
Small-Molecule SMAC Mimetics as New Cancer Therapeutics

Longchuan Bai, David C. Smith*, and Shaomeng Wang*

Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology and 
Medicinal Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, 
USA

Abstract

Apoptosis is a tightly regulated cellular process and faulty regulation of apoptosis is a hallmark of 

human cancers. Targeting key apoptosis regulators with the goal to restore apoptosis in tumor cells 

has been pursued as a new cancer therapeutic strategy. XIAP, cIAP1, and cIAP2, members of 

inhibitor of apoptosis (IAP) proteins, are critical regulators of cell death and survival and are 

attractive targets for new cancer therapy. The SMAC/DIABLO protein is an endogenous 

antagonist of XIAP, cIAP1, and cIAP2. In the last decade, intense research efforts have resulted in 

the design and development of several small-molecule SMAC mimetics now in clinical trials for 

cancer treatment. In this review, we will discuss the roles of XIAP, cIAP1, and cIAP2 in 

regulation of cell death and survival, and the design and development of small-molecule SMAC 

mimetics as novel cancer treatments.
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Introduction: Apoptosis pathways

Apoptosis is one form of programmed cell-death and is a normal cellular process used by 

multi-cellular organisms to eliminate damaged or unwanted cells. Apoptosis is a tightly 

regulated process and faulty regulation of apoptosis is implicated in many human diseases, 

including cancer, autoimmune diseases, inflammation, and neurogenesis [1–3]. Indeed, 

resistance to apoptosis is a hallmark of human cancers [4].

Two main apoptotic pathways, the intrinsic and the extrinsic pathways, have been 

extensively investigated. The intrinsic pathway is also called the mitochondrial pathway and 

characterized by permeabilization of the mitochondria induced by a variety of stress signals 

such as chemotherapeutic drugs or radiation. At the molecular level, the intrinsic pathway 
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involves the translocation and oligomerization of BAX or BAK, members of the BCL-2 

protein family. BAK or BAX forms a pore in the outer mitochondrial wall leading to the 

release of cytochrome c and second mitochondrial-derived activator of caspases (SMAC, 

also known as DIABLO, direct IAP-binding protein with low pI) from mitochondria into the 

cytosol. In the cytosol, cytochrome c, together with apoptotic protease activating factor 1 

(APAF1) and pro-caspase-9, forms a multi-protein complex apoptosome, which cleaves 

zymogen pro-caspase-9 into active caspase-9. Active caspase-9 then cleaves and activates 

effector caspases, caspase-3 and caspase-7. Active caspase-3 and caspase-7 cleave down-

stream cell-death substrates, ultimately leading to apoptosis.

The extrinsic pathway is initiated by the binding of death ligands such as Fas/Apo-1, TNFα 

(tumor necrosis factor α), Apo2L/TRAIL (TNF-related apoptosis-inducing ligand) to their 

corresponding cognate death receptors (CD95/FasR, TNFR1 and DR4/DR5) on the cell-

surface. The binding of a death ligand to its receptor(s) results in recruitment of multiprotein 

death-inducing signaling complex (DISC) at the plasma membrane. The DISC contains an 

adapter protein, which recruits procaspase-8 into the complex and results in autoactivation 

of caspase-8. Further cleavage of caspase-8 activates caspase-3 and -7, leading to apoptosis.

There are extensive cross-talks between the intrinsic and extrinsic pathways. For example, 

caspase-8 also cleaves BID, a BCL-2 member, to generate truncated BID (tBID). tBID 

translocates to the mitochondrial membrane where it binds to BAX and BAK and stimulates 

the release of cytochrome c, leading to activation of the intrinsic pathway. In addition, both 

intrinsic and extrinsic apoptosis pathways converge in the activation of effector caspase-3 

and -7, which can further activate caspase-8, creating a positive feedback loop for apoptosis.

IAP proteins as key regulators of apoptosis

Apoptosis is tightly regulated at multiple levels and inhibitor of apoptosis proteins (IAPs) 

are a class of key negative regulators of both the intrinsic and extrinsic apoptosis pathways.

IAP proteins were first identified in baculoviruses for their ability to inhibit virus-induced 

apoptosis [5, 6]. IAP family proteins are defined by the presence of one to three of the 70–80 

amino acid baculoviral IAP repeat (BIR) domains. The mammalian IAP family is comprised 

of the following eight members;

• neuronal IAP (BIRC1)

• cellular IAP1 (cIAP1, BIRC2)

• cellular IAP2 (cIAP2, BIRC3)

• X chromosome-linked IAP (XIAP, BIRC4)

• survivin (BIRC5)

• ubiquitin-conjugating BIR domain enzyme apollon (BIRC6)

• melanoma IAP (ML-IAP, BIRC7)

• IAP-like protein 2 (BIRC8)
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Among these, XIAP, cIAP1, cIAP2, and ML-IAP, are known to play a direct role in the 

regulation of apoptosis [7]. This review will focus on XIAP, cIAP1, and cIAP2, which have 

predominant roles in the regulation of both intrinsic and extrinsic apoptosis pathways.

Structurally, XIAP contains three BIR domains (BIR1-BIR3), a UBA (ubiquitin-associated 

domain) [8], and a RING (really interesting new gene) domain (Figure 1). The BIR1 domain 

mediates XIAP’s interaction with TAK1 (TGFβ-activated kinase) and TAB1 (TAK1 binding 

protein 1) [9, 10]. The BIR2 domain and the linker region preceding it mediate the 

interaction of XIAP with active caspase-3 and -7 [11, 12]. The BIR3 domain binds to 

procaspase-9, blocking its dimerization and activation [13]. The UBA domain mediates 

XIAP’s association with mono- and polyubiquitin chains [8], and the RING domain confers 

E3 ubiquitin ligase activity [14]. In addition to these aforementioned functional domains in 

XIAP, cIAP1 and cIAP2 contain an evolutionary conserved caspase recruitment domain 

(CARD), and this CARD domain suppresses the activation of the RING domain E3 ligase 

activity of cIAP1 [15]. Distinct from the BIR1 domain in XIAP, the BIR1 domain of the 

cIAP1/2 proteins mediates their interactions with TRAF2 (TNF receptor-associated factor 2) 

[16, 17] (Figure 1).

IAP proteins suppress apoptosis by inhibiting the activities and/or the activation of caspases. 

