diverse ecosystems with S � 1, we can
define the boundary between the neutral phase and the niche
phase as the points where 〈H[PPA]/S〉 = 0, with angular brackets
denoting averaging over random realizations of interaction
coefficients.

Phase Diagrams for Ecological Dynamics
Phase Diagrams. Armed with the order parameters discussed in
the previous section, we can construct phase diagrams for both
the LV and PA models. Fig. 2 shows the KL divergence and
entropy as a function of stochasticity and interaction diversity for
the two models. First, we note that the phase diagram deter-
mined using LV simulations is remarkably similar to the phase
diagram calculated using our PA model (compare Fig. 2 B and C),
which suggests that our results are fairly robust to model details.
Fig. 2B shows that there is a large neutral regime in which 〈KL
(PLVkPN)〉 ∼ 0 in the LV simulations. The distance from neutrality
rises once the stochasticity is lowered below a critical value. That
is, 〈KL(PLVkPN)〉 increases for small ω/K; note that the colors in
Fig. 2B represent exponential growth in 〈KL(PLVkPN)〉.
Fig. 2C shows the phase diagram for the PA model. In the

limit the number of species S becomes large, and the entropy is
strictly zero in the niche phase (blue shaded area) and different
from zero in the neutral phase (white area). In particular, we find
that the PA of the species in a community freezes into a small
number of configurations determined by the species traits if the
stochasticity ð~ωÞ is lowered below a critical value. This freezing is
indicative of a phase transition from neutrality to niche-domi-
nated ecological dynamics in the PA model.
It is important to recall that the neutral phase refers to a regime

in which the multivariate species abundance distribution is well
described by a neutral model, even if the underlying community is
not ecologically neutral. For example, one special case that illus-
trates this relation is a community of species that have become so
differentiated that they do not interact at all; i.e., μ = 0 and σ = 0.
Because there is no disorder, this community will reside in the
statistically neutral phase even though the species are all highly
differentiated. Nevertheless, the species in a community must be
differentiated for the community to reside in the niche phase.

Scaling Relation for the Niche–Neutral Phase Boundary. We can ex-
plicitly calculate the phase boundary separating the niche and
neutral phases, using the PA model. For diverse ecosystems with

many species S � 1, the relation defining the phase boundary
can be derived by mapping the problem to the random energy
model in physics (30, 31) (SI Appendix). Using this mapping we
can derive a simple scaling relation that indicates when an eco-
logical community will transition between the niche and neutral
phases (SI Appendix):

stochasticity
carrying capacity

∼
immigration× interaction diversity

mean interaction strength
:

The niche phase is favored when the interaction diversity is large
relative to the impact of stochasticity on the dynamics of the
population. By contrast, the neutral phase is favored when the
interaction diversity is small relative to the impact of stochasticity
on the dynamics of the population. This confirms the basic
intuitions about ecological dynamics that were suggested by the
analogy with protein folding discussed in the Introduction.

On the Nature of the Transition. The transition between the niche
and neutral phases in the PA model is sharp (Fig. 3). In the LV
model the distance from neutrality (〈KL(PLVkPN)〉) increases
when the stochasticity is lowered below the critical value. How-
ever, in the PA model, the derivative of the entropy with respect
to stochasticity is undefined along the phase boundary, the signa-
ture of a freezing phase transition in the theory of disordered
systems. Comparing the two models, the niche-to-neutral transition
in the PA model appears to be sharper than in the LV model.
Technically, a phase transition occurs at a point with an undefined
derivative, whereas the term “crossover” is used to describe tran-
sitions between qualitative regimes without this feature. Our nu-
merical results do not distinguish whether the transition in the LV
model is a crossover or a true phase transition. This difference
arises due to the differences in the functional responses of the two
models. These two models were chosen, in part, because they
represent the two extremes of possible species functional responses
(linear vs. step function). We expect the functional responses of
real ecological communities lie somewhere in between these two
models. For this reason, we expect that real ecological communities
will also exhibit a transition between the niche and neutral phases.