XIAP is the only IAP protein that inhibits caspase activity through direct binding, whereas 

cIAP1 and cIAP2 inhibit caspase activity indirectly. The BIR2 domain and the preceding 

linker region of XIAP bind to the IAP-binding motif and active site of caspase-3 and -7, 

respectively [12, 18]. The BIR3 domain of XIAP binds to pro-caspase-9, blocking its 

dimerization and subsequent activation [19]. Since effector caspase-3 and -7 play a key role 

in the execution of apoptosis in both the extrinsic and intrinsic pathways, and caspase-9 is a 

critical initiator caspase in the intrinsic pathway, XIAP can effectively inhibit both intrinsic 

and extrinsic apoptosis pathways [20] (Figure 2). The regulation of apoptosis pathways by 

cIAP1 and cIAP2 centers on the E3 ubiquitin ligase activity of their RING domain. 

Dimerization of the RING domain potentiates the ubiquitin ligase activity of IAP proteins -

permitting the auto-ubiquitination as well as cross-ubiquitination of other IAP proteins [21, 

22]. For example, cIAP1 can mediate the ubiquitination of cIAP2 and XIAP [17, 21, 23]. 

Other prominent substrates of the E3 ubiquitin ligase of XIAP and/or cIAP proteins include 

RIP1-4 (receptor-interacting protein) [24, 25], NIK (nuclear factor kB, or NF-kB-inducing 

kinase) [17], caspases [26], TRAF2 [27], TRAF3/6 [28], SMAC [29], and C-RAF [30] 

among others [31–33]. Therefore, IAP proteins can modulate the signaling pathways 

mediated by their substrates. In particular, RIP1 ubiquitination by cIAP1 and cIAP2 is a 

critical event for TNFα-induced activation of canonical NF-kB signaling [33], which 

prevents RIP1 from forming a cytosolic complex with caspase-8 and Fas-associated protein 

with death domain (FADD) (complex II), and subsequent activation of caspases [33, 34].

IAP proteins as regulators of NF-kB signaling pathways

As described above, the ubiquitin ligase function of cIAP proteins enables them to modulate 

various signaling pathways, most notably the NF-kB signaling pathways. Numerous studies 

have established a role of cIAP proteins in regulating both the canonical and non-canonical 

NF-kB signaling pathways (Figure 2).
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NF-kB proteins include RelA (p65), RelB, c-Rel, NF-kB1 (p105/50), and NF-kB2 

(p100/52). These proteins function as dimeric transcription factors that regulate the 

expression of diverse target genes involved in inflammation, proliferation, survival, cell 

death, angiogenesis, migration, and invasion [35, 36]. In canonical NF-kB signaling, NF-kB 

proteins are bound to and inhibited by IκB (inhibitor of kB) proteins. For example, the NF-

kB p50-RelA dimer is inhibited by IkBα, which blocks the nuclear translocation of NF-kB 

to activate target gene expression. The ubiquitin ligase activity of cIAP proteins is essential 

for the recruitment and assembly of the signaling activation complex upstream of NF-kB 

activation in a number of TNF superfamily receptors, such as TNFR1, LT-βR, and CD40. 

For instance, the binding of TNF to TNFR1 stimulates the recruitment and formation of a 

multiprotein complex containing TRADD (TNFR-associated death domain protein), RIP1, 

TRAF2, and cIAPs [32, 37] (Figure 2). In this complex, cIAP protein promotes the K63-

linked polyubiquitination of RIP1 [33, 34]. The ubiquitination of RIP1 serves as a signaling 

platform for the recruitment of IKK (IκB kinase) complex [IKKα, IKKβ and NEMO (NF-

kB essential modulator)], TAK complex (TAK1 and TAB1/2), and LUBAC (linear ubiquitin 

chain assembly complex), leading to downstream activation of NF-kB and MAPK (mitogen-

activated protein kinase) pathways. Notably, XIAP can also promote the activation of TAK1 

in TGFβ/BMP signaling and in response to genotoxic stress [9, 38, 39].

In addition to positively regulating canonical NF-kB signaling, cIAP proteins are also key 

negative regulators of non-canonical NF-kB signaling. At rest, cIAPs control the stability of 

NIK via ubiquitination, and thus prevent the activation of downstream IKKα. In the absence 

of cIAPs however, NIK accumulates, leading to the phosphorylation of IKKα. This is 

followed by the phosphorylation of NF-kB2 p100 and its cleavage to p52. The p52 subunit 

dimerizes with RelB to activate NF-kB target genes.

NF-kB is frequently activated in human malignancies and plays a critical role in 

tumorigenesis, tumor progression, and metastasis [40]. In mucosa-associated lymphoid 

tissue (MALT) lymphoma, the fusion of the BIR domain of cIAP2 with the MALT1 is 

prevalent, and is associated with constitutive activation of canonical NF-kB signaling [41, 

42]. Inactivating mutations of cIAP proteins leads to constitutive activation of the non-

canonical NF-kB pathway in multiple myeloma [43, 44]. Meanwhile, XIAP physically 

associates with survivin to drive NF-kB activation, which promotes tumor cell invasion in 

vitro and metastasis in vivo [45].

In addition to its most commonly appreciated pro-survival functions, depending on the 

stimuli and the cellular context, NF-kB can also promote apoptosis through regulating the 

expression of proteins participating in cell death pathways, including the death-inducing 

tumor necrosis factor (TNF) superfamily ligands and receptors. As will be discussed in more 

detail below, the autocrine/paracrine production of TNFα has been shown to mediate SMAC 

mimetic-induced apoptosis [17, 46–49]. A very recent study has also shown that, in 

glioblastoma cells, SMAC mimetic stimulates NF-kB-mediated expression of death receptor 

DR5, followed by the formation of RIP1-containing cell death complex and eventually 

apoptosis in a death ligand-independent manner [50]. Thus, the SMAC mimetics-stimulated 

NF-kB activation is central to SMAC mimetic-stimulated apoptosis.
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cIAP1 and cIAP2 proteins as negative regulators of RIP1-dependent cell 

death signaling

RIP1 is a multi-functional signal transducer which mediates adaptive cellular stress 

responses [51]. Under normal conditions, RIP1, as discussed, is constitutively ubiquitinated 

by cIAP proteins (Figure 2) and the ubiquitinated RIP1 serves as a signaling platform for the 

activation of NF-kB and MAPK pathways. In the absence of cIAP proteins or presence of 

deubiquitinases, ubiquination does not occur and the non-ubiquitinated RIP1 promotes the 

formation of a cytosolic complex (complex II), which includes the adaptor protein FADD, 

caspase 8, and RIP1. Complex II mediates the activation of caspase 8, ultimately leading to 

apoptosis. In response to genotoxic stress and stimulation by TLR3 (toll-like receptor 3), 

such a cytosolic non-ubiquitinated RIP1-containing caspase-activating complex, 

ripoptosome, can also be formed, independent of TNFR signaling [52, 53]. If functional 

caspase-8 is absent, non-ubiquitinated RIP1 interacts with RIP3 through their RIP 

homotypic interaction motif. The cross-phosphorylation of RIP1 and RIP3 stabilizes their 

association and activates their pro-necroptotic kinase activity. Activated RIP3 binds to and 

phosphorylates MLKL (mixed lineage kinase domain-like) to form necrosome, a pro-

necroptotic complex, allowing nectoposis (programmed necrosis) to take place [54–58]. 

Therefore, by promoting the ubiquitination of RIP1, cIAP proteins prevent the recruitment 

and formation of RIP1-containing cell death activating complexes, thus blocking RIP1-

dependent cell death signaling (Figure 2).

IAP proteins and human cancers

Elevated expression of XIAP and cIAP proteins have been reported in a variety of human 

cancers and their high expression is correlated with chemoresistance and poor prognosis in 

several types of cancer [59]. In breast carcinoma for example, high nuclear expression of 

XIAP is associated with poor prognosis [60]. Similarly, elevated levels of XIAP are 

correlated with poor prognosis in colorectal cancer [61, 62], prostate cancer [63, 64], chronic 

lymphocytic leukemia [65] and many other types of human cancer. In contrast, XIAP 

expression is reported to be correlated with good prognosis in non-small cell lung cancer 

(NSCLC) [66]. The genomic amplification of 11q21-22, which contains genes encoding 

cIAP1 and cIAP2, occurs at a high frequency in a variety of human cancers, such as 

hepatocellular carcinoma [67], lung cancer [68], esophageal squamous cell carcinoma [69], 

and cervical squamous cell carcinoma [70] among many others. In cervical squamous cell 

carcinoma, elevated levels of cIAP1 are correlated with resistance to radiotherapy [70] and 

in colorectal and bladder cancer, elevated levels of cIAP proteins are correlated with 

advanced stages of tumors and poor survival [71, 72]. High expression of cIAP1, cIAP2, and 

XIAP correlates with poor outcomes in multiple myeloma patients [73]. In MALT 

lymphoma, the fusion of the BIR domain of cIAP2 with MALT1 is prevalent, and is 

associated with constitutive activation of NF-kB signaling [41].

IAPs are involved in human cancers not only through direct and indirect regulation of 

apoptosis pathways but also through modulation of various non-apoptotic pathways, which 

primarily stem from their E3 ubiquitin ligase activity. Recently studies have reported, albeit 

controversially, that IAP proteins play a role in cell motility, migration, invasion, and 
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metastasis [74]. Several studies suggest that IAP proteins can promote tumor cell migration 

and metastasis. Mehrotra et al. report that XIAP, in cooperation with survivin, promotes 

tumor cell invasion and metastasis by activating NF-kB-integrin β1 signaling and focal 

adhesion kinase and Src kinase [75]. Members of Rho GTPase family of the Ras 

superfamily, such as Rac1, RhoA, and Rho B play prominent roles in cell migration through 

regulating cytoskeleton formation, cellular polarity, and many other metastatic properties 

[76–78]. In HCT116 colon cancer cell line, XIAP interacts with RhoGDI (Rho GDP 

dissociation inhibitor) via its RING domain and negatively regulates RhoGDI sumoylation. 

Genetic depletion of XIAP causes marked reduction in β-actin polymerization and 

cytoskeleton formation, resulting in decreased cancer cell migration and invasion [79–81]. 

Furthermore, cIAP1 has been shown to regulate cell migration in a CARD-dependent 

manner and depletion of cIAP1 suppresses cell migration [15]. On the other hand, there are 

some studies suggesting that IAPs can regulate tumor cell migration negatively. It has been 

reported that the stabilities of C-RAF, a key regulator of the MAPK signaling downstream 

of Ras, are regulated by XIAP and cIAP proteins [30, 82]. Depletion of IAPs enhances the 

formation of lamellipodia and filopodia in HeLa cells, leading to enhanced cancer cell 

migration. XIAP and cIAP1 can bind directly to Rac1 in a nucleotide-independent manner to 

promote its polyubiquitination at Lys147 and proteasomal degradation [83]. Depletion of 

XIAP or cIAP1 leads to an increase in levels of Rac1 protein in both normal and cancer 

cells, concomitant with an elongated morphology and enhanced cell migration [83]. The 

differences in experimental approaches and models employed can contribute to the 

discrepancies between these reports. Nevertheless, these studies highlight the importance of 

additional exploration of the non-apoptotic functions of IAP proteins.

SMAC as an endogenous antagonist of IAP proteins

IAP proteins can be antagonized by their endogenous antagonists, such as SMAC/DIABLO 

[84, 85], Omi/HtrA2 [86], ARTS (apoptosis-related protein in the TGFβ signaling pathway) 

[87], and XAF1 (XIAP associated factor 1) [88]. SMAC, the best studied natural antagonist 

of IAP proteins, is released from mitochondria into the cytosol upon apoptotic stimulation 

[84, 85]. SMAC has a 55-residue mitochondria-targeting sequence at its N-terminus, which 

is proteolytically removed upon its release from mitochondria, to expose its Ala-Val-Pro-Ile 

(AVPI) tetrapeptide motif for binding to XIAP, cIAP1 and cIAP2 [84, 85, 89]. Cleaved 

Smac dimerizes and binds to the BIR2 and BIR3 domains of XIAP via its IAP binding motif 

and interferes with the interaction of XIAP with caspases [90, 91]. SMAC also binds to the 

BIR3 domain of cIAP1 and cIAP2 via its AVPI binding motif. cIAP1, cIAP2, and XIAP can 

all promote the ubiquitination and degradation of SMAC protein [29, 92]. Interestingly, 

SMAC promotes the auto-ubiquitination and degradation of cIAP1 and cIAP2 upon binding 

but not XIAP [93]. SMAC functions as an effective cellular antagonist of XIAP, cIAP1 and 

cIAP2 proteins.