Ecological Implications
The Prevalence of Neutral and Niche Communities. Our model sug-
gests that neutral communities and niche-like communities both

Fig. 2. Phase diagram of neutral and competitive ecosystems. (A) Communities simulated according to Hubbell’s neutral model are statistically neutral with
a KL divergence equal to zero for all positive immigration rates and community sizes (J). (B) Simulations of competitive LV communities with immigration
display two phases: a statistically neutral phase with 〈KL(PLVkPN)〉 ∼ 0 and a niche phase with 〈KL(PLVkPN)〉 � 0. Note that the colors represent exponential
growth in the KL divergence. The critical stochasticity defining the phase boundary scales with interaction diversity (σ). Simulations were performed with μ =
1.0 and λ = 0.01. (C) The phase diagram calculated from the presence/absence model has a statistically neutral phase and a niche phase and a phase boundary
that scales with interaction diversity ð~σÞ. The phase diagram was calculated with ~μ= 1:0 and ~ω ln~λ= ~K=2.

13114 | www.pnas.org/cgi/doi/10.1073/pnas.1405637111 Fisher and Mehta

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405637111/-/DCSupplemental/pnas.201405637SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405637111/-/DCSupplemental/pnas.201405637SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1405637111


correspond to large volumes of the ecological phase diagram.
Moreover, our model is such that species always have real dif-
ferences in traits, but these differences in species traits leave
no trace on the equilibrium multivariate species abundance dis-
tributions in the statistically neutral regime. This does not preclude
the possibility that one could observe the effects of species trait
variation on other types of observations. This may explain the
success of neutral models at explaining many large-scale patterns in
ecology, even though selective forces are well documented, and
ubiquitous, on local scales. Furthermore, the crossover region sur-
rounding the phase boundary corresponding to “nearly neutral”

communities occupies only a small volume of the phase diagram.
As a result, we predict that nearly neutral communities should
actually be quite rare, as long as there is not an external force
(e.g., group selection) driving communities toward the niche–
neutral boundary.

Ecological Disturbances. One of our main predictions is that the
apparent neutrality of an ecological community is a function of
both the inhabiting species and the environment. As a result, it is
possible to drive a community between the niche and neutral
phases by changing the environmental conditions. As an exam-
ple, we consider the effects of selective logging on a population
of butterflies in a tropical forest on Buru, Indonesia (32). Through
habitat destruction, logging essentially moves the butterfly com-
munity from a position with high K/ω to one with low K/ω, tracing
a path along the stochasticity axis in the phase diagram (Fig. 4A).
Our model predicts that when a diverse community within the
niche phase is placed under a stress that lowers K/ω to the critical
value, it will undergo a transition to the neutral regime. LV sim-
ulations show that this transition results in a collapse of biodiversity
and leads to an increase in the skewness of the species abundance
distribution (SI Appendix). The increase in skewness of the species
abundance distribution calculated from LV simulations is evident
in a steeper curve in the rank-abundance plot for low K/ω com-
pared with high K/ω (Fig. 4B). Similarly, the observed data display
an increase in the skewness of the rank-abundance curve of the
logged forest relative to the unlogged forest, consistent with a loss
of biodiversity accompanying a niche-to-neutral transition (Fig.
4C). As our model predicts a transition in the shape of the rank-
abundance curve as a function of increasing stochasticity (or de-
creasing carrying capacity), observations of rank-abundance curves
as a function of deforestation, i.e., where the amount of de-
forestation varies continuously, could provide a more stringent test
of our model than only the two endpoints discussed here. Never-
theless, this example demonstrates the potential of ecological
phase diagrams for predicting the qualitative effects of community-
wide disturbances and for capturing the characteristics that con-
tribute to community resilience.