Design of small-molecule SMAC mimetics as antagonists of IAP proteins

The design of small-molecule SMAC mimetics was greatly facilitated by the determination 

of co-crystal structure of the SMAC protein in a complex with XIAP BIR3 [89] and the 

solution structure of SMAC peptide complexed with XIAP BIR3 [90]. Based upon these 
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experimentally determined structures, the interaction between SMAC and XIAP BIR3 

involves four N-terminal residues (AVPI) in SMAC and a well-defined surface groove on 

XIAP BIR3 (Figure 3). Biochemical data indicate that a four-residue peptide - AVPI - 

derived from SMAC binds to the XIAP BIR3 domain protein with the same affinity as 

SMAC protein and can effectively antagonize the inhibition of caspase activity by the XIAP 

BIR3 protein. Additionally, the AVPI SMAC peptide also binds to cIAP1 and cIAP2 BIR3 

domain proteins with high affinities. These experimental structures and biochemical data 

form the basis for the design of small molecules (SMAC mimetics) which mimic the binding 

of SMAC protein to XIAP, cIAP1 and cIAP2. In the last decade, a large number of small-

molecule SMAC mimetics have been designed and developed and several of them are 

currently in clinical development for cancer treatment [20].

Oost and colleagues at Abbott Laboratories have designed a series of potent and cell-

permeable peptidomimetics through extensive chemical modifications of each of the four 

residues in AVPI [94]. One of the most potent peptidomimetics (compound 1, Figure 4) 

binds to XIAP BIR3 with a Kd value of 12 nM. Screening a panel of 59 cancer cell lines 

with diverse tumor types revealed that these peptidomimetics, acting as single agents, 

effectively inhibit cell growth in a small subset of cancer cell lines, including the MDA-

MB-231 breast cancer cell line. Mechanistic studies have shown that these compounds 

induce robust activation of caspase-3 and caspase-3 dependent cell death in the MDA-

MB-231 cell line. Significantly, compound 1 also demonstrated significant antitumor 

activity in the MDA-MB-231 xenograft tumor model in mice. This study provided the first 

important proof-of-concept preclinical data that small-molecule SMAC mimetics may have 

a therapeutic potential for the treatment of a subset of human cancers.

Employing a structure-based design strategy, our laboratory has designed a large number of 

SMAC mimetics, including SM-122 [95] and SM-406 [96](Figure 4), and has advanced 

SM-406 (AT-406/Debio1143) into clinical development. SM-406 has a high binding affinity 

to XIAP, cIAP1 and cIAP2 BIR3 proteins with Ki values of 66.4, 1.9, and 5.1 nM, 

respectively [96]. It has an oral bioavailability of 38–55% in rodents and non-rodents. In the 

MDA-MB-231 xenograft model in mice, SM-406 can completely inhibit tumor growth with 

an oral dose of 100 mg/kg, administered daily for 2 weeks, while causing no signs of 

toxicity to the animals. SM-406 is currently in Phase I clinical trials for cancer treatment 

[97].

Genentech has developed a series of SMAC mimetics two of which have advanced into 

clinical development. The first clinical candidate molecule is GDC-0152 [98] (Figure 4). 

GDC-0152 binds to XIAP, cIAP1 and cIAP2 BIR3 domain proteins with Ki values of 28, 

17, and 43 nM, respectively. GDC-0152 effectively inhibits tumor growth when 

administered orally in the MDA-MB-231 breast cancer xenograft model. GDC-0917 (Figure 

4) is a second generation of pan-IAP inhibitors that is currently in clinical development [99]. 

It binds to XIAP, cIAP1 and cIAP2 with Ki values < 60 nM and inhibits tumor growth in the 

MDA-MB-231 xenograft model in a dose-dependent manner with oral administration [99].
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Novartis has developed a class of potent SMAC mimetics [100, 101] and has advanced 

LCL161 into clinical development (Figure 4). Oral administration of LCL161 inhibits tumor 

growth in a mouse model of multiple myeloma [100].

Compound 1, SM-122, SM-406, GDC-0152, GDC0917 and LCL161 were all designed to 

mimic the AVPI tetrapeptide binding motif for interaction with XIAP, cIAP1 and cIAP2. In 

the co-crystal structure of SMAC in a complex with XIAP BIR3 protein, SMAC protein 

forms a homodimer, each monomer SMAC interacting with one XIAP BIR3 molecule via 

its AVPI binding motif [91]. It was subsequently shown that dimeric SMAC protein 

concurrently interacts with both the BIR2 and BIR3 domains in XIAP, blocking the 

inhibition of XIAP BIR3 to caspase-9 activity, as well as the inhibition of XIAP BIR2 

domain to caspase-3/-7 activity [102]. Consequently, it was proposed that bivalent SMAC 

mimetics designed to mimic the interaction of dimeric SMAC protein with both BIR2 and 

BIR3 domains of XIAP could be much more effective antagonists of XIAP and may have a 

much higher affinity to XIAP [20, 103]. The Harran and Wang Laboratories from the 

University of Texas Southwestern Medical Center were the first to report such a bivalent 

SMAC mimetic, compound 2 (Figure 4) [104]. Structurally, this is a symmetrical molecule, 

containing two identical AVPI mimetics, tethered together with a linker. Compound 2 binds 

to recombinant XIAP protein containing both BIR2 and BIR3 domains with a Kd value of 

0.3 nM and has the same potency as the SMAC protein in activation of caspase-3 in vitro. 

The single agent activity was not reported in the initial publication but it synergizes with 

both TNFα and TRAIL to induce caspase activation and apoptosis at concentrations as low 

as 100 pM in T98G human glioblastoma tumor cells. In addition to its strong binding to 

XIAP, compound 2 also binds with cIAP1 and cIAP2 in cell lysates. Similar to monovalent 

SMAC mimetics, it was subsequently shown to be effective as a single agent in cell growth 

inhibition and apoptosis induction in a subset of human cancer cell lines and capable of 

inducing tumor regression in xenograft models of non-small cell lung cancer [46]. The 

impressive potency of this bivalent SMAC mimetic (2) both in biochemical and cell-based 

assays has provided the inspiration for different research groups to design other classes of 

bivalent SMAC mimetics.

The first biovalent SMAC mimetic to enter clinical trial is AEG40826 (HSG1029), designed 

by Aegera Therapeutics but licensed to Human Genome Science for clinical development. 

(NCT00708006) No structural or preclinical data for AEG40826 have been published.

Our group has designed a series of bivalent SMAC mimetics such as SM-164 [48, 95] 

(Figure 4). SM-164 binds to XIAP containing BIR2-BIR3 with a Ki value of 500 pM [48, 

95]. Using several complementary approaches, we demonstrated that SM-164 achieves its 

very high affinity by interacting with both the BIR2 and BIR3 domains in XIAP [95]. It also 

binds to cIAP1 and cIAP2 with low nanomolar affinities [48]. SM-164 induces strong 

apoptosis in the MDA-MB-231 and other cancer cell lines as a single agent at concentrations 

as low as 1 nM and is 100-times more potent than corresponding SMAC mimetics that only 

mimic one AVPI binding motif [48, 95]. SM-164 induces robust apoptosis and achieves 

tumor regression in the MDA-MB-231 xenograft tumor tissues in mice [48]. More recently, 

we reported the design and evaluation of SM-1200, which is capable of achieving rapid, 
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complete and permanent tumor regression. An analogue of SM-1200, SM-1387, has been 

advanced into clinical trials in China and Australia.

TetraLogic Pharmaceuticals has developed a bivalent SMAC mimetic with affinity to 

cIAP1, birinapant (TL32711). This was shown to bind to XIAP with a Kd value of 45 nM 

and to cIAP1 with a Kd value of < 1 nM [105]. Similar to other SMAC mimetics, TL32711 

has been shown to induce cell death as a single agent in a small subset of human cancer and 

to achieve synergistic activity when combined with chemotherapeutic agents, TNFα or 

TRAIL. TL32711 is currently in Phase I/II clinical trials [106–108].

Mechanisms of the antitumor activities of SMAC mimetics

Extensive studies have demonstrated that, as single agents, SMAC mimetics induce TNFα-

dependent apoptosis in a small subset of tumor cells [17, 46–49]. On the molecular level, the 

binding of SMAC mimetics to cIAP1 results in a conformational change in cIAP1, 

stimulating its dimerization of the RING domain, leading to cIAP1 auto-ubiquitination and 

subsequent rapid, proteasomal degradation [109]. This transitory activation of cIAP1 

promotes the ubiquitination of RIP1 followed by the activation of canonical NF-kB 

signaling. Following the degradation of cIAP proteins, NIK accumulates and activates the 

non-canonical NF-κB signaling [17, 47]. The activated NF-κB signaling stimulates the 

expression of a wide spectrum of NF-kB responsive genes, including TNFα, which activate 

TNFR1 signaling in an autocrine/paracrine manner [17, 46]. With the degradation of cIAP 

proteins, non-ubiquitinated RIP1, together with FADD and caspase-8, forms an apoptotic 

signaling activation platform which activates caspase-8 provoking apoptosis [17]. Therefore, 

in principle, without TNFα production, SMAC mimetics should be incapable of stimulating 

apoptosis as single agents. An exception to this is birinapant, which has been reported to 

promote TNFα-independent apoptosis in inflammatory breast cancer cells [110]. However, 

the production of TNFα is necessary but not sufficient for induction of apoptosis by SMAC 

mimetics [49], indicating that additional blockade(s) other than IAP proteins exist for 

TNFα-induced apoptosis. Similarly, degradation of cIAP1 and cIAP2 by SMAC mimetics is 

not a predictor for apoptosis induction since SMAC mimetics can effectively induce 

degradation of cIAP proteins in both sensitive and resistant cells.

Although degradation of cIAP1 and cIAP2 has clearly been established as critical and early 

events in induction of apoptosis by SMAC mimetics, the role of XIAP is less defined. On 

one hand, although both caspase-8 and caspase-3 play key roles in induction of apoptosis by 

SMAC mimetics, caspase-9 plays no or minimal role, suggesting that the binding of SMAC 

mimetics to XIAP BIR3 is not essential for apoptosis induction as single agents. On the 

other hand, knock-down of XIAP by siRNA or genetic deletion of XIAP clearly enhances 

the potency of monovalent SMAC mimetics. Furthermore, bivalent SMAC mimetics that 

bind to XIAP containing both BIR2 and BIR3 domains with much higher affinities than 

monovalent SMAC mimetics are much more effective in antagonizing XIAP in cell-free 

functional assays to activate caspase-3/7 and also >100-times more potent than monovalent 

SMAC mimetics in induction of apoptosis in tumor cells [48, 111]. Collectively, these 

studies suggest that while binding to XIAP BIR3 is not required for induction of apoptosis 

by SMAC mimetics, effective antagonism of full length of XIAP can further enhance the 
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ability of a SMAC mimetic to induce TNFα-dependent apoptosis in tumor cells and XIAP is 

still an important cellular target for SMAC mimetics.

In addition to promoting TNFα-dependent apoptosis, SMAC mimetics can also prime 

cancer cells for TNFα-induced necroptosis. Necroptosis, a regulated necrotic cell death 

pathway controlled by RIP1 and RIP3 kinases, occurs when apoptosis is blocked, and is 

dependent on RIP1. As described above, in the absence of cIAP proteins, caspase-8 is 

activated by the RIP1-containing complex II in the TNFα/TNFR signaling. In addition to 

cleaving downstream effector caspases and BID, activated caspase-8 also cleaves RIP1 and 

RIP3 [112, 113]. In the absence of functional caspase-8, for example, after inhibition by 

caspase inhibitors, TNFα-induced apoptosis is blocked, permitting non-ubiquitinated RIP1 

to form a necroptosis-activating complex, necrosome. He et al first reported that, upon 

inhibition of caspase activity, SMAC mimetics, in combination with TNFα, provoke a 

strong necroptotic response in SMAC mimetic-resistant cancer cells [56]. Similarly, in 

caspase-8- or FADD-deficient cells, SMAC mimetic promotes cancer cells undergoing 

TNFα-induced necroptosis [114]. Mechanistically, by promoting the degradation of cIAP 

proteins, SMAC mimetics stimulate the formation of necrosome and promote necroptosis 

[115].

Like most other targeted drugs, SMAC mimetics are designed to act directly on tumor cells. 

Immune cell infiltration, resulting in chronic inflammation, is common in solid tumor 

lesions. Cytokines such as TNFα and IL-1β produced by innate immune cells (e.g., tumor 

associated macrophages) play critical roles in the initiation, progression, and metastasis of a 

variety of human malignancies [116]. Cheung et al. reported that SMAC mimetics synergize 

with IL-1β to induce caspase-8- and RIP1-dependent apoptosis in cancer cell lines 

representing diverse tumor types [117]. Thus it is reasonable to postulate that SMAC 

mimetics exert more robust antitumor activity in vivo, especially against inflammatory 

tumors. Indeed, Lecis et al. recently reported that the SMAC mimetic, SM83, is active as a 

single agent in vivo on human and murine cancer cells that are refractory to SM83 in vitro. 