Conclusion
In summary, we have argued that the niche and neutral per-
spectives of ecology naturally emerge from stochastic models
for the dynamics of diverse populations as distinct phases of an
ecological community. Population dynamics in the niche phase

Fig. 3. The nature of the transition between the niche and neutral phases.
Note that the order parameters for the two models are different: The order
parameter for the PA model is zero in the niche phase and greater than zero
in neutral phase, whereas the order parameter for the LV model is greater
than zero in the niche phase and zero in the neutral phase. The average
entropy 〈H[PPA]/S〉, which is a measure of fluctuations in the community
composition, is positive in the neutral phase and zero in the niche phase,
illustrating the freezing transition in the PA model. (Inset) In LV simulations
the distance from neutrality 〈KL(PLVkPN)〉 is essentially zero in the neutral
phase and rises to large values in the niche phase. Parameters: ~μ= 1:0, ~σ ≈ 0:4,
~ω ln ~λ= 3~K=2, μ = 1.0, σ ∼ 0.4, λ = 0.01.

Fig. 4. Temporal variation in stochasticity and biodiversity in disturbed habitats. (A) An environmental disturbance that decreases carrying capacity may
cause a community to shift from the niche phase to the neutral phase. (B) A community with a high carrying capacity (K = 1.0: blue) has a less skewed species
abundance distribution than a community with a low carrying capacity (K = 0.1: red), as shown by the steeper red curve in the rank-abundance plot obtained
from LV simulations. Simulations were run with μ = 1.0, σ = 0.5, λ = 0.02, and ω = 0.6. (C) Similarly, rank-abundance plots of butterfly species in a tropical
Indonesian forest before (blue) and after (red) logging reflect an increase in skewness of the species abundance distribution following the disturbance (32).
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are dominated by ecological selection, whereas population dy-
namics in the neutral phase are dominated by ecological drift.
Furthermore, we have derived a simple scaling relation for de-
termining whether an ecological community will be well described
by neutral models.
Our hypothesis can be experimentally tested using synthetic

microbial communities in which the immigration rates, carrying
capacities, and interaction coefficients can be controlled to
search for a transition as one moves from one region of the phase
diagram to another (33). Alternatively, connections to island
biogeography discussed in SI Appendix suggest that our hypoth-
esis could be tested by calculating the KL divergence from the
multivariate species abundance distributions on a chain of islands
as a function of their distance to the mainland (34). Observation of
a transition in the shape of the rank-abundance curve of a com-
munity along a disturbance gradient would also provide evidence
of the niche–neutral transition.
In this work, we made some simplifications that are unrealistic

for natural ecological communities. For example, we restricted
our analysis to well-mixed communities with purely competitive
interactions. It will be necessary to generalize our results to in-
clude the effects of dispersal, mutualism, predator–prey inter-
actions, etc., to obtain a more quantitative model of natural
communities. Nevertheless, we conjecture that the presence of

a niche–neutral phase transition is robust to these model per-
turbations. However, disordered systems with complex inter-
actions display additional phases (35), which suggests that more
complex ecological communities may also exhibit additional
phases with novel characteristics.

Materials and Methods
We simulated Hubbell’s neutral model with a local community of J individ-
uals connected to an infinitely large metacommunity containing S = 50
equally abundant species. In each time step, with probability λ, an individual
randomly drawn from the metacommunity replaced a randomly chosen in-
dividual in the local community, or with probability 1 − λ, one randomly
chosen individual in the local community replaced another randomly chosen
individual in the local community. The simulations were run for 5 × 107 steps.
Ten simulations were run for each set of parameters, and the results
were averaged.

LV simulations with S = 50 species were performed over the parameter
ranges specified in Figs. 1–4. In each case, the competition coefficients were
sampled randomly, and then the stochastic Lotka–Volterra equations (Eq. 1)
were forward integrated for 5 × 107 steps of size δt = 0.005, using the
Milstein method. Ten simulations were run for each set of parameters, and
the results were averaged.
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