SM83 exerts its antitumor activity by inducing inflammation and immune cell activation and 

it stimulates the reversion of the tumor-associated macrophages from a pro-tumoral M2- to a 

pro-inflammatory M1-like state, resulting in secretion by the host of TNFα, IL-1β, and 

IFNγ, leading to necroptic cell death and release of HMGB1 (high-mobility group box 1 

protein) [118]. It was speculated that, by inducing necrosis, SMAC mimetics can further 

prime an adaptive immune response [118]. Several other studies have shown that SMAC 

mimetics possess antitumor activity in vivo against cancer cells that are resistant to SMAC 

mimetics in vitro [119–121]. Nevertheless, these studies suggest the mechanism of action of 

SMAC mimetics in the microenvironment in vivo is different from that in 2-dimensional 

cultured cells in vitro. More robust studies are necessary to evaluate the antitumor activities 

of SMAC mimetics in clinically more relevant tumor models.

Development of combination therapies with SMAC mimetics for cancer 

treatment

SMAC mimetics promote TNFα-dependent apoptosis, but the presence of TNFα is not 

always sufficient for effective induction of apoptosis by SMAC mimetics. Petersen et al. has 
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reported that SMAC mimetic treatment can lead to feedback upregulation of cIAP2 protein 

[122]. This rebound of cIAP2 can compensate for the removal of cIAP1 by SMAC mimetics 

thus conferring drug resistance. The feedback upregulation of cIAP2 could be due to the loss 

of cIAP1-mediated ubiquitination and degradation of cIAP2, activation of NF-kB signaling 

by SMAC mimetics or alterations in the other signaling pathways, such as the PI3K-Akt 

pathway, that regulate cIAP2 expression [122]. We have observed that tumor cell lines 

initially sensitive to SMAC mimetics develop drug resistance when continuously exposed to 

highly potent SMAC mimetics [123] and we speculated that, in addition to feedback 

upregulation of cIAP2, other resistant mechanisms exist. Indeed, we discovered that LRIG1, 

a negative regulator of the stability of RTKs (receptor tyrosine kinase), is downregulated in 

the resistant cells derived from SMAC mimetic-sensitive cancer cells [123]. Such reduction 

of LRIG1 is accompanied by upregulation of diverse RTKs in the SMAC mimetic resistant 

cells. RTKs have been intensively pursued targets for cancer treatment and aberrant RTK 

activation has been implicated in cancer resistance to molecular-targeted therapies [124]. In 

fact, combination of SMAC mimetics with inhibitors targeting PDGFR (platelet-derived 

growth factor receptor), IGF1R (insulin-like growth factor 1 receptor) or EGFR (epidermal 

growth factor receptor) significantly increases cell death compared with monotherapy in 

human glioblastoma multiforme [125]. Synergy between SMAC mimetics and inhibitors of 

FLT3 (FMS-like tyrosine kinase 3) and BCR-ABL was also observed against leukemia in 

vitro and in vivo [126, 127]. In breast cancer cells, SMAC mimetics increase apoptosis 

induction by ErbB antagonists in Her2- or EGFR-overexpressing cells [128].

As SMAC mimetics exert death receptor-mediated cell death activity, it is conceivable that 

the combination of SMAC mimetics with death receptor ligands and agonists would be 

efficacious in a wide variety of cancer cells. Indeed, strong antitumor activity of SMAC 

mimetics and death receptor ligands (e.g., TRAIL) and agonists (e.g., monoclonal antibodies 

against TRAIL receptors) is observed in a large number of preclinical models representing 

acute lymphocytic leukemia [129], breast cancer [130], fibrosarcoma [131], glioblastoma 

[104], melanoma [131], neuroblastoma [132], pancreatic carcinoma [133, 134], and 

rhabdomyosarcoma [135] among others. For example, Abhari et al. recently reported that 

SMAC mimetic synergizes with mapatumumab and lexatumumab, monoclonal agonist 

antibodies against TRAIL receptors, to induce RIP1-dependent apoptosis in neuroblastoma 

cells [132].

Chemotherapy, along with irradiation and surgery, is currently still the mainstay of cancer 

treatment. The antitumor effects of SMAC mimetics have been extensively examined in 

combination with chemotherapeutics, and synergistic responses have been reported in 

numerous studies using in vitro and mouse xenograft models [20]. For example, Probst et al. 

reported that SMAC mimetics potentiate apoptosis induction by chemotherapeutics, 

including paclitaxel, etoposide, SN-38, 5-FU, and cisplatin in human cancer cell lines of 

diverse tumor types [120]. Mechanistic studies revealed that the synergistic activity of 

SMAC mimetics with chemotherapeutics is due to canonical NF-kB activation, TNFα 

production, and activation of the extrinsic apoptosis pathway [120]. In other studies, the 

reported synergy between SMAC mimetics and chemotherapeutics is reported as 

independent of TNFα, but dependent on the antagonism of XIAP [136, 137]. Recent studies 
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have shown that genotoxic agents such as etoposide can activate cell death pathways via 

proteasome-dependent depletion of IAP proteins to promote the assembly of a cytoplasmic 

cell death-activating platform, ripoptosome [52, 53]. Ripoptosome shares the same core 

components with the complex II originated from death receptor signaling. However, the 

formation of ripoptosome is independent of death ligands [52, 53]. SMAC mimetic, by 

promoting the degradation of cIAP proteins, stimulates the formation of ripoptosome and 

subsequent apoptosis in etoposide-treated SMAC mimetic-resistant cancer cells [53]. SMAC 

mimetic can also sensitize glioblastoma cells to temozolomide-induced apoptosis through 

promoting ripoptosome formation [138]. Notably, targeted drugs such as CDK2/cyclin A 

inhibitor TAT-NBI1 in combination with ERFR inhibitor erlotinib lead to the depletion of 

IAP proteins, and ultimately ripoptosome-mediated apoptosis in erlotinib-resistant breast 

tumor cells [139]. Therefore combining SMAC mimetics with standard-of-care 

chemotherapeutics and other targeted drugs holds clinical promise conceptually.

Taken together, these preclinical data provide evidence that SMAC mimetics may be 

developed in combination with conventional chemotherapeutics, death receptor ligands and 

agonists, as well as small molecule targeted drugs. Certain of these combination strategies 

are under clinical evaluation.

SMAC mimetics in clinical development for cancer treatment and initial 

clinical findings

To date, four monovalent and two bivalent SMAC mimetics have been tested in clinical 

trials for their safety, maximum tolerated dose, pharmacokinetics (PK), pharmacodynamics 

(PD), biomarker identification and initial efficacy in patients with advanced solid tumors 

and hematological malignancies [140].

GDC-0152 from Genentech was the first of these novel agents to enter a clinical trial [98]. 

No toxicity or efficacy data were reported, but when administered intravenously to patients 

with locally advanced or metastatic malignancies, GDC-0152 demonstrated linear 

pharmacokinetics over doses ranging from 0.049 to 1.48 mg/kg [98].

The first in human phase I trial of GDC-0917 (NCT01226277), a second generation, orally 

bioavailable SMAC mimetic from Genentech, enrolled 42 patients at doses ranging from 5–

600 mg daily on a 2 week on/1 week off dosing schedule [141]. Fatigue, nausea, vomiting, 

and constipation were the most commonly reported adverse events occurring in 

approximately of 20% of patients but the maximum tolerated dose (MTD) was not reached. 

The pharmacokinetics of GDC-0917 was dose-proportional with maximum doses reaching 

the inhibitory concentrations predicted from preclinical modeling. cIAP1 was rapidly 

decreased in peripheral blood mononuclear cells (PBMC) at all dose levels, with sequential 

biopsies in 3 patients showing decreases in tumor cIAP1 and decreases in caspase-3 and 

PARP. Two patients (1 ovarian cancer, 1 MALT lymphoma) had unconfirmed complete 

responses and 4 patients had stable disease lasting ≥ 3 months.

SM-406 (AT-406, Debio 1143) is an oral agent currently being evaluated in four Phase I 

trials. The first, a single agent trial in patients with advanced solid tumors and lymphomas, 
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enrolled 31 patients with doses from 5–900 mg on a 5 day every 3 weeks dosing schedule 

[97]. The most common adverse events were fatigue, nausea, vomiting, constipation, 

pruritus and rash, each of which was reported in 10–23% of the study population. One 

patient had reversible elevation in AST which was the only dose-limiting toxicity observed 

(DLT) and the MTD was not reached. Pharmacokinetics was dose proportional above 80 mg 

with no evidence of drug accumulation. At doses above 80 mg drug concentrations reached 

levels which predicted activity based on preclinical models with prompt degradation of 

cIAP1 in PBMC, skin biopsies, and tumor biopsies. Five patients (17%) had stable disease at 

the first evaluation with one patient on study for 196 days. This trial (NCT01078649) is now 

evaluating an additional dosing schedule (2 weeks on/1 week off). A second phase I trial of 

AT-406 in combination with daunorubicin and cytarabine in patients with poor-risk acute 

myelogenous leukemia was initiated but has been terminated. (NCT01265199). Recently, 

two new phase I trials were initiated. In one trial (NCT01930292), Debio 11430 is being 

evaluated in combination with both carboplatin and paclitaxel in patients with squamous 

non-small cell lung cancer (NSCLC), and in patients with platinum-refractory ovarian 

cancer, or in patients with basal-like/Claudin low triple negative breast cancer. In another 

trial (NCT02022098), Debio 11430 is being tested in a Phase I/II randomized study to 

determine the maximum tolerated dose, safety, pharmacokinetics and antitumor activity in 

combination with concurrent chemoradiation therapy in patients with locally advanced 

squamous cell carcinoma of the head and neck.

Another orally bioavailable monovalent SMAC mimetic, LCL161 was well tolerated on a 

weekly dosing schedule in 27 patients with advanced cancer (NCT01098838) and no dose-

limiting toxicity was found at doses up to 1800 mg [142, 143]. The most common adverse 

events were nausea and vomiting. Starting at doses of 320 mg, cIAP1 levels were 

consistently reduced in skin punch biopsies taken 8 h after the first dose and in a tumor 

biopsy after 24 h. cIAP1 levels in PMBC decrease 2 h post-dose and recover by the 

following week. Markers of cell death peak on day 2 and circulating cytokines, including 

MCP-1 and IL-8, increase 4 h post-dose at higher dose levels (≥900 mg). No objective 

responses were reported, but a patient with rectal cancer had stable disease through 5 cycles 

of therapy. A phase Ib trial tested the weekly schedule of LCL161 with 80 mg/m2 of weekly 

paclitaxel in adults with advanced solid tumors. (NCT01240655) A total of 32 patients were 

enrolled at LCL161 dose levels of 600, 1200, 1500, and an expansion cohort of 1800 mg 

weekly. The toxicities were those typical of weekly paclitaxel and there was no 

pharmacokinetic interaction between the agents. The abstract notes that cytokine release 

syndrome which was the dose-limiting toxicity (DLT) of the single agent study was not seen 

with the combination. A randomized, Phase II, neoadjuvant clinical trial of this weekly 

combination in triple negative breast cancer is in progress. (NCT01617668)

The bivalent SMAC mimetic brinapant (TL-32711) has been studied as weekly intravenous 

infusion on a 3 week on/1 week off schedule [106]. Doses ranged from 0.18–26 mg/m2 in 27 

patients enrolled on the initial phase I trials and there was no DLT. Adverse events included 

lymphopenia and rash. cIAP1 reduction was demonstrated in PBMC at doses ≥1.44 mg/m2 

with increased proportionality with increasing doses which correlated with the 

pharmacokinetics. Two colon cancer patients had evidence of tumor regression. A second 

phase I study enrolled 124 patients on 5 arms combining brinapant with either carboplatin/
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paclitaxel, irinotecan, docetaxel, gemcitabine, or liposomal doxorubicin [107]. Doses of 

brinapant ranged from 2.8–47 mg/m2. The MTD of brinapant was 47 mg/m2 with both 

carboplatin/paclitaxel and docetaxel, and 22 mg/m2 with irinotecan. Gemcitabine and 

brinapant could not be administered in combination in heavily pretreated patients, and drug 

supply issues prevented evaluation of the combination with liposomal doxorubicin. 

Reversible Bell’s palsy was seen as a DLT on this study and typically occurred on the first 

cycle of therapy. In six of the seven patients reported it did not recur with continued therapy. 

Significant anti-tumor activity was demonstrated with both the brinapant and carboplatin/

paclitaxel and irinotecan regimens with activity reported for the combination in patients 

whose tumors were refractory to prior therapy with irinotecan alone. Based on this activity, 

a phase II trial of brinapant and irinotecan in patients with irinotecan relapsed/refractory 

colorectal carcinoma has been conducted. Standard dose irinotecan (350 mg/m2 every three 

weeks) was administered with brinapant given on a day 1 and 8 schedule using an ascending 

dose strategy. The treatment was reported to be well-tolerated and in 51 patients enrolled 

there were two partial responses with 27 patients with stable disease for a clinical benefit 

rate of 57% [108]. Patients whose tumors had a KRAS mutation appeared to have slightly 

more benefit than those with KRAS wild-type tumors, although the numbers are small.

Another bivalent SMAC mimetic, HGS1029 (AEG40826), was well tolerated in patients 

with advanced solid malignancies on two days/week schedules (days 1, 8, and 15 and 

continuous), and intravenous schedules with an MTD of 3.2 mg/m2. (NCT00708006) [144]. 

A total of 44 patients were enrolled with DLT in 2/6 patients at 4.8 mg/m2. Dose-limiting 

toxicities included severe fatigue, elevated amylase and lipase. The most frequent adverse 

events were nausea, anorexia, fever, vomiting, diarrhea, fatigue, and rash. HGS1029 induces 

rapid and sustained reduction of cIAP1 levels after a single dose of administration and 

shows evidence of apoptosis induction in patients. Confirmed tumor regression was reported 

in a patient with colon cancer and 2 patients (NSCLC, adrenocortical cancer) had stable 

disease for more than 6 months.

These initial clinical data provide evidence that SMAC mimetics are well-tolerated, induce 

rapid and sustained cIAP degradation, and have antitumor activity as single agents and in 

combination in patients with advanced cancer.

Challenges in development of SMAC mimetics for cancer treatment

IAP proteins are prominent regulators of both apoptotic and non-apoptotic signaling 

pathways. SMAC mimetics, in general, stimulate TNFα-dependent apoptosis. TNFα is a 

pleiotropic cytokine that provokes various cellular responses, depending on the cellular 

context. A pertinent concern in the clinical development of SMAC mimetics surrounds the 

consequences of SMAC mimetic-stimulated NF-κB activation, including the potential 

adverse effects of elevated levels of cytokines and chemokines on normal tissues. 

Administration of GDC-0152, for example, causes acute induction of TNFα in the plasma of 

dogs and rats and GDC-0152 demonstrates a toxicity profile consistent with TNFα-mediated 

toxicity [145]. The onset and resolution of these acute toxicities generally tracks with the 

time course of GDC-0152-induced cytokine [145]. Despite these potential toxicity concerns 

based upon in preclinical data, patients administered intravenous doses of GDC-0152 up to 
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1.48 mg/kg showed no signs of a severe TNFα-driven systemic inflammatory response 

[146] and severe cytokine release syndrome, caused by an acute increase in plasma TNFα 

and other inflammatory cytokines, has not been reported in patients [142–144]. Similarly, 

phase I studies for other Smac mimetics have not found a severe TNFα-driven systemic 

inflammatory response or severe cytokine release syndrome.

Bone metastasis is a common complication of many tumor types, including breast, prostate, 

and lung cancer [147, 148]. RANKL (receptor activator of NF-κB ligand) is the central 

mediator of the vicious cycle of bone destruction and tumor growth. Cytokines and growth 

factors produced by tumor cells stimulate osteoblasts to overexpress RANKL, and this in 

turn drives osteoclast activity and bone resorption. Increased bone resorption releases 

growth factors from the bone matrix to further promote bone metastasis and perpetuate the 

cycle. Osteoclast differentiation and function are stimulated by the NIK-mediated non-

canonical NF-κB pathway downstream of RANKL/RANK signaling [149]. Employing 

mouse tumor models of SMAC mimetic-sensitive and -resistant human and murine breast 

tumors, Yang et al recently reported that SMAC mimetics cause high bone turnover 

osteoporosis, increase NIK-mediated osteoclastogenesis, enhance tumor-associated 

osteolysis, and favor bone metastasis [150]. Bisphosphonate, an osteoclast-targeting agent, 

effectively blocked SMAC mimetic-promoted bone metastasis and this, together with other 

studies discussed earlier [118], suggests that the effect of SMAC mimetics on the host 

microenvironment may have an impact on their ultimate efficacy and possibly their side 

effects.

Concluding remarks

IAP proteins are critical regulators of cell death and survival, and thus attractive targets for 

the development of novel anticancer drugs. The identification of SMAC as a natural 

antagonist of IAP proteins promoted the development of small-molecule SMAC mimetics as 

anticancer drugs and six such compounds have entered human clinical trials. Data from 

early phase clinical trials have provided evidence for on-target activity for SMAC mimetics 

and a good toxicity profile in patients with advanced cancer. Consistent with preclinical 

studies that SMAC mimetics as single agents are effective only in a subset of cancer cell line 

models, objective clinical responses were observed in a small subset of patients. Therefore, 

identification and validation of predictive biomarkers for drug response will be critical for 

the successful development of SMAC mimetics as monotherapies. Since SMAC mimetics 

have been shown to enhance the antitumor activity of chemotherapeutics and radiation in 

preclinical studies, a number of clinical trials to evaluate the combination of SMAC 

mimetics with chemotherapeutics and radiation are being performed, which may prove to be 

essential.
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Figure 1. 
Functional domains of mammalian inhibitor of apoptosis proteins (IAPs). BIR: baculoviral 

IAP repeat domain; UBA: Ubiquitin-associated domain; CARD: caspase recruitment 

domain; RING: Really interesting new gene finger domain.
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Figure 2. 
IAP proteins play prominent roles in NF-κB signaling and cell death pathways. See the text 

for details.
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Figure 3. 
(A) Crystal structure of the dimeric Smac protein in complex with two XIAP BIR3 proteins 

(PDBID: 1G73). The AVPI motifs are shown in ball models. (B) Detailed interactions 

between the AVPI binding motif and XIAP BIR3 residues. Oxygen and nitrogen atoms are 

colored in red and blue colors. Hydrogen bonds are depicted in dash lines. Electrostatic 

surfaces of XIAP BIR3 are shown where the red, grey and blue colors denote negative, 

neutral and positive charged regions. The figures are prepared using the PyMOL and APBS 

programs.
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Figure 4. 
Chemical structures of representative small-molecule SMAC mimetics.
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